- Virginia Tech Mathematics Contest. Sat., Oct. 26.
- Putnam Mathematical Competition. Sat., Dec. 7. Sign-up deadline: Nov. 1.

LSU Problem Solving Seminar - Fall 2019 Oct. 9: Series and Recurrences

Prof. Karl Mahlburg Website: www.math.lsu.edu/~mahlburg/teaching/Putnam.html

Useful facts and strategies:

- Terminology. A sequence is an ordered list of numbers: $\{a_n\}_{n=1}^{\infty} = a_1, a_2, a_3, \dots$ A series is the sum of a sequence: $\sum_{n=1}^{\infty} a_n$.
- Limit of a Sequence. A sequence $\{a_n\}_{n=1}^{\infty}$ converges to a limit ℓ if for any $\varepsilon > 0$ there is an N such that $|a_n \ell| < \varepsilon$ for all n > N.
- Geometric Series. If |x| < 1, then $1 + x + x^2 + x^3 + \dots = \frac{1}{1 x}$.
- Ratio Test. Let $L := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. If L < 1, then $\sum_{n \ge 1} a_n$ converges, and if L > 1, then the sum diverges. If L = 1, the test is inconclusive.
- Monotone Convergence. If $a_1 \leq a_2 \leq \ldots$ and all $a_n \leq B$ for some constant B, then $\lim_{n \to \infty} a_n$ exists (though it may be less than B).
- Alternating Series. If $a_1 \ge a_2 \ge \ldots$ and $\lim_{n \to \infty} a_n = 0$, then the alternating series $a_1 a_2 + a_3 a_4 + \ldots$ converges.
- Integral Comparison. If f(x) is a decreasing function for $x \ge 0$, then $\sum_{n\ge 1} f(n) \le \int_0^\infty f(x) dx$.
- Linear Recurrences. The characteristic polynomial associated to a (homogeneous) recurrence $a_{n+k} = c_{k-1}a_{n+k-1} + \cdots + c_1a_{n+1} + c_0a_n$ is $p(x) := x^k c_{k-1}x^{k-1} \cdots c_1x c_0$. If p(x) has distinct roots $\lambda_1, \ldots, \lambda_k$, then the general solution to the recurrence is

$$a_n = b_1 \lambda_1^n + \dots + b_k \lambda_k^n,$$

where the constants are determined by k initial values. If there is a **repeated** root λ of order m, then the general solution has the term $(d_{k-1}n^{k-1} + \cdots + d_1n + d_0)\lambda^n$.

Warm Up

1. Evaluate the following sums:

(a)
$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots$$

(b) $1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \cdots$

- 2. Solve the following recurrences; this means finding a closed form expression for a_n . For example, the recurrence with $a_1 = 1$ and $a_{n+1} = a_n + 1$ has solution $a_n = n$.
 - (a) $a_0 = 0$, and $a_{n+1} = a_n + 2n + 1$ for $n \ge 1$.
 - (b) $a_0 = 1$, and $a_{n+1} = 2a_n$ for $n \ge 1$.
 - (c) $a_0 = -1$, and $a_{n+1} = 2a_n + 2n + 1$ for $n \ge 1$.

Hint: Begin by finding the "non-homogeneous solution" by letting $a'_n = dn+e$, and choosing the constants such that $a'_{n+1} = 2a'_n + 2n + 1$. Then let $a_n = a'_n + b_n$, and get a simpler a recurrence for b_n .

Main Problems

3. (a) Evaluate the finite series

$$1 + \frac{1}{3} + \frac{1}{9} + \dots + \frac{1}{3^N}.$$

Try to do this inductively: calculate the first few values so that you can guess a formula, and then prove it!

(b) Prove the general summation formula for the finite geometric series:

$$S_N(x) := 1 + x + x^2 + \dots + x^N = \frac{1 - x^{N+1}}{1 - x}.$$

Do this by considering $S_N(x) - xS_N(x)$.

(c) Now evaluate

$$1 + \frac{2}{2} + \frac{3}{4} + \frac{4}{8} + \dots + \frac{N+1}{2^N}.$$

Again, try to do this inductively: calculate the first few values, and write them in the form $4 - \frac{a_N}{2^N}$. For example, with N = 2, the sum is $\frac{11}{4} = 4 - \frac{5}{4}$.

(d) Find the general summation formula for

$$T_N(x) := 1 + 2x + 3x^3 + \dots + (N+1)x^N.$$

Do this by considering $T_N(x) - xT_N(x)$, and recalling part (b).

4. [VTRMC **1990 #6**] The number of individuals in a certain population (in arbitrary real units) obeys, at discrete time intervals, the equation

$$y_{n+1} = y_n(2 - y_n)$$
 for $n = 0, 1, 2, \dots$,

where y_0 is the initial population.

- (a) Find all "steady-state" solutions y^* such that if $y_0 = y^*$, then $y_n = y^*$ for n = 1, 2, ...
- (b) Prove that if y_0 is any number in (0, 1), then the sequence $\{y_n\}$ converges monotonically to one of the steady-state solutions found in (a).

5. (a) Evaluate $\sqrt{6 + \sqrt{6 + \sqrt{6 + \cdots}}}$.

Properly, you should interpret this as the limit of the sequence defined by $a_0 = \sqrt{6}$, and $a_{n+1} = \sqrt{6 + a_n}$ for $n \ge 0$.

(b) Evaluate
$$\sqrt{6 - \sqrt{6 - \sqrt{6 - \cdots}}}$$
.

6. [Gelca-Andreescu 409] Find the positive real solutions to the equation

$$\sqrt{x + 2\sqrt{x + \dots + 2\sqrt{x + 2\sqrt{3x}}}} = x$$

7. A sequence is defined by $a_1 = 1, a_2 = 1, a_3 = 4$, and

$$a_n = \frac{a_{n-1}a_{n-2} - 1}{a_{n-3}}$$
 for $n \ge 4$.

- (a) Calculate the next several values of a_n . Note that the definition of the recurrence includes division by a_{n-3} . Do any of the values that you calculated have denominators?
- (b) Use your data to calculate $a_n + a_{n-4}$. You should notice a striking relationship to some other terms in the sequence. Prove your observation.
- (c) Finally, use this to to further prove that every a_n is an integer.
- 8. (a) Suppose that $\{a_n\}_{n=1}^{\infty}$ is a sequence. Show that

$$\sum_{m \ge 1} \sum_{n \ge 1} \frac{2}{a_m(a_m + a_n)} = \sum_{m \ge 1} \sum_{n \ge 1} \frac{1}{a_m a_n}.$$

Hint: What happens if you interchange m and n?

(b) Evaluate
$$\sum_{m \ge 1} \sum_{n \ge 1} \frac{1}{2^m (2^m + 2^n)}$$

9. [Putnam 1999 A4] Sum the series

$$\sum_{m \ge 1} \sum_{n \ge 1} \frac{m^2 n}{3^m (n3^m + m3^n)}.$$