MATH 7230 Homework 3 - Fall 2019

Due Tuesday, Oct. 1 at 10:30

https://www.math.lsu.edu/~mahlburg/teaching/2019-MATH7230.html

You are required to turn in at least **one** of the following problems, and must complete a total of **20** by semester's end. Group work is allowed, but your solutions must be written up individually.

Problems 1 – 4 give further examples and general properties of the real subfields of cyclotomic

fields.

- 1. Let $K = \mathbb{Q}(\alpha_7)$, with $\alpha_7 := \zeta_7 + \zeta_7^{-1}$. This is the *real subfield* of the cyclotomic field $\mathbb{Q}(\zeta_7)$. It is a fact that the ring of integers has a power basis, namely $\mathcal{O}_K = \mathbb{Z}[\alpha]$.
 - (a) Show that the minimal polynomial of α_7 is $X^3 + X^2 2X 1$.
 - (b) We discussed in lecture that by embedding $K \subset \mathbb{Q}(\zeta_7)$ one can conclude (see Childress Theorem 1.8) that p splits completely in K if and only if $p \equiv \pm 1 \pmod{7}$. Verify this by finding the prime factorization of (13) in \mathcal{O}_K .
- 2. Let $K = \mathbb{Q}(\alpha_9)$, with $\alpha_9 := \zeta_9 + \zeta_9^{-1}$, and $\mathcal{O}_K = \mathbb{Z}[\alpha_9]$.
 - (a) Show that the minimal polynomial of α_9 is $f(X) = X^3 3X + 1$.
 - (b) Show that the roots of f(X) are $\alpha, \alpha^2 2$, and $-\alpha^2 \alpha + 2$.
 - (c) Show explicitly that the Galois automorphism $\sigma : \alpha_7 \mapsto \alpha_7^2 2$ generates $\operatorname{Gal}(K/\mathbb{Q})$. Remark: This example is sometimes presented as $\mathbb{Q}(X)/(f(X))$, without any further context, which makes it seem much more mysterious!
- 3. This is a continuation of Problem 2.
 - (a) Now consider the prime p = (5) and calculate the decomposition group $D(Q, K/\mathbb{Q})$, where Q is some prime above p.
 - (b) Verify that the Frobenius automorphism generates the decomposition group. In particular, how does $\sigma_5 = \left(\frac{p}{K/\mathbb{Q}}\right)$ relate to σ from Problem 2(c)?
- 4. In this problem you will fill explore a few further details related to Example 9 on p. 23 of Childress.
 - (a) Childress Exercise 2.3.
 - (b) Recall that if χ is a character for the group $G = \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$, then the field associated to χ is the fixed field for ker (χ) . Let n = 9, with $(\mathbb{Z}/9\mathbb{Z})^{\times} = \langle 2 \rangle$, and consider the character defined by $\chi(2) := -1$. Find the field associated to χ . *Hint: The field will be a quadratic extension of* \mathbb{Q} .
 - (c) Now let n = 16, with (Z/16Z)[×] = ⟨-1⟩ × ⟨5⟩, and define the character defined by χ(-1) = 1 and χ(5) = -1. Find the field associated to χ. Hint: The field will be real.

- 5. In this problem you will prove that primitive Dirichlet characters exist for all moduli $n \not\equiv 2 \pmod{4}$. Denote the group of Dirichlet characters modulo n by $\widehat{G}_n := (\mathbb{Z}/n\mathbb{Z})^{\times}$. Let $\pi(n)$ be the number of primitive characters modulo n.
 - (a) Prove that π is multiplicative: if $(n_1, n_2) = 1$, then $\pi(n_1 n_2) = \pi(n_1)\pi(n_2)$.
 - (b) Show that for prime powers,

$$\pi(p^a) = \begin{cases} p-2 & \text{if } a = 1, \\ (p-1)^2 p^{a-2} & \text{if } a \ge 2. \end{cases}$$

(c) Write down the general formula for $\pi(n)$ if $n = p_1^{a_1} \cdots p_m^{a_m}$. Remark: In practice, this means that primitive Dirichlet characters always exist, recalling that $\mathbb{Q}(\zeta_{2m}) = \mathbb{Q}(\zeta_m)$ for odd m.

