Adaptive Tracking and Parameter Identification for Nonlinear Control Systems

Michael Malisoff, Associate Professor
Holder of Roy Paul Daniels Professorship #3
Sponsored by AFOSR, NSF/DMS, and NSF/EPAS

Department of Mathematics Colloquium
LSU – September 13, 2012
What Do We Mean By Control Systems?

These are doubly parameterized families of ODEs of the form

\[
\dot{Y} = F(t, Y, u(t, Y), \delta(t)), \quad Y \in \mathbb{R}^n.
\]

(1)

We have freedom to choose the control function \(u(t, Y) \).

The functions \(\delta: [0, \infty) \to D \) represent uncertainty.

\(D \subseteq \mathbb{R}^m \).

Specify \(u(t, Y) \) to get a singly parameterized family

\[
\dot{Y} = G(t, Y, \delta(t)), \quad Y \in \mathbb{R}^n,
\]

(2)

where \(G(t, Y, d) = F(t, Y, u(t, Y), d) \).

Typically we construct \(u(t, Y) \) so that all trajectories of (2) for all possible choices of \(\delta \) satisfy some control objective.
What Do We Mean By Control Systems?

These are doubly parameterized families of ODEs of the form
\[
\dot{Y} = \mathcal{F}(t, Y, u(t, Y), \delta(t)), \quad Y \in \mathcal{Y}.
\] (1)
What Do We Mean By Control Systems?

These are *doubly* parameterized families of ODEs of the form

\[
\dot{Y} = \mathcal{F}(t, Y, u(t, Y), \delta(t)), \quad Y \in \mathcal{Y}.
\]

(1)

\(\mathcal{Y} \subseteq \mathbb{R}^n\).
What Do We Mean By Control Systems?

These are *doubly* parameterized families of ODEs of the form

\[\dot{Y} = F(t, Y, u(t, Y), \delta(t)), \quad Y \in \mathcal{Y}. \]
\[\mathcal{Y} \subseteq \mathbb{R}^n. \]
We have freedom to choose the control function \(u(t, Y) \).
What Do We Mean By Control Systems?

These are *doubly* parameterized families of ODEs of the form
\[
\dot{Y} = \mathcal{F}(t, Y, u(t, Y), \delta(t)), \quad Y \in \mathcal{Y}.
\]
\(\mathcal{Y} \subseteq \mathbb{R}^n\). We have freedom to choose the control function \(u(t, Y)\). The functions \(\delta : [0, \infty) \to \mathcal{D}\) represent uncertainty.
What Do We Mean By Control Systems?

These are *doubly* parameterized families of ODEs of the form

\[\dot{Y} = \mathcal{F}(t, Y, u(t, Y), \delta(t)), \quad Y \in \mathcal{Y}. \]

(1)

\(\mathcal{Y} \subseteq \mathbb{R}^n\). We have freedom to choose the control function \(u(t, Y)\). The functions \(\delta : [0, \infty) \to \mathcal{D}\) represent uncertainty. \(\mathcal{D} \subseteq \mathbb{R}^m\).

What Do We Mean By Control Systems?

These are doubly parameterized families of ODEs of the form

$$\dot{Y} = F(t, Y, u(t, Y), \delta(t)), \quad Y \in \mathcal{Y}. \quad (1)$$

$\mathcal{Y} \subseteq \mathbb{R}^n$. We have freedom to choose the control function $u(t, Y)$. The functions $\delta : [0, \infty) \to \mathcal{D}$ represent uncertainty. $\mathcal{D} \subseteq \mathbb{R}^m$.

Specify $u(t, Y)$ to get a singly parameterized family

$$\dot{Y} = G(t, Y, \delta(t)), \quad Y \in \mathcal{Y}, \quad (2)$$

where $G(t, Y, d) = F(t, Y, u(t, Y), d)$.
What Do We Mean By Control Systems?

These are *doubly* parameterized families of ODEs of the form

$$\dot{Y} = \mathcal{F}(t, Y, u(t, Y), \delta(t)), \quad Y \in \mathcal{Y}. \quad (1)$$

$\mathcal{Y} \subseteq \mathbb{R}^n$. We have freedom to choose the control function $u(t, Y)$. The functions $\delta : [0, \infty) \rightarrow \mathcal{D}$ represent uncertainty. $\mathcal{D} \subseteq \mathbb{R}^m$.

Specify $u(t, Y)$ to get a singly parameterized family

$$\dot{Y} = \mathcal{G}(t, Y, \delta(t)), \quad Y \in \mathcal{Y}, \quad (2)$$

where $\mathcal{G}(t, Y, d) = \mathcal{F}(t, Y, u(t, Y), d)$.

Typically we construct $u(t, Y)$ so that all trajectories of (2) for all possible choices of δ satisfy some control objective.
What is One Possible Control Objective?
What is One Possible Control Objective?

Input-to-state stability generalizes global asymptotic stability.
What is One Possible Control Objective?

Input-to-state stability generalizes global asymptotic stability.

\[\dot{Y} = g(t, Y), \quad Y \in \mathcal{Y}. \]

Our \(\gamma_i \)'s are 0 at 0, strictly increasing, and unbounded.

\[\dot{Y} = g(t, Y), \quad Y \in \mathcal{Y}. \] (\Sigma)
What is One Possible Control Objective?

Input-to-state stability generalizes global asymptotic stability.

\[\dot{Y} = G(t, Y), \quad Y \in \mathcal{Y}. \quad (\Sigma) \]

\[|Y(t)| \leq \gamma_1 (e^{t_0-t} \gamma_2(|Y(t_0)|)) \quad (\text{UGAS}) \]
What is One Possible Control Objective?

Input-to-state stability generalizes global asymptotic stability.

\[\dot{Y} = g(t, Y), \quad Y \in \mathcal{Y}. \]

\[|Y(t)| \leq \gamma_1 (e^{t_0-t} \gamma_2(|Y(t_0)|)) \]

(UGAS)

Our \(\gamma_i \)'s are 0 at 0, strictly increasing, and unbounded.
What is One Possible Control Objective?

Input-to-state stability generalizes global asymptotic stability.

\[\dot{Y} = g(t, Y), \quad Y \in \mathcal{Y}. \quad (\Sigma) \]

\[|Y(t)| \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y(t_0)|) \right) \quad (UGAS) \]

Our \(\gamma_i \)'s are 0 at 0, strictly increasing, and unbounded. \(\gamma_i \in \mathcal{K}_\infty. \)
What is One Possible Control Objective?

Input-to-state stability generalizes global asymptotic stability.

\[\dot{Y} = G(t, Y), \quad Y \in \mathcal{Y}. \quad (\Sigma) \]

\[|Y(t)| \leq \gamma_1 (e^{t_0 - t} \gamma_2 (|Y(t_0)|)) \quad (UGAS) \]

Our \(\gamma_i \)'s are 0 at 0, strictly increasing, and unbounded. \(\gamma_i \in \mathcal{K}_\infty. \)

\[\dot{Y} = G(t, Y, \delta(t)), \quad Y \in \mathcal{Y}. \quad (\Sigma_{\text{pert}}) \]
What is One Possible Control Objective?

Input-to-state stability generalizes global asymptotic stability.

\[\dot{Y} = \mathcal{G}(t, Y), \quad Y \in \mathcal{Y}. \]

\[|Y(t)| \leq \gamma_1(e^{t_0 - t} \gamma_2(|Y(t_0)|)) \]

\((\Sigma) \)

\((\text{UGAS}) \)

Our \(\gamma_i \)'s are 0 at 0, strictly increasing, and unbounded. \(\gamma_i \in \mathcal{K}_\infty. \)

\[\dot{Y} = \mathcal{G}(t, Y, \delta(t)), \quad Y \in \mathcal{Y}. \]

\[|Y(t)| \leq \gamma_1(e^{t_0 - t} \gamma_2(|Y(t_0)|)) + \gamma_3(|\delta|_{t_0, t}) \]

\((\Sigma_{\text{pert}}) \)

\((\text{ISS}) \)
What is One Possible Control Objective?

Input-to-state stability generalizes global asymptotic stability.

\[\dot{Y} = G(t, Y), \quad Y \in \mathcal{Y}. \quad (\Sigma) \]

\[|Y(t)| \leq \gamma_1 (e^{t_0 - t} \gamma_2(|Y(t_0)|)) \quad (UGAS) \]

Our \(\gamma_i\)'s are 0 at 0, strictly increasing, and unbounded. \(\gamma_i \in \mathcal{K}_\infty\).

\[\dot{Y} = G(t, Y, \delta(t)), \quad Y \in \mathcal{Y}. \quad (\Sigma_{pert}) \]

\[|Y(t)| \leq \gamma_1 (e^{t_0 - t} \gamma_2(|Y(t_0)|)) + \gamma_3(|\delta|_{[t_0, t]}) \quad (ISS) \]

Find \(\gamma_i\)'s by building certain strict LF\(s\) for \(\dot{Y} = G(t, Y, 0)\).
What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y} = G(t,Y)$ is a proper positive definite C^1 function V that admits a positive semidefinite function W such that $V_t(t,Y) + V_Y(t,Y) G(t,Y) \leq -W(Y)$ for all $t \geq 0$ and $Y \in Y$.

