
MATH 7230 Homework 2 - Fall 2019
Due Tuesday, Sep. 17 at 10:30

https://www.math.lsu.edu/~mahlburg/teaching/2019-MATH7230.html

You are required to turn in at least one of the following problems, and must complete a
total of 20 by semester’s end. Group work is allowed, but your solutions must be written up
individually.
Problems 1 – 2 are taken from Ash (where Ash A.B.C means Problem C from Section A.B),
but with a bit of additional discussion.

1. Ash 8.1.1.

(a) Verify the claim that D(σ(Q)) = σD(Q)σ−1 for all σ ∈ G = Gal(L/K). This
means that all of the decomposition groups for primes above P ⊂ A are conjugate,
and therefore isomorphic.

(b) Prove the following characterization of the inertia group:

τ ∈ I(Q) ⇐⇒ τ(b)− b ∈ Q ∀b ∈ B.

(c) Show that I(σ(Q)) = σI(Q)σ−1. The direct approach is to use part (b).

2. Ash 8.1.2.

In Problems 3 – 6 you will prove a number of consequences of Galois Theory for cyclotomic
fields.

3. The Hasse-Minkowski Theorem gives a “Local-Global” principle for quadratic polyno-
mials: a homogeneous quadratic polynomial f(x1, . . . , xn) is irreducible in Z[x1, . . . , xn]
if and only if it is irreducible modulo p for all p ≤ ∞.

In this problem you will prove a famous example of a quartic polynomial for which
the Local-Global principle fails quite dramatically. Let f(x) := x4 + 1. You will show
that although this is irreducible over Q, it is reducible modulo p for every prime
p ≤ ∞. (Recall that the “prime at infinity” refers to the completion of the archimedean
valuation on Q; in this case Q∞ = R).

(a) Show that f(x) = Φ8(x).

(b) Apply Eisenstein’s criterion to f(x + 1) in order to prove that f is irreducible in
Q[x].

(c) Find the factorization of f(x) in R[x].

Remark: It is a general fact that polynomials in R[x] factor into linear or quadratic terms,

although this relies on the deeper result that C is the algebraic closure of R.

4. This is a continuation of Problem 3 to the finite primes.

(a) Show that f(x) is reducible modulo 2, and find its factorization.

(b) Now let p be odd, and show that f(x) divides xp
2 − x (and recall that this is

the largest “splitting polynomial” for Fp2 ; i.e., this is precisely the product of all
degree 1 and 2 irreducible polynomials modulo p).
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(c) Let E/Fp be the (minimal) splitting field of f(x) over Fp. If u ∈ E is a root of f ,
let mu(x) ∈ Fp[x] be its minimal polynomial. Using part (d), explain why E = Fp2

or Fp. Conclude that mu(x) is a nontrivial divisor of x4 + 1.

Remark: In fact, you can further show that E = Fp if and only if p ≡ 1 (mod 8).

5. In this problem you will use the Galois Correspondence to prove that there are no inert
primes in Q(ζ8). In other words, for all p ∈ N, (p) = (Q1 · · ·Qg)e for some g ≥ 2.

(a) Find the intermediate quadratic subfields of Q(ζ8) – there are three! Draw the
corresponding subgroup diagram for Gal(Q(ζ8)/Q).

(b) Using the Legendre symbol, determine which primes split in each of the quadratic
subfields.

(c) Combine all of the cases from part (b), and conclude that all p split in Q(ζ8).

6. Now you will give an alternative proof of the result in Problem 5 that only relies on
properties of the Frobenius automorphism, rather than explicit descriptions of interme-
diate subfields.

(a) Ash 8.3.1 states that if p - m, then the prime factorization in Z[ζm] is of the form

(p) = Q1 · · ·Qg,

where each Qj has relative degree f := ord(Z/mZ)×(f) = mink p
k ≡ 1 (mod m),

and fg = φ(m). What can you conclude if p is an odd prime and m = 8?

(b) Generalize the argument, and determine which cyclotomic fields have no inert
primes.

In the remaining problems you will calculate the Decomposition and Inertia groups (and all
other parts of the Galois Tower) for a few interesting examples of number fields.

7. Let L = Q(ζ5), and p = (11).

(a) Determine the prime factorization of p in B = OL.

(b) We discussed in lecture that the Galois group is Gal(L/Q) = {σ1 = id, σ2, σ3, σ4},
where σa : ζ5 7→ ζa5 . Find the Decomposition Group D (for some prime Q above
p), and verify that it satisfies the required properties. For example, you should
find that σ2 6∈ D, which can be verified by showing that σ2(ζ5 + 2) = ζ25 + 2 6∈ Q
(show that this element reduces to a nonzero residue in B/Q ∼= Z/11Z!).

(c) Finally, consider the Frobenius element of Q, σQ = σ11. How does this automor-
phism relate to D?

8. Let L = Q(ζ12).

(a) Calculate the minimal polynomial for ζ12 (i.e., Φ12(X)).

(b) Determine the Galois group Gal(L/Q), and describe it explicitly.

(c) Now fill in all subfields and subgroups in the Galois Tower. You should find three
intermediate quadratic fields – describe them explicitly!

9. It will be helpful if you do Problem 8 before this one. Let L = Q(ζ12).



(a) Use the Dedekind-Kummer Theorem (or any other method) to determine the prime
factorization of p = (2) in OL = Z[ζ12].

(b) Determine the decomposition group D of Q, where Q is any prime above p in OL.
Although it is possible to easily find D using the degrees of the extensions, you
are required to also verify that σ(Q) = Q for each σ ∈ D.

(c) Finally, calculate the inertia group I.


