
12136. Proposed by Albert Stadler, Herrliberg, Switzerland. Prove

a2 + b2 + c2 ≥ a
4

√
b4 + c4

2
+ b

4

√
c4 + a4

2
+ c

4

√
a4 + b4

2
for all positive real numbers a, b, and c.

12137. Proposed by Nikolai Beluhov, Stara Zagora, Bulgaria. A polyomino is a region with
connected interior that is a union of a finite number of squares from a grid of unit squares.
Do there exist a positive integer n with n ≥ 5 and a polyomino P contained entirely within
an n-by-n grid such that P contains exactly 3 unit squares in every row and every column
of the grid?

12138. Proposed by Navid Safaei, Sharif University of Technology, Tehran, Iran. Let P be
a nonconstant polynomial with complex coefficients, and let Q(x, y) = P(x) − P(y). Let
k be the number of linear factors of Q(x, y), and let R(x, y) be a nonconstant factor of
Q(x, y) whose degree is less than k. Prove that R(x, y) is a product of linear polynomials
with complex coefficients.

SOLUTIONS

A Slow Shuffle

12008 [2017, 970]. Proposed by P. Kórus, University of Szeged, Szeged, Hungary. You
hold in your hand a deck of n cards, numbered 1 to n from top to bottom. Shuffle them as
follows. Put the top card in the deck on the bottom and the second card on the table. Repeat
this step until all the cards are on the table.
(a) For which n does card number 1 end up at the top of the deck of cards on the table?
(b) Shuffle the deck a second time in the same way. For which n does card number 1 end
up at the top of the cards on the table?
(c)* Shuffle the deck a third time in the same way. For which n does card number 1 end up
at the top of the cards on the table?
(d)* For which n does this shuffle amount to a permutation consisting of a single cycle?

Solution to (a), (b), and (c) by Yury J. Ionin, Central Michigan University, Mt. Pleasant,
MI. Let τn(i) denote the final position of card i resulting from one shuffle. We express
τn as a composition of n − 1 permutations on the positive integers. For n ≥ 2, define a
permutation σn on the positive integers by

σn(i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n − 1 if i = 1,

n if i = 2,

i − 2 if 3 ≤ i ≤ n,

i if i > n.

Here 1, . . . , n represent the initial deck in the hand, values starting with n + 1 represent
the initial deck on the table, and σn moves the top element to the bottom of the first deck
and the second element to the top of the second deck. Note that σ2 is the identity. Letting
τn = σ2 · · · σn, the first three parts of the problem ask for the values of n such that τn(1),
τ 2
n (1), or τ 3

n (1) equal 1.
We begin with a formula for τn(i). For any positive integer n, let f (n) be the largest

odd divisor of n; note that f (n) = n when n is odd. For n ≥ 2 and any positive integer i,
we claim

τn(i) =
{

1+f (2n+1−i)

2 if i ≤ n,

i if i > n .
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We prove this by induction on n. The case n = 2 holds by inspection, so consider n ≥ 3.
If i > n, then σk(i) = i for 2 ≤ k ≤ n, so τn(i) = i. When 3 ≤ i ≤ n, the induction
hypothesis yields

τn(i) = τn−1(i − 2) = 1 + f (2n − 1 − (i − 2))

2
= 1 + f (2n + 1 − i)

2
.

Note that τn(2) = n = 1
2 (1 + f (2n − 1)), as desired. Finally, for i = 1, the induction

hypothesis yields

τn(1) = τn−1(n − 1) = 1 + f (n)

2
= 1 + f (2n + 1 − 1)

2
.

(a) The formula for τ yields τn(1) = (1 + f (n))/2, so τn(1) = 1 if and only if f (n) = 1.
This occurs precisely when n is a power of 2.

(b) Since f (n) ≤ n, we have τn(1) ≤ (1 + n)/2 < n. Thus

τ 2
n (1) = τn

(
1 + f (n)

2

)
= 1 + f

(
2n + 1 − 1

2 (1 + f (n))
)

2
,

so τ 2
n (1) = 1 if and only if f (2n + 1 − (1 + f (n))/2) = 1.