If, in addition, W is positive definite, then we call V strict.

Proper positive definite on $Y = \mathbb{R}^n$: $\exists \alpha_i \in \mathbb{K} \infty$ such that $\alpha_1(|Y|) \leq V(t,Y) \leq \alpha_2(|Y|)$ for all $t \geq 0$ and $Y \in Y$.

Positive definiteness (resp., semidefiniteness): 0 at zero and positive (resp., nonnegative) at all other points in Y.

Example 1: $\dot{y}_1 = y_2$, $\dot{y}_2 = -y_1 - y_3^2$. $V(Y) = 0$. $\dot{V} = -y_4^2$.

Example 2: $\dot{Y} = -Y_1 + Y_2$. $V(Y) = \ln(1 + Y_2^2)$. $\dot{V} \leq -Y_2^2 (1 + Y_2^2)^2$.
What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y} = g(t, Y)$ is a proper positive definite C^1 function V that admits a positive semidefinite function W such that $V_t(t, Y) + V_Y(t, Y)g(t, Y) \leq -W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$. If, in addition, W is positive definite, then we call V strict.

Proper positive definite on $\mathcal{Y} = \mathbb{R}^n$: $\exists \alpha_i \in K_{\infty}$ such that $\alpha_1(|Y|) \leq V(t, Y) \leq \alpha_2(|Y|)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

Positive definiteness (resp., semidefiniteness): 0 at zero and positive (resp., nonnegative) at all other points in \mathcal{Y}.

Example 1: $\dot{y}_1 = y_2$, $\dot{y}_2 = -y_1 - y_3^2$. $V(Y) = 0.5|Y|^2$. $\dot{V} = -y_4^2$.

Example 2: $\dot{Y} = -Y_1 + Y_2$. $V(Y) = \ln(1 + Y_2)$. $\dot{V} \leq -Y_2(1 + Y_2)^2$.
What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y} = \mathcal{G}(t, Y)$ is a proper positive definite C^1 function V that admits a positive semidefinite function W such that $V_t(t, Y) + V_Y(t, Y)\mathcal{G}(t, Y) \leq -W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$. If, in addition, W is positive definite, then we call V strict.
What Makes a LF Nonstrict or Strict?

A LF for \(\dot{Y} = g(t, Y) \) is a proper positive definite \(C^1 \) function \(V \) that admits a positive semidefinite function \(W \) such that

\[
V_t(t, Y) + V_Y(t, Y)g(t, Y) \leq -W(Y) \quad \text{for all } t \geq 0 \text{ and } Y \in \mathcal{Y}.
\]

If, in addition, \(W \) is positive definite, then we call \(V \) strict.

Proper positive definite on \(\mathcal{Y} = \mathbb{R}^n \): \(\exists \alpha_i \in \mathcal{K}_\infty \) such that

\[
\alpha_1(|Y|) \leq V(t, Y) \leq \alpha_2(|Y|) \quad \text{for all } t \geq 0 \text{ and } Y \in \mathcal{Y}.
\]
What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y} = g(t, Y)$ is a proper positive definite C^1 function V that admits a positive semidefinite function W such that $V_t(t, Y) + V_Y(t, Y)g(t, Y) \leq -W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.

Proper positive definite on $\mathcal{Y} = \mathbb{R}^n$: $\exists \alpha_i \in \mathcal{K}_\infty$ such that $\alpha_1(|Y|) \leq V(t, Y) \leq \alpha_2(|Y|)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

Positive definiteness (resp., semidefiniteness): 0 at zero and positive (resp., nonnegative) at all other points in \mathcal{Y}.

Example 1:
\[\dot{y}_1 = y_2, \quad \dot{y}_2 = -y_1 - y_3^2. \]
\[V(Y) = 0.5|Y|^2. \]
\[\dot{V} \leq -y_4^2. \]

Example 2:
\[\dot{Y} = -Y_1 + Y_2. \]
\[V(Y) = \ln(1 + Y_2). \]
\[\dot{V} \leq -Y_2(1 + Y_2)^2. \]
What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y} = g(t, Y)$ is a proper positive definite C^1 function V that admits a positive semidefinite function W such that $V_t(t, Y) + V_Y(t, Y)g(t, Y) \leq -W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.

Proper positive definite on $\mathcal{Y} = \mathbb{R}^n$: $\exists \alpha_i \in K_{\infty}$ such that $\alpha_1(|Y|) \leq V(t, Y) \leq \alpha_2(|Y|)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

Positive definiteness (resp., semidefiniteness): 0 at zero and positive (resp., nonnegative) at all other points in \mathcal{Y}.

Example 1:
What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y} = \mathcal{G}(t, Y)$ is a proper positive definite C^1 function V that admits a positive semidefinite function W such that $V_t(t, Y) + V_Y(t, Y)\mathcal{G}(t, Y) \leq -W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.

Proper positive definite on $\mathcal{Y} = \mathbb{R}^n$: $\exists \alpha_i \in \mathcal{K}_\infty$ such that $\alpha_1(|Y|) \leq V(t, Y) \leq \alpha_2(|Y|)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

Positive definiteness (resp., semidefiniteness): 0 at zero and positive (resp., nonnegative) at all other points in \mathcal{Y}.

Example 1: $\dot{y}_1 = y_2$, $\dot{y}_2 = -y_1 - y_2^3$.
What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y} = \mathcal{G}(t, Y)$ is a proper positive definite C^1 function V that admits a positive semidefinite function W such that $V_t(t, Y) + V_Y(t, Y)\mathcal{G}(t, Y) \leq -W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.

Proper positive definite on $\mathcal{Y} = \mathbb{R}^n$: $\exists \alpha_i \in \mathcal{K}_\infty$ such that $\alpha_1(|Y|) \leq V(t, Y) \leq \alpha_2(|Y|)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

Positive definiteness (resp., semidefiniteness): 0 at zero and positive (resp., nonnegative) at all other points in \mathcal{Y}.

Example 1: $\dot{y}_1 = y_2$, $\dot{y}_2 = -y_1 - y_2^3$. $V(Y) = 0.5|Y|^2$.

Example 2: $\dot{Y} = -Y_1 + Y_2$. $V(Y) = \ln(|1 + Y_2|)$. $\dot{V} \leq -Y_2^2(1 + Y_2^2)$.
What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y} = \mathcal{G}(t, Y)$ is a proper positive definite C^1 function V that admits a positive semidefinite function W such that $V_t(t, Y) + V_Y(t, Y)\mathcal{G}(t, Y) \leq -W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.

Proper positive definite on $\mathcal{Y} = \mathbb{R}^n$: $\exists \alpha_i \in \mathcal{K}_\infty$ such that $\alpha_1(|Y|) \leq V(t, Y) \leq \alpha_2(|Y|)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

Positive definiteness (resp., semidefiniteness): 0 at zero and positive (resp., nonnegative) at all other points in \mathcal{Y}.

Example 1: $\dot{y}_1 = y_2$, $\dot{y}_2 = -y_1 - y_2^3$. $V(Y) = 0.5|Y|^2$. $\dot{V} = -y_2^4$.
What Makes a LF Nonstrict or Strict?

A LF for \(\dot{Y} = \mathcal{G}(t, Y) \) is a proper positive definite \(C^1 \) function \(V \) that admits a positive semidefinite function \(W \) such that \(V_t(t, Y) + V_Y(t, Y)\mathcal{G}(t, Y) \leq -W(Y) \) for all \(t \geq 0 \) and \(Y \in \mathcal{Y} \).

If, in addition, \(W \) is positive definite, then we call \(V \) strict.

Proper positive definite on \(\mathcal{Y} = \mathbb{R}^n \): \(\exists \alpha_i \in \mathcal{K}_\infty \) such that \(\alpha_1(|Y|) \leq V(t, Y) \leq \alpha_2(|Y|) \) for all \(t \geq 0 \) and \(Y \in \mathcal{Y} \).

Positive definiteness (resp., semidefiniteness): 0 at zero and positive (resp., nonnegative) at all other points in \(\mathcal{Y} \).

Example 1: \(\dot{y}_1 = y_2, \dot{y}_2 = -y_1 - y_2^3. \ V(Y) = 0.5|Y|^2. \ \dot{V} = -y_2^4. \)

Example 2:
What Makes a LF Nonstrict or Strict?

