MATH 7230 Homework 8 - Fall 2018

Due Wednesday, Nov. 14 at 1:30

https://www.math.lsu.edu/~mahlburg/teaching/2018F-MATH7230.html

You are required to turn in at least **one** of the following problems, and must complete a total of **20** by semester's end. Group work is allowed, but your solutions must be written up individually.

The notation "Ash A.B.C" means Problem C from Section A.B in the textbook.

Problems 1–4 explore the interesting invariants for the cyclotomic fields $\mathbb{Q}(\zeta_p)$. This covers most of the material in Ash 7.1.

1. The cyclotomic polynomials are defined by $\Phi_1(X) := X - 1$, and for $n \ge 2$,

$$\Phi_n(X) := \frac{X^n - 1}{\prod_{\substack{d \mid n \\ d < n}} \Phi_d(X)}.$$
(1)

(a) Prove that

$$\Phi_n(1) = \begin{cases} 0 & \text{if } n = 1; \\ p & \text{if } n = p^k \text{ is a prime power;} \\ 1 & \text{if } n \text{ is composite.} \end{cases}$$

Hint: Use strong induction on n*.*

(b) Prove that

$$\Phi_n(X) = \prod_{\substack{0 \le m \le n-1 \\ (m,n)=1}} \left(X - \zeta_n^m \right),$$

where $\zeta_n := e^{\frac{2\pi i}{n}}$.

- (c) Conclude that $\Phi_n(X)$ is a polynomial with integer coefficients. What is its degree?
- 2. Now focus on the case that n = p is prime. Let B be the ring of algebraic integers in $L = \mathbb{Q}(\zeta_p)$. It is immediate that $B \supseteq \mathbb{Z}[\zeta_p]$ (why?).
 - (a) Use Eisenstein's criterion to prove that Φ_p(1 X) is irreducible. Remark: This implies that Φ_p(X) is irreducible. It is also true that Φ_n(X) is irreducible, but this is nontrivial; see S. Weintraub's article for several proofs: https://www.lehigh.edu/~shw2/c-poly/several_proofs.pdf.
 - (b) Conclude that the minimal polynomial of $1 \zeta_p$ is $\Phi_p(1-X)$. Actually, this should more properly be $(-1)^{\phi(p)}\Phi_p(1-X)$, as we know that $1 - \zeta_p$ is an algebraic integer, and the sign ensures a **monic** polynomial. Calculate $\operatorname{Nm}_{L/\mathbb{Q}}(1-\zeta_p)$ – note that the constant term of $\Phi_p(1-X)$ is $\Phi_p(1)$.
 - (c) Finally, use Proposition 4.2.6 and Corollary 4.2.8 to show that $(1 \zeta_p)_B$ is a prime ideal.

- 3. (a) Calculate the discriminant of the power basis generated by ζ_p , namely $D_L\left(1, \zeta_p, \cdots, \zeta_p^{p-2}\right)$. The easiest approach is to use Corollary 2.3.6, as the derivative of $\Phi_p(X)$ is quite simple.
 - (b) Show that the norm you calculated in Problem 2 2b can be written as

$$\operatorname{Nm}_{L/\mathbb{Z}}(1-\zeta_p) = (1-\zeta_p) \left(1-\zeta_p^2\right) \cdots \left(1-\zeta_p^{p-1}\right) = (1-\zeta_p) \cdot u_2(1-\zeta_p) \cdots u_{p-1}(1-\zeta_p),$$

where $u_j := (1 - \zeta_p^j)/(1 - \zeta_p)$ is a unit in $\mathbb{Z}[\zeta_p]$.

- (c) Prove that p therefore ramifies completely in B, as $(p)_B = (1 \zeta_p)_B^{p-1}$.
- 4. Finally, in this problem you will complete the proof that $B = \mathbb{Z}[\zeta_p]$. The argument relies on the fact that the discriminant is a power of p, which is also the norm of $\pi := 1 - \zeta_p$. This introduces a sort of "nilpotency" that is key for showing that $B \subseteq \mathbb{Z}[\zeta_p]$.
 - (a) Much of the linear algebra in Ash 4.2.5 does not require I to be an ideal (though that is ultimately needed for the ideal norm to be multiplicative). Suppose that $J \subseteq B$ is a free \mathbb{Z} -module of rank n, with $B = \langle b_1, \dots, b_n \rangle_{\mathbb{Z}}$ and $J = \langle z_1, \dots, z_n \rangle_{\mathbb{Z}}$. If $(z_1, \dots, z_n)^T = C(b_1, \dots, b_n)^T$ for $C \in M_n(\mathbb{Z})$, use Lemma 2.3.2 to show that

$$|B/J| = \left|\frac{D_L(z_1,\cdots,z_n)}{d}\right|^{\frac{1}{2}},$$

where $d = D_L(b_1, \dots, b_n)$ is the field discriminant.

- (b) Use part (a) and Problem 3 to show that $|B/\mathbb{Z}[\zeta_p]| = p^m$ for some $m \leq \frac{p-1}{2}$.
- (c) Explain why $B/(\pi)_B \cong Z/pZ$, and why this further implies that $B = \mathbb{Z} + (\pi)_B$.
- (d) Finally, use part (c) to inductively conclude that for any $b \in B$, there is an expansion

$$b = k_0 + k_1 \pi + \dots + k_{\ell-1} \pi^{\ell-1} + b_\ell \pi^\ell,$$

where each $k_j \in \mathbb{Z}$ and $b_\ell \in B$. Now use part (b) and pick an appropriate ℓ such that $b \in \mathbb{Z}[\zeta_p]$ (noting that $\mathbb{Z}[\zeta_p] = \mathbb{Z}[\pi]$.

- 5. (a) Ash 9.1.1. Use the fact that if F is a finite field, then $F^{\times} = F \setminus \{0\}$ is a finite multiplicative group.
 - (b) Ash 9.1.2. Use Proposition 9.1.7 this was skipped in lecture, so be sure to read the proof!
- 6. Ash 9.1.3. You can refer to Ash's solution for nearly all of the details for the forward direction: that if $|\bullet|_1, |\bullet|_2$ are equivalent, then $|\bullet|_1 = |\bullet|_2^a$ for some a > 0. Be sure that you also address the reverse direction!