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What Do We Mean By Control Systems?

These are doubly parameterized families of ODEs of the form

Ẏ = F
(
t ,Y ,u(t ,Y ), δ(t)

)
, Y ∈ Y. (1)

Y ⊆ Rn. We have freedom to choose the control function u(t ,Y ).
The functions δ : [0,∞)→ D represent uncertainty. D ⊆ Rm.

Specify u(t ,Y ) to get a singly parameterized family

Ẏ = G(t ,Y , δ(t)), Y ∈ Y, (2)

where G(t ,Y ,d) = F(t ,Y ,u(t ,Y ),d).

Typically we construct u(t ,Y ) so that all trajectories of (2) for all
possible choices of δ satisfy some control objective.
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Ẏ = F
(
t ,Y ,u(t ,Y ), δ(t)

)
, Y ∈ Y. (1)

Y ⊆ Rn.

We have freedom to choose the control function u(t ,Y ).
The functions δ : [0,∞)→ D represent uncertainty. D ⊆ Rm.

Specify u(t ,Y ) to get a singly parameterized family
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What is One Possible Control Objective?

Input-to-state stability generalizes global asymptotic stability.

Ẏ = G(t ,Y ), Y ∈ Y. (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Ẏ = G
(
t ,Y , δ(t)

)
, Y ∈ Y. (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

Find γi ’s by building certain strict LFs for Ẏ = G(t ,Y ,0).
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What is One Possible Control Objective?

Input-to-state stability generalizes global asymptotic stability.
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Ẏ = G
(
t ,Y , δ(t)

)
, Y ∈ Y. (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

Find γi ’s by building certain strict LFs for Ẏ = G(t ,Y ,0).
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What Makes a LF Nonstrict or Strict?

A LF for Ẏ = G(t ,Y ) is a proper positive definite C1 function V
that admits a positive semidefinite function W such that
Vt (t ,Y ) + VY (t ,Y )G(t ,Y ) ≤ −W (Y ) for all t ≥ 0 and Y ∈ Y.

If, in addition, W is positive definite, then we call V strict.

Proper positive definite on Y = Rn : ∃αi ∈ K∞ such that
α1(|Y |) ≤ V (t ,Y ) ≤ α2(|Y |) for all t ≥ 0 and Y ∈ Y.

Positive definiteness (resp., semidefiniteness): 0 at zero and
positive (resp., nonnegative) at all other points in Y.

Example 1: ẏ1 = y2, ẏ2 = −y1 − y3
2 . V (Y ) = 0.5|Y |2. V̇ = −y4

2 .

Example 2: Ẏ = − Y
1+Y 2 . V (Y ) = ln(1 + Y 2). V̇ ≤ − Y 2

(1+Y 2)2 .
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2 . V (Y ) = 0.5|Y |2. V̇ = −y4

2 .

Example 2:
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What is Strictification?

This is the transformation of a nonstrict LF V1 into a strict LF V ]

on its domain, and is the subject of my book.

Doing so can often strengthen a UGAS result into an ISS result
to quantify the effects of uncertainties and robustify controllers.

The required nondegeneracy of V1 is often expressed in terms
of Jurdjevic-Quinn, LaSalle, or Matrosov conditions.

Active magnetic bearings, adaptive systems, bioreactors,
brushless DC motors, heart rate controllers, marine robots,
microelectromechanical relays, systems with control delays,
underactuated ships, unmanned air vehicles,..
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Adaptive Tracking and Parameter Identification

Consider a suitably regular nonlinear system

ξ̇ = J (t , ξ, Γ,u) (3)

with a smooth reference trajectory ξR and a vector Γ of unknown
constant parameters.

ξ̇R(t) = J (t , ξR(t), Γ,uR(t)) ∀t ≥ 0.

Problem: Find a dynamic feedback with estimator

u(t , ξ, Γ̂),
·
Γ̂ = τ(t , ξ, Γ̂) (4)

that makes the Y = (Γ̃, ξ̃) = (Γ− Γ̂, ξ − ξR) system UGAS.

Flight control, electrical and mechanical engineering, etc.
Persistent excitation. Annaswamy, Narendra, Teel..
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New Results (Mazenc, de Queiroz, M., ’11)

We solved the tracking and parameter identification problem for{
ẋ = f (ξ)
żi = gi(ξ) + ki(ξ)θi + ψiui , i = 1,2, . . . , s .

(5)

ξ = (x , z) ∈ Rr+s. (θ, ψ) = (θ1, ..., θs, ψ1, . . . , ψs) ∈ Rp1+...+ps+s.

