MATH 7230 Homework 5 - Fall 2019

Due Tuesday, Oct. 29 at 10:30

https://www.math.lsu.edu/~mahlburg/teaching/2019-MATH7230.html

You are required to turn in at least **one** of the following problems, and must complete a total of **20** by semester's end. Group work is allowed, but your solutions must be written up individually.

Problems 1-2 explore explicit calculations in ideal and ray class groups, as in Step 1 from the proof of Childress Proposition 2.1.

- 1. Recall that ideal class groups can be calculated using Minkowski's Bound (Ash 5.3.5), which states that if $F = \mathbb{Q}(\sqrt{-D})$, then any ideal class contains an I such that $N(I) \leq \frac{2}{\pi}\sqrt{\operatorname{Disc}(F)}$.
 - (a) Suppose that D = 5. Verify that

$$\mathcal{CL}(F) \cong C_2 = \{(1), P_2\},\,$$

where $P_2 = (2, 1 + \sqrt{-5})$ (which accounts for the ramification $(2) = P_2^2$).

(b) We also discussed in lecture that $(1 + \sqrt{-5}) = P_2 P_3$, with $P_3 = (3, 1 + \sqrt{-5})$. However, if one wanted to work with the ray at (6), then P_2 and P_3 must be excluded. Show that one can alternatively represent the class group as

$$\mathcal{CL}(F) \cong C_2 = \{(1), P_7\},\,$$

where $P_7 = (7, 3 + \sqrt{-5})$. In particular, show that $(3 + \sqrt{-5}) = P_2 P_7$.

- 2. Now you will show that the class group for $F = \mathbb{Q}(\sqrt{-21})$ is isomorphic to $C_2 \times C_2$.
 - (a) Apply Minkowski's bound, and determine the factorization of (2), (3), and (5).
 - (b) Now you must search for any (multiplicative) relations among these prime ideals, relative to the quotient by the principal fractional ideals. First, show that P_2 and P_3 are independent: assume to the contrary that $P_2 = (\alpha)P_3$ for some $\alpha \in \mathbb{Z}[\sqrt{-21}]$ and reach a contradiction.
 - (c) Next, show that P_5 is generated by P_2 and P_3 in the ideal class group. In particular, show that

$$P_2P_3P_5 = (\beta)$$

for some $\beta \in \mathbb{Z}[\sqrt{-21}]$

Hint: Note that this will require $N(\beta) = 30$ – this should suggest a candidate choice!

- 3. Childress Exercise 3.5. Based on what we know at this point in the book, this is only meant to be based on **analytic** considerations is it possible for the Dirichlet densities to align for \mathcal{H}_1 and \mathcal{H}_2 ?
- 4. As mentioned in lecture, the proof of the uniqueness of the class field (Childress Theorem 3.2.2) requires a technical result of primes that split completely. In particular, the claim is that if K_1/F and K_2/F are field extensions, and the compositum is $K := K_1K_2$, then $S_{K/F} = S_{K_1/F} \cap S_{K_2/F}$. In words, if $P \subset \mathcal{O}_F$ is prime, then P splits completely in K if and only if P splits completely in K_1 and K_2 .

- (a) Embed K in a normal extension L, so that L/F is Galois. If $Q \subset \mathcal{O}_L$ is a prime dividing P, then consider the decomposition group D = D(Q, P), and corresponding fixed field L_D . The Tower Theorem (Ash 8.2.7) implies that P splits completely in L_D . If L' is an intermediate field, let $Q_{L'} := Q \cap \mathcal{O}_{L'}$ be the corresponding prime. Show that $L' \subset L_D$ if and only if $e(Q_{L'}, P) = f(Q_{L'}, P) = 1$.
- (b) Apply part (a) to K_1 and K_2 . Then conclude that $K \subset L_D$. Remark: We will later see a local proof of this result.

In Homework 3 Problems 6–9 you showed that $K = \mathbb{Q}(\sqrt{-3}, \sqrt{5})$ is an extension of $F = \mathbb{Q}(\sqrt{-15})$ in which **all** primes are unramified. Problems 5–7 will show that K is the Hilbert class field for F.

- 5. In this problem you will work with the class group of F. Note that $\mathcal{O}_{\mathcal{F}} = \mathbb{Z}[\alpha]$, where $\alpha := \frac{1+\sqrt{-15}}{2}$.
 - (a) Applying Minkowski's bound, you need only check the factorization of the ideal (2) in order to find the class group. Show that $(2) = (2, \alpha)(2, \alpha + 1) =: P_2P_2'$.
 - (b) Show that the only primes that ramify in $\mathcal{O}_{\mathcal{F}}$ are 3 and 5, and find their factorizations, as $(3) = P_3^2$, $(5) = P_5^2$.
 - (c) By part (a), the class group should be $\mathcal{CL}(F) \cong \{1, P_2\}$. Show that P_2P_3 and $P_2'P_3$ are principal ideals by finding explicit generators.
- 6. In this problem you will prove that there are no primes $p \in \mathbb{N}$ that are inert in K.
 - (a) Consider the three quadratic subfields $F, F_3 := \mathbb{Q}(\sqrt{-3}), F_5 := \mathbb{Q}(\sqrt{5}) \subset K$. Show that p cannot be inert in all three simultaneously.
 - (b) Use part (a) to conclude that p cannot be inert in K.
 - (c) Determine the set of residue classes

$$\mathcal{H} := \{ a \mid p \text{ splits in } F \iff p \equiv a \pmod{15} \}.$$

Show that \mathcal{H} is a subgroup of $(\mathbb{Z}/15\mathbb{Z})^{\times}$.

- 7. In general, K is the Hilbert class field of F if it is the class field over F of \mathcal{P}_F , the set of all principal ideals (i.e., the modulus is $\mathcal{M} = (1) = \mathcal{O}_F$).
 - (a) Using Problem 6, show that an ideal $P \subset \mathcal{O}_F$ splits completely in K if and only if $P = (p)\mathcal{O}_F$ for a prime p that is inert in F.
 - (b) Show that K is the Hilbert class field of F. In fact, in this case the set of splitting primes $\mathcal{S}_{K/F}$ is **equal** to \mathcal{P}_F (the general requirement for a class field is that these may differ by a set of Dirichlet density zero).

Remark: As mentioned above, K/F is an abelian extension in which all primes are unramified. It is a deep fact that this is **always** the case for the Hilbert class field, and the definition is often alternatively given as the maximal abelian, unramified extension of F.