Chebyshev polynomials of the Second Kind and determinants of special matrices: American Math. Monthly Problem 12025

Connor M. Sanford Louisiana State University

June 8, 2018

1 Introduction

In this paper I will outline a solution to a problem from the Problems and Solutions section of The American Mathematical Monthly, **125:2**, 179-187, 2018. DOI: 10.1080/00029890.2017.1405685.

Problem 12025 is Proposed by Askat Dzhumadil'daev, S. Demirel University, Almaty, Kazakhstan.

2 Problem Statement

The Chebyshev polynomials of the second kind are defined by the recurrence relation

$$U_0(x) = 1, U_1(x) = 2x$$
, and $U_n(x) = 2xU_{n-1}(x) - U_{n-2}(x)$ for $n \ge 2$. (1)

For an integer n with $n \geq 2$, prove

$$\det\begin{bmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ x & 0 & 1 & \dots & 1 & 1 \\ x^{2} & x & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^{n-2} & x^{n-3} & x^{n-4} & \dots & 0 & 1 \\ x^{n-1} & x^{n-2} & x^{n-3} & \dots & x & 0 \end{bmatrix} = (-1)^{n-1} x^{n/2} U_{n-2}(\sqrt{x}).$$
 (2)

3 The Solution

We begin by denoting the left hand side of equation (2) by $D_n(x)$. That is,

$$D_n(x) := \det \begin{bmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ x & 0 & 1 & \dots & 1 & 1 \\ x^2 & x & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^{n-2} & x^{n-3} & x^{n-4} & \dots & 0 & 1 \\ x^{n-1} & x^{n-2} & x^{n-3} & \dots & x & 0 \end{bmatrix}.$$
(3)

We also define a closely related function $E_n(x)$ by

$$E_n(x) := \det \begin{bmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ x & 0 & 1 & \dots & 1 & 1 \\ x^2 & x & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^{n-2} & x^{n-3} & x^{n-4} & \dots & 0 & 1 \\ x^{n-1} & x^{n-2} & x^{n-3} & \dots & x & 0 \end{bmatrix}.$$
(4)

We record the first several cases:

$$D_1(x) = \begin{vmatrix} 0 \end{vmatrix} = 0, \ D_2(x) = \begin{vmatrix} 0 & 1 \\ x & 0 \end{vmatrix} = -x, \ D_3(x) = \begin{vmatrix} 0 & 1 & 1 \\ x & 0 & 1 \\ x^2 & x & 0 \end{vmatrix} = 2x^2,$$
 (5)

and

$$E_1(x) = \begin{vmatrix} 1 \end{vmatrix} = 1, \ E_2(x) = \begin{vmatrix} 1 & 1 \\ x & 0 \end{vmatrix} = -x - 1, \ E_3(x) = \begin{vmatrix} 1 & 1 & 1 \\ x & 0 & 1 \\ x^2 & x & 0 \end{vmatrix} = 2x^2 - x.$$

Now we find recurrence relations between the D_k and E_k .

Claim 1. For $k \geq 1$,

$$D_k(x) = -xD_{k-1}(x) - xE_{k-1}(x), (6)$$

$$E_k(x) = (1-x)D_{k-1}(x) - xE_{k-1}(x).$$
(7)

Proof. First we manipulate $D_k(x)$ by subtracting the second row from the first. Thus

$$D_k(x) = \begin{vmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ x & 0 & 1 & \dots & 1 & 1 \\ x^2 & x & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^{k-2} & x^{k-3} & x^{k-4} & \dots & 0 & 1 \\ x^{k-1} & x^{k-2} & x^{k-3} & \dots & x & 0 \end{vmatrix} \xrightarrow{R_1 \mapsto R_1 - R_2} \begin{vmatrix} -x & 1 & 0 & \dots & 0 & 0 \\ x & 0 & 1 & \dots & 1 & 1 \\ x^2 & x & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^{k-2} & x^{k-3} & x^{k-4} & \dots & 0 & 1 \\ x^{k-1} & x^{k-2} & x^{k-3} & \dots & x & 0 \end{vmatrix}.$$

Now expand the determinant across the top row, obtaining

$$D_k(x) = (-x) \begin{vmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ x & 0 & 1 & \dots & 1 & 1 \\ x^2 & x & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^{k-3} & x^{k-4} & x^{k-5} & \dots & 0 & 1 \\ x^{k-2} & x^{k-3} & x^{k-4} & \dots & x & 0 \end{vmatrix} - (1) \begin{vmatrix} x & 1 & 1 & \dots & 1 & 1 \\ x^2 & 0 & 1 & \dots & 1 & 1 \\ x^3 & x & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^{k-2} & x^{k-4} & x^{k-5} & \dots & 0 & 1 \\ x^{k-1} & x^{k-3} & x^{k-4} & \dots & x & 0 \end{vmatrix}.$$

And by factoring out x from the first column of the second matrix, we have

$$-x\begin{vmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ x & 0 & 1 & \dots & 1 & 1 \\ x^{2} & x & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^{k-3} & x^{k-4} & x^{k-5} & \dots & 0 & 1 \\ x^{k-2} & x^{k-3} & x^{k-4} & \dots & x & 0 \end{vmatrix} - x\begin{vmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ x & 0 & 1 & \dots & 1 & 1 \\ x^{2} & x & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^{k-3} & x^{k-4} & x^{k-5} & \dots & 0 & 1 \\ x^{k-2} & x^{k-3} & x^{k-4} & \dots & x & 0 \end{vmatrix}$$

$$= -xD_{k-1}(x) - xE_{k-1}(x).$$

This verifies the first claimed formula.