The C2 T -periodic reference trajectory ξR = (xR, zR) to be
tracked is assumed to satisfy ẋR(t) = f (ξR(t)) ∀t ≥ 0.

Main PE Assumption: positive definiteness of the matrices

Mi
def
=
∫ T

0 λ>i (t)λi(t) dt ∈ R(pi+1)×(pi+1), (6)

where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for i = 1,2, . . . , s.
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Two Other Key Assumptions

I We know vf and a strict LF V : [0,∞)× Rr+s → [0,∞) for{
Ẋ = f

(
(X ,Z ) + ξR(t)

)
− f (ξR(t))

Ż = vf (t ,X ,Z )
(7)

such that −V̇ and V have positive definite quadratic lower
bounds near 0, and V and vf are T -periodic.

Key: Reduces the LF construction problem to (7).

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (8)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.
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Ż = vf (t ,X ,Z )
(7)

such that −V̇ and V have positive definite quadratic lower
bounds near 0, and V and vf are T -periodic.

Key:

Reduces the LF construction problem to (7).

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (8)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.



Two Other Key Assumptions

I We know vf and a strict LF V : [0,∞)× Rr+s → [0,∞) for{
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Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.
˙̂
θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂
ψi =

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s

(9)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi ) for i = 1,2, . . . , s,

$i,j = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)
and

Υi = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(10)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)θ̂i+żR,i (t)

ψ̂i
(11)

The estimator and feedback can only depend on things we know.



Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.


˙̂
θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂
ψi =

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s

(9)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi ) for i = 1,2, . . . , s,

$i,j = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)
and

Υi = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(10)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)θ̂i+żR,i (t)
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ψ̂i
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The estimator and feedback can only depend on things we know.



Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.
˙̂
θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂
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(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s

(9)
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New Results (Mazenc, de Queiroz, M., ’11)

We solved the tracking and parameter identification problem for{
ẋ = f (ξ)
żi = gi(ξ) + ki(ξ)θi + ψiui , i = 1,2, . . . , s .

(5)

ξ = (x , z) ∈ Rr+s. (θ, ψ) = (θ1, ..., θs, ψ1, . . . , ψs) ∈ Rp1+...+ps+s.

The C2 T -periodic reference trajectory ξR = (xR, zR) to be
tracked is assumed to satisfy ẋR(t) = f (ξR(t)) ∀t ≥ 0.

Main PE Assumption: positive definiteness of the matrices

Mi
def
=
∫ T

0 λ>i (t)λi(t) dt ∈ R(pi+1)×(pi+1), (6)

where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for i = 1,2, . . . , s.



Augmented Error Dynamics

˙̃x = f (ξ̃ + ξR(t))− f (ξR(t))

˙̃zi = vf ,i(t , ξ̃) + ki(ξ̃ + ξR(t))θ̃i

+ψ̃iui(t , ξ̃, θ̂, ψ̂), 1 ≤ i ≤ s
˙̃
θi,j = −

(
θ̂2

i,j − θ2
M

)
$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̃
ψi = −

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
Υi , 1 ≤ i ≤ s .

(12)

Tracking error: ξ̃ = (x̃ , z̃) = ξ − ξR = (x − xR, z − zR)

Parameter estimation errors: θ̃i = θi − θ̂i and ψ̃i = ψi − ψ̂i

Y = Rr+s ×
(∏s

i=1

{∏pi
j=1(θi,j − θM , θi,j + θM)

})
×
(∏s

i=1
(
ψi − ψ,ψi − ψ

))
.
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Two Other Key Assumptions

I We know vf and a strict LF V : [0,∞)× Rr+s → [0,∞) for{
Ẋ = f

(
(X ,Z ) + ξR(t)

)
− f (ξR(t))

Ż = vf (t ,X ,Z )
(7)

such that −V̇ and V have positive definite quadratic lower
bounds near 0, and V and vf are T -periodic.

Key: Reduces the LF construction problem to (7).

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (8)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.



Stabilization Analysis

We build a strict LF for the augmented tracking and identification
vector Y = (ξ̃, θ̃, ψ̃) = (ξ − ξR, θ − θ̂, ψ − ψ̂) dynamics on Y.

We start with this nonstrict barrier type LF on Y:

V1(t , ξ̃, θ̃, ψ̃) = V (t , ξ̃) +
s∑

i=1

pi∑
j=1

∫ θ̃i,j

0

m
θ2

M − (m − θi,j)2
dm

+
s∑

i=1

∫ ψ̃i

0

m
(ψi −m − ψ)(ψ − ψi + m)

dm .

