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1 Introduction

In this paper I will outline a solution to a problem from the Problems and So-
lutions section of The American Mathematical Monthly, 125:2, 179-187, 2018.
DOI: 10.1080/00029890.2017.1405685.

Problem 12025 is Proposed by Askat Dzhumadil’daev, S. Demirel University,
Almaty, Kazakhstan.

2 Problem Statement

The Chebyshev polynomials of the second kind are defined by the recurrence
relation

Uo(z) = 1,Uy(z) = 22 , and U, (x) = 22U, —1(x) — Up—o(x) for n > 2. (1)

For an integer n with n > 2, prove

0 1 1 1 1
T 0 1 11
x2 x 0o ... 11

det | . : L = E) U, (V). (2)

n—2 n—3 n—4

n—1 n—2 n—3




3 The Solution

We begin by denoting the left hand side of equation (2) by D, (x). That is,
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We also define a closely related function E, (x) by
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We record the first several cases:
0 1 0 1 1
Dy(z) =] 0| =0, Dy(z) = ’: —x, D3(x)=|2 0 1|=22% ()
z 0 22z 0
and
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Now we find recurrence relations between the Dy and Fj.

Claim 1. For k > 1,
Dy(x) = —aDy_1(z) — 2Er_1(x), (6)
Ek(LL’) = (1 — 1‘)Dk,1(.’L‘) — .%'Ek;,l(l'). (7)

Proof. First we manipulate Dy (x) by subtracting the second row from the first.
Thus
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Now expand the determinant across the top row, obtaining
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= —aDy_1(x) — xEp_1(z).

This verifies the first claimed formula.
Now consider similar manipulations for Ej(z). In particular, we have
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Factoring out z from the first column of the second matrix then completes the
proof of the second claimed formula. O

We next obtain a single recursive formula for the Dy.

Claim 2. For k > 2,

Dy(z) = —2xDg_1(x) — xDp_o(x).




Proof. Consider the formulas from Claim 1. Expanding (7) we have
Ey(z) = Di—1(x) — xDg—1 () — 2Ex_1(x),
and making use of (6) we therefore have
Ek(l‘) = Dkfl(.’lﬁ) + Dk($>

This implies that

Ekfl(.’t) = Dk,g(x) + Dk,l(x).
Now substitute this result into (6):

Dy(z) = —aDp_1(x) — 2Ei_1(x)

— —2Dy1(x) — 2[Dp—a(x) + D1 (2)

= —2xDy_1(x) — D _o(x).
Thus we have the recursive formula. O

Finally, to complete the proof we need to show D,,(z) = (—1)""'a"/2U,,_5(\/z)
for n > 2. This will be proven by strong induction.

Base cases. The cases n = 2 and n = 3 follow from (5) and the initial
Chebyshev polynomials Up(z) = 1 and U;(x) = 2z. In particular,

Ds(z) = —z = —z - Up(V/x),
Ds() =227 = 2% - U (V7).

(Strong) Inductive Step. Now assume that D, (z) = (=1)""'2"/2U, _»(y/x)
(

for 2 < n < k. Let n =k+ 1 and consider Dy1(2*). By Claim 2 and the
inductive assumption we have

Diyy1(2?) = =222 Dy (2?) — 22Dy 1 (2?)
= 2021 e U ()] — 2P (~1)* D aE o)
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= (— 12" (2004 _a(2) — Up_s(a)
= (=1)*a" U1 (2)).

The last equality follows from the recurrence relation for the Chebyshev poly-
nomials.
Replacing 22 by x shows that

Diyi(z) = (=1)*a™D20, 1 (V).

This completes the inductive step, and thus

Dy (z) = (=1)""12"/2U, _o(\/x) for all n > 2.



