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Optimal control problems
Control Dynamics:

(CD)


ẋ(s) = f

(
x(s), u(s)

)
a.e. s ∈ [t,T ]

u(s) ∈ U a.e. s ∈ [t,T ]

x(t) = x ,

where f : Rn × Rn → Rn is continuous in (x , u) and Lipschitz in x , the
admissible control set U ⊆ Rm is compact, and u : [t,T ]→ Rm is measurable.

Two classic problems:

1. MinTime: Given a closed target set S ⊆ Rn, the problem is

min (T − t) over
(
x(·), u(·)

)
satisfying (CD) and x(T ) ∈ S .

The optimal value T (x) is the minimum time function .
2. Mayer problem: Given endpoint cost ` : Rn → R, the problem is

min `
(
x(T )

)
over

(
x(·), u(·)

)
satisfying (CD).

The optimal value V (t, x) is the value function .
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Regularity of value functions - SemiConCavity (SCC)
A natural regularity property for T (·) and V (·, ·) is the property of being
semiconcave . A locally Lipschitz function g : Rm → R is semiconcave
provided there exists k > 0 so that

1
2
[
g(x + z) + g(x − z)

]
−g(x) ≤ k ‖z‖2 ∀ x , z ∈ Rn.

(the three point property)

A semiconcave function

x − z x x + zx − z x x + z

LHS
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A geometric description of SCC
A Lipschitz function g : Rn → R is (SCC) if and only if ∃ σ > 0 with

g(x) = inf
{
q(x) : q(x) = σx2 + bx + c , g(x) ≤ q(x)

}
= inf

{
q(x , α) : α ∈ A

}
,

where (x , α) 7→ q(x , α) is C 1+ in x and continuous in (x , α).
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Previous results yielding (SCC)
There is considerable literature on value functions being (SCC). Most
relevant here: Cannarsa, Frankowska, Sinestrari, McEneaney.

Basic idea with (CD): (Illustration with Min Time)

We seek an upper bound (by k ‖z‖2) of

T (x + z) + T (x − z)− 2T (x).

Take an optimal solution starting from x and use it to construct feasible
solutions from x ± z that will yield the appropriate estimates.

Assume that x 7→ f (x , u) is C 1+ and take
(
x̄(·), ū(·)

)
optimal. Use a

priori estimates on the ODEs

(ODE±)

{
ẋ±(s) = f

(
x±(s), ū(s)

)
a.e. s ∈ [t,T ]

x±(t) = x ± z .
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)
optimal. Use a

priori estimates on the ODEs

(ODE±)

{
ẋ±(s) = f

(
x±(s), ū(s)
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x

S

{
˙̄x(t) = f

(
x̄(t), ū(t)

)
x̄(0) = x

Optimal

x + z

x − z

{
ẋ+(t) = f

(
x+(t), ū(t)

)
x+(0) = x + z

Same control ū(·)

{
ẋ−(t) = f

(
x−(t), ū(t)

)
x−(0) = x − z

Same control ū(·)
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ẋ−(t) = f

(
x−(t), ū(t)
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)
x+(0) = x + z

Same control ū(·)
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)
x+(0) = x + z

Same control ū(·)
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This proof depends on the parameterization
A priori estimates rely on the specific parameterization (x , u) 7→ f (x , u)
of the dynamics, but the value functions T (·) and V (·, ·) do not.

Important:

To obtain second order (SCC) estimates, one
definitely requires more than mere Lipschitz of the map

x 7→ f (x , u).

The question is What?

Recall the previous work assumed x 7→ f (x , u) is C 1+.
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(Very) simple example
Note that T (·) and V (·, ·) depend only on the trajectories x(·) and
NOT in the parameterization of the admissible velocity set:

F (x) :=
{
f (x , u) : u ∈ U

}
.

Note the admissible velocity multifunction F : R ⇒ R given by

F (x) =

[
−|x |, |x |

]
can be parameterized two ways:

F (x) =

{
{x · u : |u| ≤ 1}
{|x | · u : |u| ≤ 1}

The former is smoothly parameterized whereas the latter is not.

Trajectories coincide, but theorems only apply to the former.
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Differential Inclusions and Filippov’s Lemma
The set of solutions to the Differential Inclusion

(DI)

{
ẋ(s) ∈ F

(
x(s)

)
a.e. s ∈ [t,T ]

x(t) = x

does not depend on the particular parameterization. This is (essentially)
the content of the well-known Filippov’s Lemma.