On Y, V̇1 ≤ −W (ξ̃) for some positive definite function W .

We transform V1 into the desired strict LF.
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Our Transformation (M. et al, ’11)

Theorem: We can construct L ∈ K∞ ∩ C1 such that

V ](t , ξ̃, θ̃, ψ̃)
def
= L

(
V1(t , ξ̃, θ̃, ψ̃)

)
+

s∑
i=1

Ωi(t , ξ̃, θ̃, ψ̃) , (13)

where Ωi(t , ξ̃, θ̃, ψ̃) = −z̃iλi(t)αi(θ̃i , ψ̃i)

+ 1
Tψ
α>i (θ̃i , ψ̃i)Ωi(t)αi(θ̃i , ψ̃i) ,

(14)

αi(θ̃i , ψ̃i) =

[
θ̃iψi − θi ψ̃i

ψ̃i

]
, and

Ωi(t) =
∫ t

t−T

∫ t
m λ
>
i (s)λi(s)ds dm ,

(15)

is a strict LF for the Y = (ξ̃, θ̃, ψ̃) dynamics on Y, so it is UGAS.
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Application: Marine Robots (with Georgia Tech)

ρ = |r2 − r1|, φ = angle between x1 and x2, cos(φ) = x1 · x2
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Curve Tracking Dynamics

 ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ − ub, (ρ, φ) ∈ (0,+∞)× (−π/2, π/2)

(16)

ub = κ cos(φ)
1+κρ − h′(ρ) cos(φ) + µ sin(φ) (17)

h(ρ) = α
{
ρ+

ρ2
0
ρ − 2ρ0

}
, ρ0 = desired value for ρ (18)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (19)

U(ρ, φ) = −h′(ρ) sin(φ) +
1
µ

∫ V (ρ,φ)

0
Γ0(m)dm (20)
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Robustly Forwardly Invariant Hexagons

We used U to prove ISS results for the (ρ− ρ0, φ) system, where

ρ̇ = − sin(φ), φ̇ = h′(ρ) cos(φ)− µ sin(φ) + δ (21)

and δ : [0,∞)→ [−δ∗i , δ∗i ], on certain forward invariant sets Hi .

View the state space (0,∞)× (−π/2, π/2)
of (21) as a union of compact hexagon
shaped regions H1 ⊆ H2 ⊆ . . . ⊆ Hi ⊆ . . ..
For each i , all trajectories of (21) starting in
Hi for all δ : [0,∞)→ [−δ∗i , δ∗i ] stay in Hi .

Tight Disturbance Bound: Choose any δ∗i ∈ (0,min{∆∗i ,∆∗∗i}).
∆∗i = min{|h′(ρ) cos(φ)| : (ρ, φ)> ∈ AB ∪ ED}
∆∗∗i = min{|h′(ρ) cos(φ)− µ sin(φ)| : (ρ, φ)> ∈ BC ∪ EF}.
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where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for i = 1,2, . . . , s.



Adaptive Robust Curve Tracking ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ + K [u + δ]

(22)

ξ = (ρ, φ), θi = 0, ψi = K , f (ξ) = − sin(φ), gi(ξ) = κ cos(φ)
1+κρ

Take u = −ub/K̂ . We proved ISS for the dynamics
˙̃q1 = − sin(q̃2)

˙̃q2 = κ cos(q̃2)
1+κ(q̃1+ρ0)

− K
K̃+K

ub + K δ
˙̃K = −(K̃ + K − cmin)(cmax − K̃ − K )∂U

∂φ
ub

K̃+K

(23)

for (q̃1, q̃2, K̃ ) = (ρ− ρ0, φ, K̂ − K ) on each set in a nested
sequence of hexagonal regions that fill the state space.
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20 days of field work off Grand Isle. Search for oil spill remnants.
Georgia Tech Savannah Robotics Team (led by Fumin Zhang).
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Conclusions

I Nonlinear control systems are ubiquitous in aerospace, bio,
electrical, and mechanical engineering.

I One central problem is to build functions called closed loop
controllers that force desired tracking behaviors.

I We designed controllers for several applications including
models with unknown parameters that we can identify.

I Our strict Lyapunov function approach gave key robustness
properties such as input-to-state stability.

I We aim for extensions that cover input delays and state
constraints that ensure collision avoidance.
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