We prove first that this cannot happen when f (n) ≡ −1 mod 4. If f (n) = 4m − 1, then
τ 2
n (1) = 1 if and only if f (2n + 1 − 2m) = 1, which cannot occur since 2n + 1 − 2m is

not a power of 2.
Hence we may assume f (n) = 4m + 1, where m ∈ N and n = 2k(4m + 1). Now

τ 2
n (1) = 1 reduces to f (2k+1(4m + 1) − 2m) = 1, requiring 2k(4m + 1) − m to be a

power of 2, say 2s . That is, (2k+2 − 1)m = 2s − 2k with s ≥ k.
Since 2k+2 − 1 and 2k are relatively prime, (2k+2 − 1) | (2s−k − 1). It is an exercise in

elementary number theory that (2a − 1) | (2b − 1) requires a | b. To see this, write b =
aq + r with 0 ≤ r < a. From the formula for a geometric series, 2a − 1 divides 2aq − 1,
so 2a − 1 divides 2r (2aq − 1), which equals 2b − 2r . Now 2a − 1 divides the difference
(2b − 1) − (2b − 2r ), which equals 2r − 1. Since r < a, this requires r = 0, so a | b. Thus
(k + 2) | (s − k), which implies (k + 2) | (s + 2).

From m = (2s − 2k)/(2k+2 − 1), we have 4m + 1 = (2s+2 − 1)/(2k+2 − 1). Since
n = 2k(4m + 1), we thus have the following answer: τ 2

n (1) = 1 if and only if n =
2k(2s+2 − 1)/(2k+2 − 1) with s ≥ k ≥ 0 and k + 2 dividing s + 2. The values under
1000 are the powers of 2 together with 5, 18, 21, 68, 85, 146, 264, and 341.

(c) Now consider the equation τ 3
n (1) = 1. By the formula for τn, we have τn(i) = 1 if

and only if 2n + 1 − i is a power of 2; that is, if and only if i = 2n + 1 − 2k for some
k with n < 2k ≤ 2n. (There is exactly one such k for each n.) Note also that τn(τn(1)) =
1
2

(
1 + f (2n + 1 − τn(1))

)
. Writing the condition τ 3

n (1) = 1 as τn(τn(1)) = τ−1
n (1), the

requirement reduces to

1

2

(
1 + f (2n + 1 − τn(1))

) = 2n + 1 − 2k,

or f (2n + 1 − τn(1)) = 4n + 1 − 2k+1. This requires that 2n + 1 − τn(1) =
2l (4n + 1 − 2k+1) for some nonnegative l, or τn(1) = 2k+l+1 − 2l + 1 − (2l+2 − 2)n.
Since τn(1) = (1 + f (n))/2, we require f (n) = 2k+l+2 − 2l+1 + 1 − (2l+3 − 4)n, which
implies n = 2m

(
2k+l+2 − 2l+1 + 1 − (2l+3 − 4)n

)
for some nonnegative m.

Thus the problem reduces to finding solutions of

(2l+m+3 − 2m+2 + 1)n = 2m(2k+l+2 − 2l+1 + 1), (∗)

where k, l,m are nonnegative integers and n < 2k ≤ 2n.
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If n is a solution, then 2l+m+3 − 2m+2 + 1 divides 2k+l+2 − 2l+1 + 1, so 2l+m+3 + 2l+1 +
1 ≤ 2k+l+2 + 2m+2 + 1. If m ≥ k, then 2l+m+3 = 1 +∑l+m+2

i=0 2i > 2k+l+2 + 2m+2 + 1.
Hence we require m ≤ k − 1.

It remains to ensure n < 2k ≤ 2n. By replacing n with 2k in (∗) and rearranging terms,
we have n < 2k if and only if 2k+l+m+2 + 2k + 2l+m+1 > 2k+m+2 + 2m, which is true for
l ≥ 0.