A LF for \(\dot{Y} = g(t, Y) \) is a proper positive definite \(C^1 \) function \(V \) that admits a positive semidefinite function \(W \) such that \(V_t(t, Y) + V_Y(t, Y)g(t, Y) \leq -W(Y) \) for all \(t \geq 0 \) and \(Y \in \mathcal{Y} \).

If, in addition, \(W \) is positive definite, then we call \(V \) strict.

Proper positive definite on \(\mathcal{Y} = \mathbb{R}^n \): \(\exists \alpha_i \in \mathcal{K}_\infty \) such that \(\alpha_1(|Y|) \leq V(t, Y) \leq \alpha_2(|Y|) \) for all \(t \geq 0 \) and \(Y \in \mathcal{Y} \).

Positive definiteness (resp., semidefiniteness): 0 at zero and positive (resp., nonnegative) at all other points in \(\mathcal{Y} \).

Example 1: \(\dot{y}_1 = y_2, \dot{y}_2 = -y_1 - y_2^3 \). \(V(Y) = 0.5|Y|^2 \). \(\dot{V} = -y_2^4 \).

Example 2: \(\dot{Y} = -\frac{Y}{1+Y^2} \).
What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y} = g(t, Y)$ is a proper positive definite C^1 function V that admits a positive semidefinite function W such that $V_t(t, Y) + V_Y(t, Y)g(t, Y) \leq -W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.

Proper positive definite on $\mathcal{Y} = \mathbb{R}^n$: $\exists \alpha_i \in \mathcal{K}_\infty$ such that $\alpha_1(\|Y\|) \leq V(t, Y) \leq \alpha_2(\|Y\|)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

Positive definiteness (resp., semidefiniteness): 0 at zero and positive (resp., nonnegative) at all other points in \mathcal{Y}.

Example 1: $\dot{y}_1 = y_2$, $\dot{y}_2 = -y_1 - y_2^3$. $V(Y) = 0.5|Y|^2$. $\dot{V} = -y_2^4$.

Example 2: $\dot{Y} = -\frac{Y}{1+Y^2}$. $V(Y) = \ln(1 + Y^2)$.
What Makes a LF Nonstrict or Strict?

A LF for $\dot{Y} = \mathcal{G}(t, Y)$ is a proper positive definite C^1 function V that admits a positive semidefinite function W such that $V_t(t, Y) + V_Y(t, Y)\mathcal{G}(t, Y) \leq -W(Y)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

If, in addition, W is positive definite, then we call V strict.

Proper positive definite on $\mathcal{Y} = \mathbb{R}^n$: $\exists \alpha_i \in \mathcal{K}_\infty$ such that $\alpha_1(|Y|) \leq V(t, Y) \leq \alpha_2(|Y|)$ for all $t \geq 0$ and $Y \in \mathcal{Y}$.

Positive definiteness (resp., semidefiniteness): 0 at zero and positive (resp., nonnegative) at all other points in \mathcal{Y}.

Example 1: $\dot{y}_1 = y_2$, $\dot{y}_2 = -y_1 - y_3^2$. $V(Y) = 0.5|Y|^2$. $\dot{V} = -y_2^4$.

Example 2: $\dot{Y} = -\frac{Y}{1+Y^2}$. $V(Y) = \ln(1 + Y^2)$. $\dot{V} \leq -\frac{Y^2}{(1+Y^2)^2}$.
What is Strictification?

This is the transformation of a nonstrict LF \(V \) into a strict LF \(V^{\#} \) on its domain, and is the subject of my book. Doing so can often strengthen a UGAS result into an ISS result to quantify the effects of uncertainties and robustify controllers. The required nondegeneracy of \(V \) is often expressed in terms of Jurdjevic-Quinn, LaSalle, or Matrosov conditions. Active magnetic bearings, adaptive systems, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, systems with control delays, underactuated ships, unmanned air vehicles,..
What is Strictification?

This is the transformation of a nonstrict LF V_1 into a strict LF $V^\#$ on its domain, and is the subject of my book.
What is Strictification?

This is the transformation of a nonstrict LF V_1 into a strict LF V on its domain, and is the subject of my book.

Doing so can often strengthen a UGAS result into an ISS result to quantify the effects of uncertainties and robustify controllers.
What is Strictification?

This is the transformation of a nonstrict LF V_1 into a strict LF $V^\#$ on its domain, and is the subject of my book.

Doing so can often strengthen a UGAS result into an ISS result to quantify the effects of uncertainties and robustify controllers.

The required nondegeneracy of V_1 is often expressed in terms of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.
What is Strictification?

This is the transformation of a nonstrict LF V_1 into a strict LF V^\sharp on its domain, and is the subject of my book.

Doing so can often strengthen a UGAS result into an ISS result to quantify the effects of uncertainties and robustify controllers.

The required nondegeneracy of V_1 is often expressed in terms of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, systems with control delays, underactuated ships, unmanned air vehicles,..
What is Strictification?

This is the transformation of a nonstrict LF V_1 into a strict LF V' on its domain, and is the subject of my book.

Doing so can often strengthen a UGAS result into an ISS result to quantify the effects of uncertainties and robustify controllers.

The required nondegeneracy of V_1 is often expressed in terms of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, systems with control delays, underactuated ships, unmanned air vehicles,..
What is Strictification?

This is the transformation of a nonstrict LF V_1 into a strict LF V^\dagger on its domain, and is the subject of my book.

Doing so can often strengthen a UGAS result into an ISS result to quantify the effects of uncertainties and robustify controllers.

The required nondegeneracy of V_1 is often expressed in terms of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, systems with control delays, underactuated ships, unmanned air vehicles,..
Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

$$\dot{\xi} = \mathcal{J}(t, \xi, \Gamma, u)$$

(3)

with a smooth reference trajectory \(\xi_R\) and a vector \(\Gamma\) of unknown constant parameters.
Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

\[\dot{\xi} = \mathcal{J}(t, \xi, \Gamma, u) \quad (3) \]

with a smooth reference trajectory \(\xi_R \) and a vector \(\Gamma \) of unknown constant parameters. \(\dot{\xi}_R(t) = \mathcal{J}(t, \xi_R(t), \Gamma, u_R) \) \(\forall t \geq 0 \).
Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

\[\dot{\xi} = J(t, \xi, \Gamma, u) \] \hspace{1cm} (3)

with a smooth reference trajectory \(\xi_R \) and a vector \(\Gamma \) of unknown constant parameters. \(\dot{\xi}_R(t) = J(t, \xi_R(t), \Gamma, u_R(t)) \) \(\forall t \geq 0. \)

Problem:
Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

\[
\dot{\xi} = \mathcal{J}(t, \xi, \Gamma, u)
\]

(3)

with a smooth reference trajectory \(\xi_R \) and a vector \(\Gamma \) of unknown constant parameters. \(\dot{\xi}_R(t) = \mathcal{J}(t, \xi_R(t), \Gamma, u_R(t)) \) \(\forall t \geq 0. \)

Problem: Find a dynamic feedback with estimator

\[
u(t, \xi, \hat{\Gamma}), \quad \hat{\Gamma} = \tau(t, \xi, \hat{\Gamma})
\]

(4)

that makes the \(Y = (\hat{\Gamma}, \tilde{\xi}) = (\Gamma - \hat{\Gamma}, \xi - \xi_R) \) system UGAS.
Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

$$\dot{\xi} = \mathcal{J}(t, \xi, \Gamma, u)$$ \hspace{1cm} (3)

with a smooth reference trajectory ξ_R and a vector Γ of unknown constant parameters. $\dot{\xi}_R(t) = \mathcal{J}(t, \xi_R(t), \Gamma, u_R(t)) \; \forall t \geq 0$.

Problem: Find a dynamic feedback with estimator

$$u(t, \xi, \hat{\Gamma}), \quad \dot{\hat{\Gamma}} = \tau(t, \xi, \hat{\Gamma})$$ \hspace{1cm} (4)

that makes the $Y = (\hat{\Gamma}, \tilde{\xi}) = (\Gamma - \hat{\Gamma}, \xi - \xi_R)$ system UGAS.

Flight control, electrical and mechanical engineering, etc.
Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

\[\dot{\xi} = \mathcal{J}(t, \xi, \Gamma, u) \]

(3)

with a smooth reference trajectory \(\xi_R \) and a vector \(\Gamma \) of unknown constant parameters. \(\dot{\xi}_R(t) = \mathcal{J}(t, \xi_R(t), \Gamma, u_R(t)) \) \(\forall t \geq 0 \).

Problem: Find a dynamic feedback with estimator

\[u(t, \xi, \hat{\Gamma}), \quad \hat{\Gamma} = \tau(t, \xi, \hat{\Gamma}) \]

(4)

that makes the \(Y = (\hat{\Gamma}, \tilde{\xi}) = (\Gamma - \hat{\Gamma}, \xi - \xi_R) \) system UGAS.