Now consider similar manipulations for $E_k(x)$. In particular, we have

$$E_k(x) = \begin{vmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ x & 0 & 1 & \dots & 1 & 1 \\ x^2 & x & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^{k-2} & x^{k-3} & x^{k-4} & \dots & 0 & 1 \\ x^{k-1} & x^{k-2} & x^{k-3} & \dots & x & 0 \end{vmatrix} = \begin{vmatrix} 1-x & 1 & 0 & \dots & 0 & 0 \\ x & 0 & 1 & \dots & 1 & 1 \\ x^2 & x & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^{k-2} & x^{k-3} & x^{k-4} & \dots & 0 & 1 \\ x^{k-1} & x^{k-2} & x^{k-3} & \dots & x & 0 \end{vmatrix},$$

and expanding the determinant across the top row gives

$$E_k(x) = (1-x) \begin{vmatrix} 0 & 1 & 1 & \dots & 1 & 1 \\ x & 0 & 1 & \dots & 1 & 1 \\ x^2 & x & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^{k-3} & x^{k-4} & x^{k-5} & \dots & 0 & 1 \\ x^{k-2} & x^{k-3} & x^{k-4} & \dots & x & 0 \end{vmatrix} - (1) \begin{vmatrix} x & 1 & 1 & \dots & 1 & 1 \\ x^2 & 0 & 1 & \dots & 1 & 1 \\ x^3 & x & 0 & \dots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ x^{k-2} & x^{k-4} & x^{k-5} & \dots & 0 & 1 \\ x^{k-1} & x^{k-3} & x^{k-4} & \dots & x & 0 \end{vmatrix}.$$

Factoring out x from the first column of the second matrix then completes the proof of the second claimed formula.

We next obtain a single recursive formula for the D_k .

Claim 2. For $k \geq 2$,

$$D_k(x) = -2xD_{k-1}(x) - xD_{k-2}(x).$$

Proof. Consider the formulas from Claim 1. Expanding (7) we have

$$E_k(x) = D_{k-1}(x) - xD_{k-1}(x) - xE_{k-1}(x),$$

and making use of (6) we therefore have

$$E_k(x) = D_{k-1}(x) + D_k(x).$$

This implies that

$$E_{k-1}(x) = D_{k-2}(x) + D_{k-1}(x).$$

Now substitute this result into (6):

$$D_k(x) = -xD_{k-1}(x) - xE_{k-1}(x)$$

$$= -xD_{k-1}(x) - x[D_{k-2}(x) + D_{k-1}(x)]$$

$$= -2xD_{k-1}(x) - xD_{k-2}(x).$$

Thus we have the recursive formula.

Finally, to complete the proof we need to show $D_n(x) = (-1)^{n-1} x^{n/2} U_{n-2}(\sqrt{x})$ for $n \ge 2$. This will be proven by strong induction.

Base cases. The cases n=2 and n=3 follow from (5) and the initial Chebyshev polynomials $U_0(x)=1$ and $U_1(x)=2x$. In particular,

$$D_2(x) = -x = -x \cdot U_0(\sqrt{x}),$$

$$D_3(x) = 2x^2 = x^{\frac{3}{2}} \cdot U_1(\sqrt{x}).$$

(Strong) Inductive Step. Now assume that $D_n(x) = (-1)^{n-1} x^{n/2} U_{n-2}(\sqrt{x})$ for $2 \le n \le k$. Let n = k + 1 and consider $D_{k+1}(x^2)$. By Claim 2 and the inductive assumption we have

$$\begin{split} D_{k+1}(x^2) &= -2x^2 D_k(x^2) - x^2 D_{k-1}(x^2) \\ &= -2x^2 [(-1)^{k-1} x^k U_{k-2}(x)] - x^2 [(-1)^{(k-1)-1} x^{k-1} U_{(k-1)-2}(x)] \\ &= 2(-1)^k x^{k+2} U_{k-2}(x) + (-1)^{k+1} x^{k+1} U_{k-3}(x) \\ &= (-1)^k x^{k+1} [2x U_{k-2}(x) - U_{k-3}(x)] \\ &= (-1)^k x^{k+1} [U_{k-1}(x)]. \end{split}$$

The last equality follows from the recurrence relation for the Chebyshev polynomials.

Replacing x^2 by x shows that

$$D_{k+1}(x) = (-1)^k x^{(k+1)/2} U_{k-1}(\sqrt{x}).$$

This completes the inductive step, and thus

$$D_n(x) = (-1)^{n-1} x^{n/2} U_{n-2}(\sqrt{x})$$
 for all $n \ge 2$.