Similarly, by replacing n by 2k−1 in (∗), we have 2n ≥ 2k if and only if 2l+m+2 + 2k ≤
2k+m+2 + 2m+1. This inequality holds if and only if l < k or l = k and m + 1 ≥ k. We thus
have the following answer: τ 3

n (1) = 1 if and only if

n = 2m(2k+l+2 − 2l+1 + 1)/(2l+m+3 − 2m+2 + 1),

where 2l+m+3 − 2m+2 + 1 divides 2k+l+2 − 2l+1 + 1 and either l < k and m < k or l =
k = m + 1 (which gives n = 2m). The values under 1000 are the powers of 2 together with
3, 10, 14, 36, 51, 60, 136, 141, 248, 528, 819, and 910. To obtain infinitely many examples,
let (k, l,m) = (20t + 4, 1, 1) for t ≥ 0. The resulting value is (220t+8 − 6)/25.

Solution to (d) by Richard Stong, Center for Communications Research, San Diego, CA.
The values of n for which the shuffle is a full cycle are those n such that 4n + 1 is prime
and 2 is a primitive root modulo 4n + 1. In particular, the values of n under 100 are 1, 3,
7, 9, 13, 15, 25, 37, 43, 45, 49, 67, 73, 79, 87, 93, and 97 (see oeis.org/A137310).

To prove the result, we use an alternative description of the shuffle as an iterative process
on a pile of n cards. For n − 1 steps, indexed from j = 0 to j = n − 2, at step j take the top
two cards and reinsert them with j cards below them. Steps j through n − 2 do not change
the bottom j cards; these are the cards “on the table” during that time. The remaining n − j

cards are still “in the hand.” Putting the top two cards between these sets (and incrementing
j ) moves the top card to the bottom of the deck in hand and puts the next card on the table.
The j th step is an even permutation (two steps of rotating the top n − j cards up by one
step). Thus the permutation induced by the shuffle is even. It follows that the permutation
can be a full cycle only when n is odd.

We now express the shuffle as the permutation πn that maps each position to the index
of the card that occupies it. This is the inverse of τn, and it is a cycle if and only if τn is a
cycle. It is also convenient to index the cards and the positions by the set S of odd integers
from 1 to 2n − 1, treating πn as a permutation of S. That is, assign the card at position a

the value 2a − 1, which we call a′.
We use the formula for τn(i) to give a formula for πn(a

′), the modified value of the
card ending in position a. We claim πn(a

′) = 4n + 1 − 2u(a′)a′, where u(a′) is the unique
positive integer such that 2u(a′)a′ ∈ [2n + 2, 4n].

To see this, let i = 2n + 1 − 2u(a′)−1a′. We have 2n + 1 − i = 2u(a′)−1a′. Since a′ is
odd, it is the largest odd divisor of 2n + 1 − i; this is why we express πn as a permutation
of odd values. With f (2n + 1 − i) = 2a − 1, the formula 2τn(i) − 1 = f (2n + 1 − i)

yields τn(i) = a. Thus πn(a
′) = 2i − 1, as claimed.

We now show that the condition on n is necessary and sufficient for the shuffle to be a
full cycle.

Necessity. Suppose that πn is a cycle. Let p = 4n + 1. We have πn(a
′) ≡ −2u(a′)a′ mod p.

Hence any value we can reach starting from a′ = 1 by iterating πn has the form ±2v mod p.
If q is a proper odd prime factor of p, then we cannot reach q; thus p must be prime. Since
we have shown that n is odd and defined p = 4n + 1, we have p ≡ 5 mod 8. By the law of
quadratic reciprocity, 2 is a square modulo an odd prime p if and only if p is congruent to
1 or 7 modulo 8. Hence 2 is not a square.

In addition, Fermat’s little theorem implies that 2(p−1)/2 is congruent to ±1 modulo p.
The value is +1 if and only if 2 is a square. Hence −1 is a power of 2, modulo p. This

758 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 126



means that all values we can reach have the form 2v mod p. For π to be a cycle, these
powers must include all odd numbers from 1 to 2n − 1. Since −1 and 2 are also powers
of 2 modulo p, we conclude that every nonzero value is a power of 2 modulo p, so 2 is a
primitive root.