Flight control, electrical and mechanical engineering, etc.
Persistent excitation.
Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

$$\dot{\xi} = J(t, \xi, \Gamma, u)$$

(3)

with a smooth reference trajectory ξ_R and a vector Γ of unknown constant parameters. $\dot{\xi}_R(t) = J(t, \xi_R(t), \Gamma, u_R(t)) \forall t \geq 0$.

Problem: Find a dynamic feedback with estimator

$$u(t, \xi, \hat{\Gamma}), \quad \hat{\Gamma} = \tau(t, \xi, \hat{\Gamma})$$

(4)

that makes the $Y = (\hat{\Gamma}, \hat{\xi}) = (\Gamma - \hat{\Gamma}, \xi - \xi_R)$ system UGAS.

Flight control, electrical and mechanical engineering, etc.

Persistent excitation. Annaswamy, Narendra, Teel..
New Results (Mazenc, de Queiroz, M., ’11)
New Results (Mazenc, de Queiroz, M., ’11)

We solved the tracking and parameter identification problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi)\theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(5)
New Results (Mazenc, de Queiroz, M., ’11)

We solved the tracking and parameter identification problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi)\theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(5)

\[\xi = (x, z) \in \mathbb{R}^{r+s}.\]
New Results (Mazenc, de Queiroz, M., ’11)

We solved the tracking and parameter identification problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi)\theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(5)

\[
\xi = (x, z) \in \mathbb{R}^{r+s}. \quad (\theta, \psi) = (\theta_1, \ldots, \theta_s, \psi_1, \ldots, \psi_s) \in \mathbb{R}^{p_1+\ldots+p_s+s}.
\]
New Results (Mazenc, de Queiroz, M., ’11)

We solved the tracking and parameter identification problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi)\theta_i + \psi_iu_i, \quad i = 1, 2, \ldots, s. \\
\end{align*}
\]

(5)

\[\xi = (x, z) \in \mathbb{R}^{r+s}. \quad (\theta, \psi) = (\theta_1, \ldots, \theta_s, \psi_1, \ldots, \psi_s) \in \mathbb{R}^{p_1+\cdots+p_s+s}.
\]

The C^2 T-periodic reference trajectory $\xi_R = (x_R, z_R)$ to be tracked is assumed to satisfy $\dot{x}_R(t) = f(\xi_R(t)) \quad \forall t \geq 0.$
New Results (Mazenc, de Queiroz, M., '11)

We solved the tracking and parameter identification problem for

\begin{equation}
\begin{aligned}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi)\theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s. \\
\end{aligned}
\end{equation}

(5)

\(\xi = (x, z) \in \mathbb{R}^{r+s}\). \((\theta, \psi) = (\theta_1, \ldots, \theta_s, \psi_1, \ldots, \psi_s) \in \mathbb{R}^{p_1+\ldots+p_s+s}\).

The \(C^2\) \(T\)-periodic reference trajectory \(\xi_R = (x_R, z_R)\) to be tracked is assumed to satisfy \(\dot{x}_R(t) = f(\xi_R(t)) \quad \forall t \geq 0\).

Main PE Assumption:
New Results (Mazenc, de Queiroz, M., ’11)

We solved the tracking and parameter identification problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi)\theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(5)

\(\xi = (x, z) \in \mathbb{R}^{r+s}. \quad (\theta, \psi) = (\theta_1, \ldots, \theta_s, \psi_1, \ldots, \psi_s) \in \mathbb{R}^{p_1+\ldots+p_s+s}.\)

The \(C^2\) \(T\)-periodic reference trajectory \(\xi_R = (x_R, z_R)\) to be tracked is assumed to satisfy \(\dot{x}_R(t) = f(\xi_R(t)) \quad \forall t \geq 0.\)

Main PE Assumption: positive definiteness of the matrices

\[
\mathcal{M}_i \overset{\text{def}}{=} \int_0^T \lambda_i^\top(t)\lambda_i(t) \, dt \in \mathbb{R}^{(p_i+1) \times (p_i+1)},
\]

(6)

where \(\lambda_i(t) = (k_i(\xi_R(t)), \dot{z}_{R,i}(t) - g_i(\xi_R(t)))\) for \(i = 1, 2, \ldots, s.\)
Two Other Key Assumptions
Two Other Key Assumptions

- We know v_f and a strict LF $V : [0, \infty) \times \mathbb{R}^{r+s} \to [0, \infty)$ for

$$\begin{cases}
\dot{X} &= f((X, Z) + \xi_R(t)) - f(\xi_R(t)) \\
\dot{Z} &= v_f(t, X, Z)
\end{cases}$$

(7)

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0,
Two Other Key Assumptions

- We know v_f and a strict LF $V : [0, \infty) \times \mathbb{R}^{r+s} \to [0, \infty)$ for

$$\begin{cases}
\dot{X} = f((X, Z) + \xi_R(t)) - f(\xi_R(t)) \\
\dot{Z} = v_f(t, X, Z)
\end{cases}$$

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0, and V and v_f are T-periodic.
Two Other Key Assumptions

- We know v_f and a strict LF $V : [0, \infty) \times \mathbb{R}^{r+s} \to [0, \infty)$ for

\[
\begin{align*}
\dot{X} &= f((X, Z) + \xi_R(t)) - f(\xi_R(t)) \\
\dot{Z} &= v_f(t, X, Z)
\end{align*}
\]

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0, and V and v_f are T-periodic.

Key:
Two Other Key Assumptions

- We know v_f and a strict LF $V : [0, \infty) \times \mathbb{R}^{r+s} \rightarrow [0, \infty)$ for

\[
\begin{align*}
\dot{X} &= f((X, Z) + \xi_R(t)) - f(\xi_R(t)) \\
\dot{Z} &= v_f(t, X, Z)
\end{align*}
\]

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0, and V and v_f are T-periodic.

Key: Reduces the LF construction problem to (7).
Two Other Key Assumptions

- We know v_f and a strict LF $V : [0, \infty) \times \mathbb{R}^{r+s} \to [0, \infty)$ for
 \[
 \begin{cases}
 \dot{X} & = f((X, Z) + \xi_R(t)) - f(\xi_R(t)) \\
 \dot{Z} & = v_f(t, X, Z)
 \end{cases}
 \tag{7}

 such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0, and V and v_f are T-periodic.

 Key: Reduces the LF construction problem to (7).

- There are known positive constants θ_M, $\underline{\psi}$ and $\overline{\psi}$ such that
 \[
 \underline{\psi} < \psi_i < \overline{\psi} \quad \text{and} \quad |\theta_i| < \theta_M
 \tag{8}

 for each $i \in \{1, 2, \ldots, s\}$.
Two Other Key Assumptions

- We know \(v_f \) and a strict LF \(V : [0, \infty) \times \mathbb{R}^{r+s} \rightarrow [0, \infty) \) for
 \[
 \begin{cases}
 \dot{X} &= f((X, Z) + \xi_R(t)) - f(\xi_R(t)) \\
 \dot{Z} &= v_f(t, X, Z)
 \end{cases}
 \]
 such that \(-\dot{V} \) and \(V \) have positive definite quadratic lower bounds near 0, and \(V \) and \(v_f \) are \(T \)-periodic.

 Key: Reduces the LF construction problem to (7).

- There are known positive constants \(\theta_M, \underline{\psi} \) and \(\overline{\psi} \) such that
 \[
 \underline{\psi} < \psi_i < \overline{\psi} \quad \text{and} \quad |\theta_i| < \theta_M
 \]
 for each \(i \in \{1, 2, \ldots, s\} \). Known directions for the \(\psi_i \)'s.
New Results (Mazenc, de Queiroz, M., ’11)

We solved the tracking and parameter identification problem for

\[
\begin{align*}
\dot{\xi} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi)\theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\] (5)

\(\xi = (x, z) \in \mathbb{R}^{r+s}. \) \((\theta, \psi) = (\theta_1, \ldots, \theta_s, \psi_1, \ldots, \psi_s) \in \mathbb{R}^{p_1+\ldots+p_s+s}.\)

The \(C^2\) \(T\)-periodic reference trajectory \(\xi_R = (x_R, z_R)\) to be tracked is assumed to satisfy \(\dot{x}_R(t) = f(\xi_R(t)) \forall t \geq 0.\)

Main PE Assumption: positive definiteness of the matrices

\[
\mathcal{M}_i \overset{\text{def}}{=} \int_0^T \lambda_i^\top(t)\lambda_i(t)\, dt \in \mathbb{R}^{(p_i+1)\times(p_i+1)},
\] (6)

where \(\lambda_i(t) = (k_i(\xi_R(t)), \dot{z}_R,i(t) - g_i(\xi_R(t)))\) for \(i = 1, 2, \ldots, s.\)
Dynamic Feedback

The estimator evolves on \(\prod_{i=1}^{s} (\theta^M, \theta^M) \times (\psi, \psi) \times s \).

