
When n1 and n2 are relatively prime, the divisors of n1n2 are the products of the divisors
of n1 and n2, hence the sum we have obtained is a multiplicative function of n. When n is
a prime power, say n = pr , we use φ(pj ) = pj − pj−1 for j ≥ 1 to evaluate the sum as

∑
d|n

φ(d)n2

d2
= p2r +

r∑
j=1

(p2r−j − p2r−j−1) = p2r + p2r−1 − pr−1.

The result follows.

Also solved by R. Bittencourt (Brazil), R. Brase, R. Chapman (U. K.), K. Gatesman, Y. J. Ionin, P. Lalonde
(Canada), O. P. Lossers (Netherlands), M. A. Prasad (India), I. Sfikas, N. C. Singer, A. Stadler (Switzerland),
M. Tang, GCHQ Problem Solving Group (U. K.), Missouri State University Problem Solving Group, NSA
Problems Group, and the proposer.

Divergence of a Series

12004 [2017, 755]. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let
a1, a2, . . . be a strictly increasing sequence of real numbers satisfying an ≤ n2 ln n for all
n ≥ 1. Prove that the series

∑∞
n=1 1/(an+1 − an) diverges.

Solution by Nicholas C. Singer, Annandale, VA. For k ≥ 1, apply the Harmonic-Mean–
Arithmetic-Mean inequality to the positive numbers in {a2k+j − a2k+j−1 : 1 ≤ j ≤ 2k} to
obtain

1

a2k+1−a2k

+ 1

a2k+2−a2k+1
+ · · · + 1

a2k+1 −a2k+1−1
≥ 4k

a2k+1 −a2k

≥ 4k

a2k+1 −a1
.

Since a1 ≤ 0,

4k

a2k+1 − a1
= 4k

a2k+1 + |a1| ≥ 4k

22k+2(k + 1) ln 2 + |a1| = 1

4(k + 1) ln 2 + |a1|/4k
.

It follows that

∞∑
n=1

1

an+1 − an

=
∞∑

k=0

2k∑
j=1

1

a2k+j − a2k+j−1
≥

∞∑
k=0

1

4(k + 1) ln 2 + |a1|/4k
= ∞.

Editorial comment. Several solvers overlooked the possibility that an might be negative for
some (or all) n.

Also solved by K. F. Andersen (Canada), A. Berkane (Algeria), R. Boukharfane (France), P. Bracken, R. Brase,
H. Chen, P. J. Fitzsimmons, D. Fleischman, E. J. Ionaşcu, M. Javaheri, P. Komjáth (Hungary), O. Kouba (Syria),
K. Lau (China), J. H. Lindsey II, O. P. Lossers (Netherlands), R. Martin (Germany), V. Mikayelyan (Armenia),
P. Perfetti (Italy), Á. Plaza & K. Sadarangani (Spain), M. A. Prasad (India), J. C. Smith, O. Sonebi (France),
A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), J. Vinuesa (Spain), GCHQ Problem Solving Group
(U. K.), and the proposer.

A Suspicious Formula Involving Pi

12006 [2017, 970]. Proposed by Jonathan D. Lee, Merton College, Oxford, U. K., and Stan
Wagon, Macalester College, St. Paul, MN. When n is an integer and n ≥ 2, let an = �n/π�
and bn = �csc(π/n)�. The sequences a2, a3, . . . and b2, b3, . . . are, respectively,

1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, . . .

and
1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, . . . .

They differ when n = 3. Are they equal for all larger n?
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Solution by Albert Stadler, Herrliberg, Switzerland. The answer is no, as can be checked by
direct calculation for n = 80143857. As motivation for this answer, the Laurent expansion
of csc(πx) is 1/(πx) + πx/6 + · · · with all coefficients positive. Thus when n ≥ 2 we
have 0 < csc(π/n) − n/π ≤ csc(π/2) − 2/π < 1. It follows that bn − 1 ≤ an ≤ bn, and
furthermore that bn = an + 1 when there exists an integer m such that

0 <
m

n
− 1

π
<

π

6n2
. (∗)

Good candidates for m/n are given by the continued fraction convergents of 1/π ,
every second one of which is greater than 1/π . The continued fraction representation
of 1/π is [0; 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, . . .], and so one may compute that
the first two convergents that satisfy (∗) are the second and 14th. These are 1/3 and
25510582/80143857, leading to an �= bn for n = 3 and n = 80143857.

Editorial comment. Direct computation shows that an = bn when 4 ≤ n ≤ 80143856.
It is natural to wonder whether the sequences differ infinitely often. The proposers

noted that by Hurwitz’s theorem there are infinitely many convergents to 1/π such that
| 1
π

− m
n
| < 1√

5n2 , which implies | 1
π

− m
n
| < π

6n2 . However, only even-numbered conver-
gents will be greater than 1/π , as needed for (∗). It seems likely, given how the continued
fraction of π is expected to behave, that there are infinitely many even-numbered conver-
gents among the ones that satisfy the condition of Hurwitz’s theorem, but this is currently
unresolved.

Also solved by A. Berele, R. Chapman (U. K.), S. Demers (Canada), G. Fera (Italy), O. P. Lossers (Nether-
lands), M. D. Meyerson, V. Mikayelyan (Armenia), M. Reid, C. Schacht, V. Schindler (Germany), J. C. Smith,
A. Stenger, A. Stewart, R. Stong, W. Stromquist, R. Tauraso (Italy), D. Terr, H. Widmer (Switzerland), L. Zhou,
Armstrong Problem Solving Group, GCHQ Problem Solving Group (U. K.), and the proposers.

An Application of the Phragmén–Lindelöf Principle

12009 [2017, 970]. Proposed by George Stoica, Saint John, NB, Canada. Find all con-

tinuous functions f : [0, 1] → R satisfying
∣∣∣∫ 1

0 exyf (x) dx

∣∣∣ < 1/y for all positive real

numbers y.

Solution by James Christopher Smith, Knoxville, TN. We claim that the only such function
is the constant 0. Let g(z) = ∫ 1

0 exzf (x) dx for all z ∈ C. Because f is continuous on
[0, 1], it is bounded and measurable, so g is an entire function.

We apply the Phragmén–Lindelöf principle to g(z) on the first quadrant D in the com-
plex plane. First, we note the estimate

|g(z)| ≤
∫ 1

0

∣∣exzf (x)
∣∣ dx ≤ Me|z|,

where M = ∫ 1
0 |f (x)| dx. Second, we claim that g is bounded on the real axis. Indeed,

when −∞ < y ≤ 1 we have |g(y)| ≤ Me and for y ≥ 1 we have |g(y)| ≤ 1/y ≤ 1.
And third, we claim that g is bounded on the imaginary axis. Indeed, for y ∈ R we have
|g(iy)| ≤ ∫ 1

0

∣∣eixyf (x)
∣∣ dx ≤ M . Therefore, by the Phragmén–Lindelöf principle, g(z) is

bounded in the quadrant D. Similarly, g(z) is bounded in each of the other three quadrants
as well.

Thus g(z) is a bounded entire function, so by Liouville’s theorem g(z) is constant.
Hence, for all n ≥ 1, we have 0 = g(n)(0) = ∫ 1

0 xnf (x) dx. By the Weierstrass approxi-
mation theorem applied to xf (x), we conclude that f is the constant function 0.

Also solved by K. F. Andersen (Canada), A. Stadler (Switzerland), G. Vidiani (France), GCHQ Problem Solv-
ing Group (U. K.), and the proposer.
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