Natural question:

For which F is the value function semiconcave?

A satisfactory answer should be given in terms of F , or equivalently, by
the Hamiltonian H : Rn × Rn → R defined by:

H(x , p) = sup
v∈F (x)

〈
v , p
〉
.
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Equivalence of F and H
We assume throughout that F : Rn ⇒ Rn satisfies the following
Standard Hypotheses:

(SH)+


1) F (x) is nonempty, convex, and compact ∀ x ,
2) F is Lipschitz on bounded sets w.r.t. Hausdorff metric;
3) ∃ r > 0 so that max{|v | : v ∈ F (x)} ≤ r(1 + |x |).

Such assumptions on F give way to equivalent conditions on H because

v ∈ F (x) ⇐⇒ 〈v , p〉 ≤ H(x , p) ∀p ∈ Rn

(SH)+



1)∀ x ∈ Rn,H(x , p) is finite and convex,
positively homogeneous in p;

2)∀M > 0,∃k > 0 so that ∀‖x‖,‖y‖ ≤ M, p ∈ Rn,∣∣H(x , p)− H(y , p)
∣∣ ≤ k ‖p‖ ‖x − y‖;

3)∃ r > 0 so that H(x , p) ≤ r ‖p‖ (1 + |x |) ∀ x , p ∈ Rn.
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Smooth parameterizations?
Perhaps one can characterize those multifunctions that have a smooth
parameterization:

Question:

Given F : Rn ⇒ Rn, when does there exist f : Rn × U → Rn

that is C 1 in the first coordinate and satisfies

F (x) :=
{
f (x , u) : u ∈ U

}
?

This seems virtually impossible to answer. Worse: Even sufficient
conditions for smooth selections seems intractable:
A simpler (?) question:

Under what conditions on F does there exist a C 1 function
f : Rn → Rn so that f (x) ∈ F (x) ∀x?
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Necessary conditions for smooth parameterizations

We can say when a smooth parameterization does NOT exist!

Suppose F : Rn ⇒ Rn is smoothly parameterized and H has the form

H(x , p) = sup
{〈

f (x , u), p
〉

: u ∈ U
}
,

where f : Rn × U → Rn has f and ∂f
∂x both continuous in (x , u).

Then for 0 6= p ∈ Rn, we have
(H1) The map x 7→ H(x , p) is semiconvex; and
(NC) If H(x , p) = −H(x ,−p), then

∂xH(x , p) = −∂xH(x ,−p).

If the assumption of a smooth parameterization is replaced by the
existence of a smooth selection, then the conclusion of (NC) is
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Illustration of (NC) with n = 1

Graph of F (x)
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H(x)
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h(x)

x3 x4
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F (x)

F (x) =
[
h(x),H(x)

]

x

F (x3)

F (x)

x1: No smooth parameterization since x 7→ H(x) not semiconvex.

no smooth
parameterization

x2, x3: Smooth parameterizations are possible between x1 and x4.

smooth
parameterizations

smooth
parameterizations

smooth
parameterizations

smooth
parameterizations

x4: No smooth selection.

no smooth
selection
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Proof of (NC)
Proof.
Note that the assumption

H(x , p) = −H(x ,−p)

means that
sup
u∈U
〈f (x , u), p〉 = − sup

v∈F (x)

〈v ,−p〉 = inf
v∈F (x)

〈v , p〉 = inf
u∈U
〈f (x , u), p〉

That is, the assumption is that every u ∈ U both minimizes and maximizes the
quantity 〈f (x , u), p〉.

By a theorem on nonsmooth differentiation of max
functions, one has

∂xH(x , p) = co
{
∇x f (x , u) p : u ∈ U

}
and

∂xH(x ,−p) = co
{
−∇x f (x , u) p : u ∈ U

}
,

from which (NC) follows: ∂xH(x , p) = −∂xH(x ,−p) .
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New DI assumptions
We abandon looking for smooth parameterizations, and introduce:

(H)

{
1) x 7→ H(x , p) is semiconvex, and
2) The gradient ∇pH(x , p) exists and is locally Lipschitz in x .