\[
\dot{\hat{\theta}}_{ij} = (\hat{\theta}_{ij}^2 - \theta^M_{ij}) \varpi_{ij}, \quad 1 \leq i \leq s, \quad 1 \leq j \leq p_i
\]

\[
\dot{\hat{\psi}}_i = (\hat{\psi}_i - \psi)(\hat{\psi}_i - \psi) \Upsilon_i, \quad 1 \leq i \leq s
\]

Here \(\hat{\theta}_i = (\hat{\theta}_i^1, ..., \hat{\theta}_i^{p_i}) \) for \(i = 1, 2, ..., s \), \(\varpi_{ij} = -\frac{\partial V}{\partial \tilde{z}_i(t, \tilde{\xi})} \) \(k_{ij}(\tilde{\xi} + \xi R(t)) \) and \(\Upsilon_i = -\frac{\partial V}{\partial \tilde{z}_i(t, \tilde{\xi})} u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) \).

\[
u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) = v_{f, i}(t, \tilde{\xi}) - g_i(\xi) - k_i(\xi) \hat{\theta}_i + \dot{z}_R, s_i(t) \hat{\psi}_i
\]
Dynamic Feedback

The estimator evolves on \(\{ \prod_{i=1}^{s} (-\theta_M, \theta_M)^{p_i} \} \times \overline{\psi}^s \).
Dynamic Feedback

The estimator evolves on \(\{\prod_{i=1}^{s}(-\theta_M, \theta_M)^{p_i}\} \times (\psi, \bar{\psi})^s\).

\[
\begin{align*}
\dot{\hat{\theta}}_{i,j} &= (\hat{\theta}_{i,j}^2 - \theta_M^2) \varpi_{i,j}, \quad 1 \leq i \leq s, \ 1 \leq j \leq p_i \\
\dot{\hat{\psi}}_i &= (\hat{\psi}_i - \psi) (\hat{\psi}_i - \bar{\psi}) \gamma_i, \quad 1 \leq i \leq s
\end{align*}
\]
Dynamic Feedback

The estimator evolves on \(\prod_{i=1}^{s} (-\theta_{M}, \theta_{M})^{p_{i}} \times (\psi, \bar{\psi})^{s} \).

\[
\begin{align*}
\dot{\hat{\theta}}_{i,j} &= (\hat{\theta}_{i,j} - \theta_{M}^{2}) \varpi_{i,j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \\
\dot{\hat{\psi}}_{i} &= (\hat{\psi}_{i} - \psi) (\hat{\psi}_{i} - \bar{\psi}) \gamma_{i}, \quad 1 \leq i \leq s
\end{align*}
\]

Here \(\hat{\theta}_{i} = (\hat{\theta}_{i,1}, \ldots, \hat{\theta}_{i,p_{i}}) \) for \(i = 1, 2, \ldots, s \).
Dynamic Feedback

The estimator evolves on \(\{ \prod_{i=1}^s (-\theta_M, \theta_M)^{p_i} \} \times (\psi, \bar{\psi})^s \).

\[
\begin{align*}
\dot{\hat{\theta}}_{i,j} &= (\hat{\theta}_{i,j}^2 - \theta_M^2) \varpi_{i,j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_i \\
\dot{\hat{\psi}}_i &= (\hat{\psi}_i - \psi) (\hat{\psi}_i - \bar{\psi}) \gamma_i, \quad 1 \leq i \leq s
\end{align*}
\]

Here \(\hat{\theta}_i = (\hat{\theta}_{i,1}, \ldots, \hat{\theta}_{i,p_i}) \) for \(i = 1, 2, \ldots, s \),

\[
\varpi_{i,j} = -\frac{\partial V}{\partial \tilde{z}_i}(t, \tilde{\xi}) k_{i,j}(\tilde{\xi} + \xi_R(t))
\]
Dynamic Feedback

The estimator evolves on \(\prod_{i=1}^{s} (-\theta_M, \theta_M)^{p_i} \times (\psi, \overline{\psi})^s \).

\[
\begin{align*}
\dot{\hat{\theta}}_{i,j} &= (\hat{\theta}_{i,j}^2 - \theta_M^2)\varpi_{i,j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_i \\
\dot{\hat{\psi}}_i &= (\hat{\psi}_i - \psi)(\hat{\psi}_i - \overline{\psi})\gamma_i, \quad 1 \leq i \leq s
\end{align*}
\]

(9)

Here \(\hat{\theta}_i = (\hat{\theta}_{i,1}, \ldots, \hat{\theta}_{i,p_i}) \) for \(i = 1, 2, \ldots, s \),

\[
\varpi_{i,j} = -\frac{\partial V}{\partial \tilde{z}_i}(t, \tilde{\xi})k_{i,j}(\tilde{\xi} + \xi_R(t)) \quad \text{and} \\
\gamma_i = -\frac{\partial V}{\partial \tilde{z}_i}(t, \tilde{\xi})u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}).
\]

(10)
Dynamic Feedback

The estimator evolves on \(\prod_{i=1}^{s} (-\theta_M, \theta_M)^{p_i} \times (\underline{\psi}, \overline{\psi})^s \).

\[
\begin{cases}
\dot{\hat{\theta}}_{i,j} &= (\hat{\theta}_{i,j}^2 - \theta_M^2) \omega_{i,j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_i \\
\hat{\psi}_i &= (\hat{\psi}_i - \underline{\psi})(\hat{\psi}_i - \overline{\psi}) \gamma_i, \quad 1 \leq i \leq s
\end{cases}
\] (9)

Here \(\hat{\theta}_i = (\hat{\theta}_{i,1}, \ldots, \hat{\theta}_{i,p_i}) \) for \(i = 1, 2, \ldots, s \),

\[
\omega_{i,j} = -\frac{\partial V}{\partial \tilde{z}_i}(t, \tilde{\xi})k_{i,j}(\tilde{\xi} + \xi_R(t)) \quad \text{and} \quad \gamma_i = -\frac{\partial V}{\partial \tilde{z}_i}(t, \tilde{\xi})u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) .
\] (10)

\[
u_{f,i}(t, \tilde{\xi}) - g_i(\xi) - k_i(\xi) \hat{\theta}_i + \dot{z}_{R,i}(t) \overline{\psi}_i
\] (11)
Dynamic Feedback

The estimator evolves on \(\prod_{i=1}^{S} (-\theta_M, \theta_M)^{p_i} \times (\psi, \psi)^{s} \).

\[
\begin{cases}
\dot{\theta}_{i,j} = (\dot{\theta}^2_{i,j} - \theta^2_M) \varpi_{i,j}, & 1 \leq i \leq s, 1 \leq j \leq p_i \\
\dot{\psi}_i = (\dot{\psi}_i - \psi) (\dot{\psi}_i - \overline{\psi}) \gamma_i, & 1 \leq i \leq s
\end{cases}
\]

Here \(\dot{\theta}_i = (\dot{\theta}_{i,1}, \ldots, \dot{\theta}_{i,p_i}) \) for \(i = 1, 2, \ldots, s \),

\[
\varpi_{i,j} = -\frac{\partial V}{\partial z_i}(t, \tilde{\xi}) k_{i,j}(\tilde{\xi} + \xi_R(t)) \quad \text{and} \\
\gamma_i = -\frac{\partial V}{\partial z_i}(t, \tilde{\xi}) u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) .
\]

\[
u_f, i(t, \tilde{\xi}) = \frac{g_i(\xi) - k_i(\xi) \dot{\theta} + \dot{z}_{R,i}(t)}{\dot{\psi}_i}
\]

The estimator and feedback can only depend on things we know.
New Results (Mazenc, de Queiroz, M., ’11)

We solved the tracking and parameter identification problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi)\theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(5)

\(\xi = (x, z) \in \mathbb{R}^{r+s}. \ (\theta, \psi) = (\theta_1, \ldots, \theta_s, \psi_1, \ldots, \psi_s) \in \mathbb{R}^{p_1+\ldots+p_s+s}.\)

The \(C^2\) \(T\)-periodic reference trajectory \(\xi_R = (x_R, z_R)\) to be tracked is assumed to satisfy \(\dot{x}_R(t) = f(\xi_R(t)) \forall t \geq 0.\)

Main PE Assumption: positive definiteness of the matrices

\[
\mathcal{M}_i \stackrel{\text{def}}{=} \int_0^T \lambda_i^\top(t)\lambda_i(t) \, dt \in \mathbb{R}^{(p_i+1) \times (p_i+1)},
\]

