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Useful facts and strategies:

• Terminology. A sequence is an ordered list of numbers: {an}∞n=1 = a1, a2, a3, . . . .

A series is the sum of a sequence:
∑∞

n=1 an.

• Limit of a Sequence. A sequence
{
an
}∞
n=1

converges to a limit ` if for any ε > 0 there is an
N such that |an − `| < ε for all n > N .

• Geometric Series. If |x| < 1, then 1 + x+ x2 + x3 + · · · = 1

1− x
.

• Ratio Test. Let L := lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ . If L < 1, then
∑
n≥1

an converges, and if L > 1, then the

sum diverges. If L = 1, the test is inconclusive.

• Monotone Convergence. If a1 ≤ a2 ≤ . . . and all an ≤ B for some constant B, then lim
n→∞

an

exists (though it may be less than B).

• Alternating Series. If a1 ≥ a2 ≥ . . . and lim
n→∞

an = 0, then the alternating series a1 − a2 +

a3 − a4 + . . . converges.

• Integral Comparison. If f(x) is a decreasing function for x ≥ 0, then
∑
n≥1

f(n) ≤
∫ ∞
0

f(x)dx.

• Linear Recurrences. The characteristic polynomial associated to a (homogeneous) recurrence
an+k = ck−1an+k−1 + · · ·+ c1an+1 + c0an is p(x) := xk − ck−1xk−1 − · · · − c1x− c0. If p(x) has
distinct roots λ1, . . . , λk, then the general solution to the recurrence is

an = b1λ
n
1 + · · ·+ bkλ

n
k ,

where the constants are determined by k initial values. If there is a repeated root λ of order
m, then the general solution has the term (dk−1n

k−1 + · · ·+ d1n+ d0)λn.

Warm Up

1. Evaluate the following sums:

(a) 1 +
1

3
+

1

9
+

1

27
+ · · · .

(b) 1 +
2

3
+

4

9
+

8

27
+ · · · .
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2. Solve the following recurrences; this means finding a closed form expression for an. For
example, the recurrence with a1 = 1 and an+1 = an + 1 has solution an = n.

(a) a0 = 0, and an+1 = an + 2n+ 1 for n ≥ 1.

(b) a0 = 1, and an+1 = 2an for n ≥ 1.

(c) a0 = −1, and an+1 = 2an + 2n+ 1 for n ≥ 1.

Hint: Begin by finding the “non-homogeneous solution” by letting a′n = dn+e, and choosing

the constants such that a′n+1 = 2a′n + 2n+ 1. Then let an = a′n + bn, and get a simpler a

recurrence for bn.

Main Problems

3. (a) Evaluate the finite series

1 +
1

3
+

1

9
+ · · ·+ 1

3N
.

Try to do this inductively: calculate the first few values so that you can guess a
formula, and then prove it!

(b) Prove the general summation formula for the finite geometric series:

SN (x) := 1 + x+ x2 + · · ·+ xN =
1− xN+1

1− x
.

Do this by considering SN (x)− xSN (x).

(c) Now evaluate

1 +
2

2
+

3

4
+

4

8
+ · · ·+ N + 1

2N
.

Again, try to do this inductively: calculate the first few values, and write them in

the form 4− aN
2N

. For example, with N = 2, the sum is 11
4 = 4− 5

4 .

(d) Find the general summation formula for

TN (x) := 1 + 2x+ 3x3 + · · ·+ (N + 1)xN .

Do this by considering TN (x)− xTN (x), and recalling part (b).

4. [VTRMC 1990 #6] The number of individuals in a certain population (in arbitrary
real units) obeys, at discrete time intervals, the equation

yn+1 = yn(2− yn) for n = 0, 1, 2, . . . ,

where y0 is the initial population.

(a) Find all “steady-state” solutions y∗ such that if y0 = y∗, then yn = y∗ for n =
1, 2, . . . .

(b) Prove that if y0 is any number in (0, 1), then the sequence {yn} converges mono-
tonically to one of the steady-state solutions found in (a).



5. (a) Evaluate

√
6 +

√
6 +
√

6 + · · ·.

Properly, you should interpret this as the limit of the sequence defined by a0 =
√

6,
and an+1 =

√
6 + an for n ≥ 0.

(b) Evaluate

√
6−

√
6−
√

6− · · ·.

6. [Gelca-Andreescu 409] Find the positive real solutions to the equation√
x+ 2

√
x+ · · ·+ 2

√
x+ 2

√
3x = x.

7. A sequence is defined by a1 = 1, a2 = 1, a3 = 4, and

an =
an−1an−2 − 1

an−3
for n ≥ 4.

(a) Calculate the next several values of an. Note that the definition of the recur-
rence includes division by an−3. Do any of the values that you calculated have
denominators?

(b) Use your data to calculate an + an−4. You should notice a striking relationship to
some other terms in the sequence. Prove your observation.

(c) Finally, use this to to further prove that every an is an integer.

8. (a) Suppose that {an}∞n=1 is a sequence. Show that∑
m≥1

∑
n≥1

2

am(am + an)
=
∑
m≥1

∑
n≥1

1

aman
.

Hint: What happens if you interchange m and n?

(b) Evaluate
∑
m≥1

∑
n≥1

1

2m (2m + 2n)
.

9. [Putnam 1999 A4] Sum the series

∑
m≥1

∑
n≥1

m2n

3m(n3m +m3n)
.