Class of examples:
One can generate a class of examples that satisfy (H) but do not satisfy
(NC), and therefore could not have a C 1 parameterization:

n = 1: Let F (x) :=
[
h(x),H(x)

]
where −h(·) and H(·) are semiconvex.

These always satisfy (H), and could satisfy (NC) only if
h(x) = H(x)⇒ ∂h(x) = ∂H(x).

n > 1: Let F (x) := f (x) + r(x)B where f (·) is C 2 and r : Rn → [0,∞) is
semiconvex. Then H(x , p) = 〈f (x), p〉+ r(x)‖p‖, and so (H) is
satisfied. Then (NC) is satisfied only if r(x) = 0 implies
∂r(x) = −∂r(x).
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Consequences, part I

Consequences of (H1):
The semiconvexity of x 7→ H(x , p) implies

∂x ,pH(x , p) ⊆ ∂xH
(
x , p
)
× ∂pH

(
x , p
)
.

The significance of this result is in utilizing a nonsmooth maximum
principle (Clarke 1975):

Suppose x̄(·) is optimal in one of the classical problems with (DI)
dynamics. Then there exists an adjoint arc p̄(·) for which(

− ˙̄p(s), ˙̄x(s)
)
∈ ∂x ,pH

(
x̄(s), p̄(s)

)
(plus transversality conditions). Thus the dynamics of a Hamiltonian arc(
x̄(·), p̄(·)

)
“splits”into a much more usable form:

− ˙̄p(s) ∈ ∂xH
(
x̄(s), p̄(s)

)
and ˙̄x(s) ∈ ∂pH

(
x̄(s), p̄(s)

)
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Consequences, part II
Consequences of (H2):
That the gradient ∇pH(x , p) exists means that the argmax of
sup

v∈F (x)
〈v , p〉 is unique - we denote it by fp(x) ∈ F (x).

We have also assumed x 7→ fp(x) is Lipschitz . If p(·) is any continuous
function, then the ODE

(ODE)x

{
ẋ(t) = fp(t)

(
x(t)

)
a.e. t ∈ [0,T ]

x(0) = x ,

satisfies standard Carathéodory-type assumptions, and has the
properties:

A unique solution x(·; x) of (ODE)x exists on [0,∞);
Each solution x(·; x) is a solution of (DI);
The function x 7→ x(t; x) is locally Lipschitz;
If
(
x̄(·), p̄(·)

)
is a Hamiltonian arc, then x(·) satisfies (ODE) with

p(·) = p̄(·).
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A replacement for a priori estimates

S

x

{
˙̄x(t) = fp̄(t)

(
x̄(t)

)
x̄(0) = x

Optimal with adjoint p̄(·)

x + z

x − z

{
ẋ+(t) = fp̄(t)

(
x+(t)

)
x+(0) = x + z
Same adjoint arc p̄(·)

{
ẋ−(t) = fp̄(t)

(
x−(t)

)
x−(0) = x − z
Same adjoint arc p̄(·)
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Summary of new results

We assume F satisfies (SH)+ and (H).

Theorem
Consider the minimum time problem. Suppose the target S is
compact and satisfies the Petrov condition and the Interior
Sphere Property. Then there exists ρ > 0 so that T (·) is
semiconcave on each convex subset of S + ρB \ S .

Theorem
Consider the Mayer problem. Assume the endpoint cost function
`(·) is semiconcave. Then the value function V (·, ·) is locally
semiconcave on (−∞,T ]× Rn.
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Conclusions and future work
General Philosophy: Assumptions should not be required only
in the proof. Here, smooth parameterizations of control systems
should not be assumed if the conclusion does not reflect them.

We offered an alternative;

It is not yet clear how generic these
assumptions are. For example, could they be invoked in an auxiliary
problem that approximates an original one?
Local versions?
Perhaps a large segment of optimal control can be cast in this
way.(?)

Students: you’re urged and invited to join the fun.

Thank you for your attention
and for sticking around.
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Thank you for your attention!

Grazie per l’attenzione!

Dziękuję za uwagę!

Merci de l’attention

Obrigado pela atençāo

Vielen Dank für Ihre Aufmerksamkeit

Gracias por su atención

Gràcies per la vostra atenció

Cám on
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And finally ...

Many thanks to Richard, Rosario,
Hasnaa, Estelle, and all the SADCO people!

It’s been a great week!
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