(6)

where \(\lambda_i(t) = (k_i(\xi_R(t)), \dot{z}_{R,i}(t) - g_i(\xi_R(t)))\) for \(i = 1, 2, \ldots, s.\)
Augmented Error Dynamics

\[
\begin{align*}
\dot{\tilde{x}} &= f(\tilde{\xi} + \xi_R(t)) - f(\xi_R(t)) \\
\dot{\tilde{z}}_i &= v_{f,i}(t, \tilde{\xi}) + k_i(\tilde{\xi} + \xi_R(t))\tilde{\theta}_i \\
&\quad + \tilde{\psi}_i u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}), \quad 1 \leq i \leq s \\
\dot{\tilde{\theta}}_{i,j} &= -\left(\hat{\theta}_{i,j}^2 - \theta_M^2\right)\omega_{i,j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_i \\
\dot{\tilde{\psi}}_i &= -\left(\hat{\psi}_i - \psi\right)\left(\hat{\psi}_i - \bar{\psi}\right)\gamma_i, \quad 1 \leq i \leq s.
\end{align*}
\tag{12}
\]
Augmented Error Dynamics

\[
\begin{align*}
\dot{x} &= f(\tilde{\xi} + \xi_R(t)) - f(\xi_R(t)) \\
\dot{z}_i &= v_{f,i}(t, \tilde{\xi}) + k_i(\tilde{\xi} + \xi_R(t))\tilde{\theta}_i \\
&\quad + \tilde{\psi}_i u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}), \quad 1 \leq i \leq s \\
\dot{\theta}_{i,j} &= -\left(\hat{\theta}_{i,j}^2 - \theta_{M}^2\right)\omega_{i,j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_i \\
\dot{\psi}_i &= -\left(\hat{\psi}_i - \underline{\psi}\right)\left(\hat{\psi}_i - \overline{\psi}\right)\gamma_i, \quad 1 \leq i \leq s.
\end{align*}
\]

(12)

Tracking error: \(\tilde{\xi} = (\tilde{x}, \tilde{z}) = \xi - \xi_R = (x - x_R, z - z_R)\)

Parameter estimation errors: \(\tilde{\theta}_i = \theta_i - \hat{\theta}_i\) and \(\tilde{\psi}_i = \psi_i - \hat{\psi}_i\)
Augmented Error Dynamics

\[
\begin{align*}
\dot{\tilde{x}} &= f(\tilde{\xi} + \xi_R(t)) - f(\xi_R(t)) \\
\dot{\tilde{z}}_i &= \nu_{f,i}(t, \tilde{\xi}) + k_i(\tilde{\xi} + \xi_R(t))\tilde{\theta}_i \\
&\quad + \tilde{\psi}_i u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}), \quad 1 \leq i \leq s \\
\dot{\tilde{\theta}}_{i,j} &= -\left(\hat{\theta}_{i,j}^2 - \theta_M^2\right) \varpi_{i,j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_i \\
\dot{\tilde{\psi}}_i &= -\left(\hat{\psi}_i - \overline{\psi}\right) \left(\tilde{\psi}_i - \overline{\psi}\right) \gamma_i, \quad 1 \leq i \leq s.
\end{align*}
\]

(12)

Tracking error: \(\tilde{\xi} = (\tilde{x}, \tilde{z}) = \xi - \xi_R = (x - x_R, z - z_R)\)

Parameter estimation errors: \(\tilde{\theta}_i = \theta_i - \hat{\theta}_i\) and \(\tilde{\psi}_i = \psi_i - \hat{\psi}_i\)

\[\mathcal{Y} = \mathbb{R}^{r+s} \times \left(\prod_{i=1}^{s} \left\{\prod_{j=1}^{p_i} (\theta_{i,j} - \theta_M, \theta_{i,j} + \theta_M)\right\}\right) \times \left(\prod_{i=1}^{s} (\psi_i - \overline{\psi}, \psi_i - \overline{\psi})\right).\]
Two Other Key Assumptions

- We know v_f and a strict LF $V : [0, \infty) \times \mathbb{R}^{r+s} \rightarrow [0, \infty)$ for

$$
\begin{cases}
\dot{X} &= f((X, Z) + \xi_R(t)) - f(\xi_R(t)) \\
\dot{Z} &= v_f(t, X, Z)
\end{cases}
$$

(7)

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0, and V and v_f are T-periodic.

Key: Reduces the LF construction problem to (7).

- There are known positive constants θ_M, $\underline{\psi}$ and $\overline{\psi}$ such that

$$
\underline{\psi} < \psi_i < \overline{\psi} \quad \text{and} \quad |\theta_i| < \theta_M
$$

(8)

for each $i \in \{1, 2, \ldots, s\}$. Known directions for the ψ_i's.
Stabilization Analysis

We build a strict LF for the augmented tracking and identification vector \(Y = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = (\xi - \xi R, \theta - \hat{\theta}, \psi - \hat{\psi}) \) dynamics on \(Y \).

We start with this nonstrict barrier type LF on \(Y \):

\[
V_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = V(t, \tilde{\xi}) + s \sum_{i=1}^{p} \sum_{j=1}^{M} \int_{0}^{\theta_i,j} m_{\theta}^2 - (m_{\theta} - \theta_i,j)^2 \, dm + s \sum_{i=1}^{p} \int_{0}^{\psi_i} m(\psi - \psi_i + m_{\psi}) (\psi - \psi_i) \, dm.
\]

On \(Y \),

\[
\dot{V}_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) \leq -W(\tilde{\xi})
\]

for some positive definite function \(W \).

We transform \(V_1 \) into the desired strict LF.
Stabilization Analysis

We build a strict LF for the augmented tracking and identification vector $Y = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = (\xi - \xi_R, \theta - \hat{\theta}, \psi - \hat{\psi})$ dynamics on \mathcal{Y}.
Stabilization Analysis

We build a strict LF for the augmented tracking and identification vector \(Y = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = (\xi - \xi_R, \theta - \hat{\theta}, \psi - \hat{\psi}) \) dynamics on \(\mathcal{Y} \).

We start with this nonstrict barrier type LF on \(\mathcal{Y} \):

\[
V_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = V(t, \tilde{\xi}) + \sum_{i=1}^{s} \sum_{j=1}^{p_i} \int_{0}^{\tilde{\theta}_{i,j}} \frac{m}{\theta^2_M - (m - \theta_{i,j})^2} \, dm + \sum_{i=1}^{s} \int_{0}^{\tilde{\psi}_i} \frac{m}{(\psi_i - m - \underline{\psi})(\overline{\psi} - \psi_i + m)} \, dm.
\]
Stabilization Analysis

We build a strict LF for the augmented tracking and identification vector \(Y = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = (\xi - \xi_R, \theta - \hat{\theta}, \psi - \hat{\psi}) \) dynamics on \(\mathcal{Y} \).

We start with this nonstrict barrier type LF on \(\mathcal{Y} \):

\[
V_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = V(t, \tilde{\xi}) + \sum_{i=1}^{s} \sum_{j=1}^{p_i} \int_{0}^{\tilde{\theta}_{i,j}} \frac{m}{\theta_{M}^2 - (m - \theta_{i,j})^2} \text{d}m + \sum_{i=1}^{s} \int_{0}^{\tilde{\psi}_i} \frac{m}{(\psi_i - m - \overline{\psi})(\overline{\psi} - \psi_i + m)} \text{d}m.
\]

On \(\mathcal{Y} \), \(\dot{V}_1 \leq -W(\tilde{\xi}) \) for some positive definite function \(W \).
Stabilization Analysis

We build a strict LF for the augmented tracking and identification vector \(Y = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = (\xi - \xi_R, \theta - \hat{\theta}, \psi - \hat{\psi}) \) dynamics on \(\mathcal{Y} \).

We start with this nonstrict barrier type LF on \(\mathcal{Y} \):

\[
V_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = V(t, \tilde{\xi}) + \sum_{i=1}^{s} \sum_{j=1}^{p_i} \int_0^{\tilde{\theta}_{i,j}} \frac{m}{\frac{\theta_i^2}{M} - (m - \theta_{i,j})^2} dm + \sum_{i=1}^{s} \int_0^{\tilde{\psi}_i} \frac{m}{(\psi_i - m - \overline{\psi})(\overline{\psi} - \psi_i + m)} dm.
\]

On \(\mathcal{Y} \), \(\dot{V}_1 \leq -W(\tilde{\xi}) \) for some positive definite function \(W \).

