LSU Problem Solving Seminar - Fall 2019 Nov. 6: Polynomials and Complex Numbers

Prof. Karl Mahlburg

Website: www.math.lsu.edu/~mahlburg/teaching/Putnam.html

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} \cdots + a_1 x + a_0$ be a polynomial with real coefficients. It is *monic* if the leading coefficient $a_n = 1$. The *degree* of a polynomial is the exponent of the leading term, in this case n. A root of f is a value r such that f(r) = 0.

Useful facts and strategies:

- Rational Roots Test. If all of the a_i are integers and $r = \frac{p}{q}$ is a root, then p is a divisor of a_0 and q is a divisor of a_n .
- Descartes' Rule of Signs. If the non-zero coefficients of f(x) change sign s times, then f has at most s positive roots (with multiplicity). The actual number of positive roots is less than s by some multiple of 2. Replacing x by -x gives a similar test for negative roots.
- Polynomial Division Algorithm. A polynomial f(x) is a multiple of g(x) if $f(x) = h(x) \cdot g(x)$ for some polynomial h(x). If f(x) is not a multiple of g(x), then there are polynomials q(x) ("quotient") and r(x) ("remainder") such that $f(x) = q(x) \cdot g(x) + r(x)$, where r(x) has lower degree than g(x).
- Repeated Roots. A polynomial f(x) is divisible by $(x r)^k$ (i.e. the root r has multiplicity at least k) if and only if $f(r) = 0, f'(r) = 0, \dots, f^{(k-1)}(r) = 0$.
- Fundamental Theorem of Algebra. A polynomial of degree n has exactly n complex roots, counted with multiplicity. In particular, it has at most n real roots. Furthermore, if the roots are r_1, \ldots, r_n , then $f(x) = c(x r_1) \cdots (x r_n)$ for some constant c.
- Sum and Product of Roots. If a monic polynomial $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ has roots (with repetition) r_1, \ldots, r_n , then

$$a_{n-1} = -(r_1 + \dots + r_n);$$
 $a_0 = (-1)^n r_1 \cdots r_n.$

• Roots of Unity. The (complex) roots of $x^n - 1$ are $1, e^{\frac{2\pi i}{n}}, e^{\frac{2\cdot 2\pi i}{n}}, \ldots, e^{\frac{(n-1)\cdot 2\pi i}{n}}$. These can also be written as $1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{n-1}$, where $\zeta_n := e^{\frac{2\pi i}{n}}$. The previous property implies that

$$1 + \zeta_n + \zeta_n^2 + \dots + \zeta_n^{n-1} = 0$$

Warm Up

- 1. Find the factorization of the following polynomials (with real coefficients):
 - (a) $x^2 x 1$, (b) $x^3 - \frac{3}{2}x^2 - \frac{5}{2}x + 3$, (c) $x^5 - 3x^3 + 2x$.
- 2. The polynomial $p(x) = x^4 x^3 7x^2 + x + 6$ has four distinct rational roots, one of which is x = -2. Find the other roots and complete factorization of p(x).

- 3. (a) If p(x) is a polynomial of degree k, show that p(x+1) p(x) is a polynomial of degree k 1.
 - (b) Find all polynomials that satisfy

$$p(x+1) + p(x-1) = 2p(x) + 2$$
 for all x.

Main Problems

4. Let $p(x) = x^4 + 4$.

- (a) Show that p(x) is not divisible by x r for any real r.
- (b) Find the factorization of p(x).*Hint: All coefficients in the factorization are integers.*
- 5. Let $\alpha := \sqrt[3]{9+4\sqrt{5}} + \sqrt[3]{9-4\sqrt{5}}$. It is a fact that α is equal to an integer; determine which one!

Hint: Calculate α^3 .

- 6. For a function f(x), let $f^n(x)$ denote the function iterated *n* times, i.e. $f(f(\cdots(f(x))\cdots))$.
 - (a) Let $f(x) = x^2 + 2x + 1$. Show that f(x) has a real root, but $f^2(x)$ has no real roots.
 - (b) Consider the polynomial $p(x) = x^2 10x + 10$. Does $p^{10}(x)$ have a real root?
- 7. (a) [Gelca-Andreescu 170] Let x, y, z be positive integers greater than 1. Prove that the expression

 $(x+y+z)^3 - (-x+y+z)^3 - (x-y+z)^3 - (x+y-z)^3$

is the product of seven (not necessarily distinct) integers each of which is greater than 1.

Hint: What happens if you plug in x = 0?

(b) [Gelca-Andreescu 171] Factor completely the expression

$$(x+y+z)^5 - (-x+y+z)^5 - (x-y+z)^5 - (x+y-z)^5$$

- 8. Let $p_n(x) := x^3 x + n$, where n is an integer.
 - (a) Show that if $p_n(x)$ divides a polynomial f(x), then f(-1), f(0), and f(1) are all multiples of n.
 - (b) Find the unique n such that that $p_n(x)$ divides

$$q(x) = x^8 - 5x^2 - 6x - 8.$$

- 9. [Putnam **1963 B1**] Find all integers n such that $x^2 x + n$ divides $x^{13} + x + 90$.
- 10. [Putnam **1990 B5**] Is there an infinite sequence a_0, a_1, a_2, \ldots of nonzero real numbers such that for $n = 1, 2, 3, \ldots$ the polynomial

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

has exactly n distinct real roots?