Problems 6 – 9 are an expanded version of Childress Exercise 2.9, and also give an in-depth example of Childress Theorem 2.2 and Corollary 2.3. As a final check of your work, you should find that K/\mathbb{Q} and K'/\mathbb{Q} are field extensions in which 3 and 5 are ramified, but K/K' is an extension in which **all** primes are unramified!

6. Let $K := \mathbb{Q}(\alpha, \zeta_3)$, where $\alpha := \zeta_{15} + \zeta_{15}^4$.

in Problem 6 (b))?

(a) Determine the degrees of each field extension in the tower

$$\mathbb{Q} \subset \mathbb{Q}(\zeta_3) \subset K \subset \mathbb{Q}(\zeta_{15}).$$

One approach to understanding K is to search for a relation between α , ζ_3 and the cyclotomic polynomial $\Phi_{15}(X)$ (or the somewhat simpler, if lengthier, relation $1 + \zeta_{15} + \zeta_{15}^2 + \cdots + \zeta_{15}^{14} = 0$).

- (b) Now determine the corresponding Galois subgroups for the field tower. For $\text{Gal}(\mathbb{Q}(\zeta_{15})/K)$ it will be useful to note that $\sigma_4^2 = \sigma_1$ (using the usual notation $\sigma_b : \zeta_{15} \mapsto \zeta_{15}^b$).
- (c) Define the subgroup $X := \langle \chi^2, \psi \rangle$, where $\widehat{G}_5 = \langle \chi \rangle$, and $\widehat{G}_3 = \langle \psi \rangle$. Note that $\chi^2 = \begin{pmatrix} \bullet \\ \overline{5} \end{pmatrix}$. Calculate ker X. How does this compare to $\operatorname{Gal}(\mathbb{Q}(\zeta_{15})/K)$ (which you calculated
- 7. In this problem and the next you will fill in all parts of the field diagram on Childress p. 26. First let $p^a = 3$ (so m = 5), and denote the corresponding fields as E_3 and L_3 .
 - (a) Calculate $E_3 = \mathbb{Q}(\zeta_3)^{\ker X_3}$, with X as in Problem 6 (c).
 - (b) Calculate $L_3 = \mathbb{Q}(\zeta_{15})^{\ker(X_3 \times \widehat{G}_5)}$. Verify that this equals $K(\zeta_5)$.
 - (c) What is the ramification degree e of (3) in K? How does this compare to $|X_3|$?
- 8. Let $p^a = 5$ (so m = 3), and denote the corresponding fields as E_5 and L_5 .
 - (a) Calculate $E_5 = \mathbb{Q}(\zeta_5)^{\ker X_5}$, with X as in Problem 6 (c).
 - (b) Calculate $L_3 = \mathbb{Q}(\zeta_{15})^{\ker(X_5 \times \widehat{G}_3)}$. Verify that this equals $K(\zeta_3)$.
 - (c) What is the ramification degree e of (5) in K? How does this compare to $|X_5|$?

- 9. Define the subgroup $X' := \langle \chi_5^2 \chi_3 \rangle < \widehat{G}_{15}$.
 - (a) Calculate ker(X') (you should obtain a cyclic subgroup with 4 elements).
 - (b) Let $K' := \mathbb{Q}(\zeta_{15})^{\ker(X')}$. This is a quadratic extension of \mathbb{Q} (why?) identity which one. A very explicit approach is to show that $\alpha' \in K'$, where $\alpha' := \zeta_{15} + \zeta_{15}^2 + \zeta_{15}^4 + \zeta_{15}^8$. Then show that the minimal polynomial of α' is quadratic!
 - (c) Finally, show that 3 and 5 both ramify in K', and use the various degrees that you calculated in Problems 7 and 8 to conclude that there is no ramification in K/K'.