We transform \(V_1 \) into the desired strict LF.
Our Transformation (M. et al, ’11)
Our Transformation (M. et al, ’11)

Theorem: We can construct \(\mathcal{L} \in \mathcal{K}_\infty \cap \mathcal{C}^1 \) such that

\[
V^\#(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) \overset{\text{def}}{=} \mathcal{L}(V_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})) + \sum_{i=1}^{s} \Omega_i(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) ,
\]

where

\[
\Omega_i(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = -\tilde{z}_i \lambda_i(t) \alpha_i(\tilde{\theta}_i, \tilde{\psi}_i)
\]

\[
+ \frac{1}{T_\psi} \alpha_i^\top(\tilde{\theta}_i, \tilde{\psi}_i) \Omega_i(t) \alpha_i(\tilde{\theta}_i, \tilde{\psi}_i) ,
\]

\[
\alpha_i(\tilde{\theta}_i, \tilde{\psi}_i) = \begin{bmatrix}
\tilde{\theta}_i \psi_i - \theta_i \tilde{\psi}_i \\
\tilde{\psi}_i
\end{bmatrix} , \quad \text{and}
\]

\[
\Omega_i(t) = \int_{t-T}^{t} \int_m \lambda_i^\top(s) \lambda_i(s) ds \, dm ,
\]

is a strict LF for the \(Y = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) \) dynamics on \(\mathcal{Y} \), so it is UGAS.
Application: Marine Robots (with Georgia Tech)
Application: Marine Robots (with Georgia Tech)

\[\rho = |r_2 - r_1|, \quad \phi = \text{angle between } x_1 \text{ and } x_2, \quad \cos(\phi) = x_1 \cdot x_2 \]
Application: Marine Robots (with Georgia Tech)

\[\rho = |\mathbf{r}_2 - \mathbf{r}_1|, \quad \phi = \text{angle between } \mathbf{x}_1 \text{ and } \mathbf{x}_2, \quad \cos(\phi) = \mathbf{x}_1 \cdot \mathbf{x}_2 \]
Curve Tracking Dynamics

\begin{align}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \kappa \cos(\phi) + \kappa \rho - u_b,
\end{align}
\begin{align}
\rho, \phi &\in (0, +\infty) \times (-\pi/2, \pi/2) \\
\end{align}
\begin{align}
u_b &= \kappa \cos(\phi) + \kappa \rho - h'(\rho) \cos(\phi) + \mu \sin(\phi)
\end{align}
\begin{align}h(\rho) &= \alpha \{\rho + \rho^2 - 2\rho^3\}, \rho_0 = \text{desired value for} \rho
\end{align}
\begin{align}V(\rho, \phi) &= -\ln(\cos(\phi)) + h(\rho)
\end{align}
\begin{align}U(\rho, \phi) &= -h'(\rho) \sin(\phi) + \frac{1}{\mu} \int_0^\Gamma_0 V(\rho, \phi) d\mu
\end{align}
Curve Tracking Dynamics

\[
\begin{align*}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - u_b, \quad (\rho, \phi) \in (0, +\infty) \times (-\pi/2, \pi/2)
\end{align*}
\]
Curve Tracking Dynamics

\[
\begin{align*}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - u_b, \quad (\rho, \phi) \in (0, +\infty) \times (-\pi/2, \pi/2) \\
\end{align*}
\] (16)

\[u_b = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi)\] (17)
Curve Tracking Dynamics

\[
\begin{align*}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1+\kappa \rho} - u_b, \quad (\rho, \phi) \in (0, +\infty) \times (-\pi/2, \pi/2) \\
u_b &= \frac{\kappa \cos(\phi)}{1+\kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi)
\end{align*}
\]

\[
h(\rho) = \alpha \left\{ \rho + \frac{\rho_0^2}{\rho} - 2\rho_0 \right\}, \quad \rho_0 = \text{desired value for } \rho
\]
Curve Tracking Dynamics

\[
\begin{aligned}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - u_b, \quad (\rho, \phi) \in (0, +\infty) \times (-\pi/2, \pi/2)
\end{aligned}
\]

(16)

\[
u_b = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h' (\rho) \cos(\phi) + \mu \sin(\phi)
\]

(17)

\[
h(\rho) = \alpha \left\{ \rho + \frac{\rho_0^2}{\rho} - 2\rho_0 \right\}, \quad \rho_0 = \text{desired value for } \rho
\]

(18)

\[
V(\rho, \phi) = -\ln \left(\cos(\phi) \right) + h(\rho)
\]

(19)
Curve Tracking Dynamics

\[
\begin{align*}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - u_b, \quad (\rho, \phi) \in (0, +\infty) \times (-\pi/2, \pi/2)
\end{align*}
\]

\[u_b = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi)\]

\[h(\rho) = \alpha \left\{ \rho + \frac{\rho_0^2}{\rho} - 2\rho_0 \right\}, \quad \rho_0 = \text{desired value for } \rho\]

\[V(\rho, \phi) = -\ln(\cos(\phi)) + h(\rho)\]

\[U(\rho, \phi) = -h'(\rho) \sin(\phi) + \frac{1}{\mu} \int_0^{V(\rho, \phi)} \Gamma_0(m) dm\]
Robustly Forwardly Invariant Hexagons

We used U to prove ISS results for the $(\rho - \rho_0, \phi)$ system, where

$$\dot{\rho} = -\sin(\phi), \quad \dot{\phi} = h'(\rho) \cos(\phi) - \mu \sin(\phi) + \delta,$$

and $\delta : [0, \infty) \to [-\delta^*, \delta^*]$, on certain forward invariant sets H_i.

View the state space $(0, \infty) \times (-\pi/2, \pi/2)$ of (21) as a union of compact hexagon shaped regions $H_1 \subseteq H_2 \subseteq \ldots \subseteq H_i \subseteq \ldots$.

For each i, all trajectories of (21) starting in H_i for all $\delta : [0, \infty) \to [-\delta^*, \delta^*]$ stay in H_i.

Tight Disturbance Bound: Choose any $\delta^*_i \in (0, \min\{\Delta^*_i, \Delta^{**}_i\})$.

$$\Delta^*_i = \min\{|h'(\rho) \cos(\phi)| : (\rho, \phi) \in AB \cup ED\},$$

$$\Delta^{**}_i = \min\{|h'(\rho) \cos(\phi) - \mu \sin(\phi)| : (\rho, \phi) \in BC \cup EF\}.$$
Robustly Forwardly Invariant Hexagons

We used U to prove ISS results for the $(\rho - \rho_0, \phi)$ system, where

$$
\dot{\rho} = -\sin(\phi), \quad \dot{\phi} = h'(\rho) \cos(\phi) - \mu \sin(\phi) + \delta
$$

and $\delta : [0, \infty) \rightarrow [-\delta_*, \delta_*]$, on certain forward invariant sets H_i.

Tight Disturbance Bound: Choose any $\delta_* \in (0, \min\{\Delta_*^i, \Delta^{**}_i\})$.

$$
\Delta_*^i = \min\{|h'(\rho) \cos(\phi)| : (\rho, \phi) \in AB \cup ED\}
$$

$$
\Delta^{**}_i = \min\{|h'(\rho) \cos(\phi) - \mu \sin(\phi)| : (\rho, \phi) \in BC \cup EF\}
$$
Robustly Forwardly Invariant Hexagons

We used U to prove ISS results for the $(\rho - \rho_0, \phi)$ system, where
\[
\dot{\rho} = - \sin(\phi), \quad \dot{\phi} = h'(\rho) \cos(\phi) - \mu \sin(\phi) + \delta
\] (21)
and $\delta : [0, \infty) \to [\delta_* i, \delta_* i],$ on certain forward invariant sets $H_i.$
Robustly Forwardly Invariant Hexagons

We used U to prove ISS results for the $(\rho - \rho_0, \phi)$ system, where
\[
\dot{\rho} = -\sin(\phi), \quad \dot{\phi} = h'(\rho) \cos(\phi) - \mu \sin(\phi) + \delta \tag{21}
\]
and $\delta : [0, \infty) \rightarrow [-\delta^*_i, \delta^*_i]$, on certain forward invariant sets H_i.

View the state space \mathbb{R}^2 of (21) as a union of compact hexagon shaped regions $H_1 \subseteq H_2 \subseteq \ldots \subseteq H_i \subseteq \ldots$.

[Diagram of hexagonal regions labeled A through F with a hexagonal set in the middle]
Robustly Forwardly Invariant Hexagons

We used U to prove ISS results for the $(\rho - \rho_0, \phi)$ system, where
\[
\dot{\rho} = -\sin(\phi), \quad \dot{\phi} = h'(\rho) \cos(\phi) - \mu \sin(\phi) + \delta
\]
(21)
and $\delta : [0, \infty) \rightarrow [-\delta_{*i}, \delta_{*i}]$, on certain forward invariant sets H_i.

View the state space $(0, \infty) \times (-\pi/2, \pi/2)$ of (21) as a union of compact hexagon shaped regions $H_1 \subseteq H_2 \subseteq \ldots \subseteq H_i \subseteq \ldots$.

For each i, all trajectories of (21) starting in H_i for all $\delta : [0, \infty) \rightarrow [-\delta_{*i}, \delta_{*i}]$ stay in H_i.
Robustly Forwardly Invariant Hexagons

We used U to prove ISS results for the $(\rho - \rho_0, \phi)$ system, where

$$
\dot{\rho} = -\sin(\phi), \quad \dot{\phi} = h'(\rho) \cos(\phi) - \mu \sin(\phi) + \delta
$$

(21)

and $\delta : [0, \infty) \to [-\delta_{*i}, \delta_{*i}]$, on certain forward invariant sets H_i.