Sufficiency. Again letting p = 4n + 1, suppose that p is prime and that 2 is a primitive root
modulo p. Since 2 is a primitive root, 2 cannot be a square modulo p, so p is congruent
to 3 or 5 modulo 8, again by quadratic reciprocity. Since p has the form 4n + 1, it follows
that p ≡ 5 mod 8 and n is odd.

We prove that π2
n , the result of shuffling twice, is a cycle; this implies that πn itself is

a cycle. Consider the application of πn in terms of the cycle of powers of 2 modulo p.
Suppose that πn(a

′) = b′, meaning that the card in position a after the shuffle is b. Since
πn(a

′) = 4n + 1 − 2u(a′)a′, we obtain b′ from a′ by multiplying by 2 successively to reach
the interval [2n + 2, 4n] and then subtracting from 4n + 1. Since a′ ≤ 2n − 1, the result is
odd and lies in S.

Modulo p, we have b′ ≡ −2u(a′)a′. Thus b′ is the negative of the value that is u(a′) steps
beyond a′ in the cycle of powers of 2. However, 2u(a′)a′ is not in S. Applying the shuffle
to obtain c′ from b′, we have c′ ≡ 2u(a′)+u(b′)a′. Thus π2

n moves each value some distance
along the cycle of powers of 2 and returns each element of S to another value that when
reduced modulo p lies in S.

Furthermore, π2
n (a′) is the first value after a′ in the cycle of powers of 2 that lies in S.

Since 2 is a primitive root modulo p, that cycle visits all of S. Hence π2
n is a cycle through

S, as desired.

Editorial comment. Because it is not known whether there are infinitely many primes for
which 2 is a primitive root (this is the Artin conjecture), it is not known whether there are
infinitely many examples for part (d). Several solvers observed that, given n, the card atop
the shuffled deck is the number that solves the Josephus problem for a circle of n soldiers
(see oeis.org/A006257).

Part (a) also solved by D. Fleischman, O. Geupel (Germany), and R. Prather. Parts (a) and (b) also solved
by T. Ayton & A. Lopez & R. Tuminello, N. Grivaux (France), J. H. Lindsey II, O. P. Lossers (Netherlands),
P. McPolin (UK), L. Meissner & E. Newman & R. Toth & S. Weigel, and the proposer. Parts (a), (b), and (c)
also solved by GCHQ Problem Solving Group (UK) and R. Stong. All four parts solved by Armstrong Problem
Solving Group.

Reducible Combinations of Elementary Symmetric Polynomials

12017 [2018, 82]. Proposed by Mowaffaq Hajja, Philadelphia University, Amman, Jordan.
For n ≥ 2, let R be the ring F [t1, . . . , tn] of polynomials in n variables over a field F . For
j with 1 ≤ j ≤ n, let sj = ∑∏j

i=1 tmi
, where the sum is taken over all j -element subsets

{m1, . . . , mj } of {1, . . . , n}. This is the elementary symmetric polynomial of degree j in
the variables t1, . . . , tn. Let f = ∑n

i=0 cisi for some c0, . . . , cn in F with c1, . . . , cn not all
0. Show that f is reducible in R if and only if either c0 = · · · = cn−1 = 0 or (c0, . . . , cn)

is a geometric progression, meaning that there is r ∈ F such that ci = rci−1 for all i with
1 ≤ i ≤ n.

Solution by Michael Reid, University of Central Florida, Orlando, FL. For sufficiency, f

factors as cn

∏n
i=1 ti if c0 = · · · = cn−1 = 0 and as c

∏n
i=1(1 + rti) if (c0, c1, . . . , cn) =

(c, cr, . . . , crn) with c, r �= 0.
For necessity, suppose that f is reducible, and let g be an irreducible factor. For each ti ,

since f has degree 1 in ti , g has degree 0 or 1 in ti . Moreover, since g is nonconstant, it has
degree 1 in at least one variable. We claim that g has degree 0 in all of the other variables.

To prove the claim, suppose otherwise. By symmetry, we may assume that g has degree
1 in both t1 and t2. Since f/g is not constant, g has degree 0 in tk for some k. Note that f is
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