View the state space $(0, \infty) \times (-\pi/2, \pi/2)$ of (21) as a union of compact hexagon shaped regions $H_1 \subseteq H_2 \subseteq \ldots \subseteq H_i \subseteq \ldots$. For each i, all trajectories of (21) starting in H_i for all $\delta : [0, \infty) \to [-\delta_{*i}, \delta_{*i}]$ stay in H_i.

Tight Disturbance Bound:

Choose any $\delta_{*i} \in (0, \min\{\Delta_{*i}, \Delta_{**i}\})$.

$$
\Delta_{*i} = \min\{|h'(\rho)\cos(\phi)| : (\rho, \phi) \in AB \cup ED\}
$$

$$
\Delta_{**i} = \min\{|h'(\rho)\cos(\phi) - \mu \sin(\phi)| : (\rho, \phi) \in BC \cup EF\}
$$
Robustly Forwardly Invariant Hexagons

We used U to prove ISS results for the $(\rho - \rho_0, \phi)$ system, where
\[
\dot{\rho} = -\sin(\phi), \quad \dot{\phi} = h'(\rho)\cos(\phi) - \mu \sin(\phi) + \delta
\] (21)
and $\delta : [0, \infty) \to [-\delta_{*i}, \delta_{*i}]$, on certain forward invariant sets H_i.

View the state space $(0, \infty) \times (-\pi/2, \pi/2)$ of (21) as a union of compact hexagon shaped regions $H_1 \subseteq H_2 \subseteq \ldots \subseteq H_i \subseteq \ldots$.

For each i, all trajectories of (21) starting in H_i for all $\delta : [0, \infty) \to [-\delta_{*i}, \delta_{*i}]$ stay in H_i.

Tight Disturbance Bound: Choose any $\delta_{*i} \in (0, \min\{\Delta_{*i}, \Delta_{**i}\})$.
Robustly Forwardly Invariant Hexagons

We used U to prove ISS results for the $(\rho - \rho_0, \phi)$ system, where

$$
\dot{\rho} = -\sin(\phi), \quad \dot{\phi} = h'(\rho) \cos(\phi) - \mu \sin(\phi) + \delta \quad (21)
$$

and $\delta : [0, \infty) \to [-\delta_{*i}, \delta_{*i}]$, on certain forward invariant sets H_i.

View the state space $(0, \infty) \times (-\pi/2, \pi/2)$ of (21) as a union of compact hexagon shaped regions $H_1 \subseteq H_2 \subseteq \ldots \subseteq H_i \subseteq \ldots$. For each i, all trajectories of (21) starting in H_i for all $\delta : [0, \infty) \to [-\delta_{*i}, \delta_{*i}]$ stay in H_i.

Tight Disturbance Bound: Choose any $\delta_{*i} \in (0, \min\{\Delta_{*i}, \Delta_{**i}\})$.

$$
\Delta_{*i} = \min\{|h'(\rho) \cos(\phi)| : (\rho, \phi) \top \in AB \cup ED\}
$$

$$
\Delta_{**i} = \min\{|h'(\rho) \cos(\phi) - \mu \sin(\phi)| : (\rho, \phi) \top \in BC \cup EF\}.
$$
New Results (Mazenc, de Queiroz, M., ’11)

We solved the tracking and parameter identification problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi)\theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(5)

\[\xi = (x, z) \in \mathbb{R}^{r+s}. \quad (\theta, \psi) = (\theta_1, \ldots, \theta_s, \psi_1, \ldots, \psi_s) \in \mathbb{R}^{p_1 + \ldots + p_s + s}.\]

The \(C^2\) \(T\)-periodic reference trajectory \(\xi_R = (x_R, z_R)\) to be
tracked is assumed to satisfy \(\dot{x}_R(t) = f(\xi_R(t))\) \(\forall t \geq 0\).

Main PE Assumption: positive definiteness of the matrices

\[
\mathcal{M}_i \overset{\text{def}}{=} \int_0^T \lambda_i^\top(t)\lambda_i(t) \, dt \in \mathbb{R}^{(p_i+1) \times (p_i+1)},
\]

(6)

where \(\lambda_i(t) = (k_i(\xi_R(t)), \dot{z}_{R,i}(t) - g_i(\xi_R(t)))\) for \(i = 1, 2, \ldots, s\).
Adaptive Robust Curve Tracking

\[
\begin{align*}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1 + \kappa \rho} + K[u + \delta]
\end{align*}
\]

\[\xi = (\rho, \phi), \quad \theta_i = 0, \quad \psi_i = K, \quad f(\xi) = -\sin(\phi), \quad g_i(\xi) = \frac{\kappa \cos(\phi)}{1 + \kappa \rho}\]
Adaptive Robust Curve Tracking

\[
\begin{aligned}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1 + \kappa \rho} + K[u + \delta]
\end{aligned}
\]
(22)

\[\xi = (\rho, \phi), \quad \theta_i = 0, \quad \psi_i = K, \quad f(\xi) = -\sin(\phi), \quad g_i(\xi) = \frac{\kappa \cos(\phi)}{1 + \kappa \rho}\]

Take \(u = -u_b/\hat{K}\).
Adaptive Robust Curve Tracking

\[
\begin{cases}
\dot{\rho} = -\sin(\phi) \\
\dot{\phi} = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} + K[u + \delta]
\end{cases}
\]

\(\xi = (\rho, \phi), \theta_i = 0, \psi_i = K, f(\xi) = -\sin(\phi), g_i(\xi) = \frac{\kappa \cos(\phi)}{1 + \kappa \rho}\)

Take \(u = -u_b/\hat{K}\). We proved ISS for the dynamics

\[
\begin{cases}
\dot{\tilde{q}}_1 = -\sin(\tilde{q}_2) \\
\dot{\tilde{q}}_2 = \frac{\kappa \cos(\tilde{q}_2)}{1 + \kappa (\tilde{q}_1 + \rho_0)} - \frac{K}{\hat{K} + K} u_b + K\delta \\
\dot{\hat{K}} = -(\hat{K} + K - c_{\text{min}})(c_{\text{max}} - \hat{K} - K) \frac{\partial U}{\partial \phi} \frac{u_b}{\hat{K} + K}
\end{cases}
\]

for \((\tilde{q}_1, \tilde{q}_2, \hat{K}) = (\rho - \rho_0, \phi, \hat{K} - K)\) on each set in a nested sequence of hexagonal regions that fill the state space.
Summer 2011 Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants. Georgia Tech Savannah Robotics Team (led by Fumin Zhang).
Summer 2011 Field Work at Grand Isle, LA

20 days of field work off Grand Isle.
Search for oil spill remnants.
Georgia Tech Savannah Robotics Team (led by Fumin Zhang).
Summer 2011 Field Work at Grand Isle, LA

20 days of field work off Grand Isle.
Summer 2011 Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants.
Summer 2011 Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants. Georgia Tech Savannah Robotics Team (led by Fumin Zhang).
Summer 2011 Field Work at Grand Isle, LA
Summer 2011 Field Work at Grand Isle, LA
Conclusions

Nonlinear control systems are ubiquitous in aerospace, bio, electrical, and mechanical engineering. One central problem is to build functions called closed loop controllers that force desired tracking behaviors. We designed controllers for several applications including models with unknown parameters that we can identify. Our strict Lyapunov function approach gave key robustness properties such as input-to-state stability. We aim for extensions that cover input delays and state constraints that ensure collision avoidance.
Conclusions

- Nonlinear control systems are ubiquitous in aerospace, bio, electrical, and mechanical engineering.
Conclusions

- Nonlinear control systems are ubiquitous in aerospace, bio, electrical, and mechanical engineering.

- One central problem is to build functions called closed loop controllers that force desired tracking behaviors.
Conclusions

- Nonlinear control systems are ubiquitous in aerospace, bio, electrical, and mechanical engineering.
- One central problem is to build functions called closed loop controllers that force desired tracking behaviors.
- We designed controllers for several applications including models with unknown parameters that we can identify.
Conclusions

- Nonlinear control systems are ubiquitous in aerospace, bio, electrical, and mechanical engineering.
- One central problem is to build functions called closed loop controllers that force desired tracking behaviors.
- We designed controllers for several applications including models with unknown parameters that we can identify.
- Our strict Lyapunov function approach gave key robustness properties such as input-to-state stability.
Conclusions

- Nonlinear control systems are ubiquitous in aerospace, bio, electrical, and mechanical engineering.
- One central problem is to build functions called closed loop controllers that force desired tracking behaviors.
- We designed controllers for several applications including models with unknown parameters that we can identify.
- Our strict Lyapunov function approach gave key robustness properties such as input-to-state stability.
- We aim for extensions that cover input delays and state constraints that ensure collision avoidance.