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Abstract. We provide a new global strict Lyapunov function construction for

a susceptible, infected, and recovered (or SIR) disease dynamics that includes

quarantine of infected individuals and mass vaccination. We use the Lyapunov
function to design feedback controls to asymptotically stabilize a desired en-

demic equilibrium, and to prove input-to-state stability for the dynamics with

a suitable restriction on the disturbances. Our simulations illustrate the po-
tential of our feedback controls to reduce peak levels of infected individuals.

1. Introduction. The recent COVID-19 pandemic has motivated the development3

of significant new control theoretic methods for disease dynamics, e.g. [2, 23, 33]4

to name a few. While such models may enjoy asymptotic convergence to states in5

which the disease is no longer present in a population even if no controls are used,6

it is of interest to apply feedback design in such models, to reduce peak levels of7

infection, and thereby reduce the numbers of fatalities and reduce the burden on8

the medical community. Feedback design entails comparing the effects of different9

state dependent parameters in dynamical systems, with a view towards choosing10

state dependent parameters that produce desirable asymptotic stability properties11

for the systems. Such state dependent parameters are called feedback controls,12

and they differ from open loop controls that are typically used in optimal control13

theory, which depend on time but not on the state. Feedback controls are useful for14

representing possible mediation efforts that can be used during a pandemic, such15
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as quarantining or vaccination, subject to physical constraints that can arise from1

factors like limited availability of vaccines or other medical resources and logistical2

considerations.3

Feedback design is usually done in conjunction with the construction of a strict4

Lyapunov function for the dynamics on the entire state space of the system. A strict5

Lyapunov function is a positive definite and radially unbounded function whose time6

derivative along all trajectories of the system is upper bounded by a negative definite7

function of the state [16, 21]. This decay condition ensures asymptotic convergence8

to a desired equilibrium vector. Starting from a candidate Lyapunov function for9

a controlled dynamical system, feedback design usually involves choosing the feed-10

back control in order to make the time derivative of the Lyapunov function satisfy11

a desired decay condition along solutions of the feedback controlled system. Strict12

Lyapunov functions are also useful when one needs to study robustness properties13

with respect to uncertainties in the model. In engineering, one important robust-14

ness property is input-to-state stability (or ISS) [27], which implies that bounded15

uncertainties produce bounded states and which coincides with global asymptotic16

stability when the uncertainty is the zero function. One typically proves ISS by17

constructing a special type of strict Lyapunov function, called an ISS Lyapunov18

function. For linear time invariant systems, constructing strict Lyapunov functions19

is often an elementary task that involves linear matrix inequalities. However, for20

nonlinear systems, the construction of ISS Lyapunov functions is not always easy.21

While there are works on constructing strict Lyapunov functions for time-varying22

linear or nonlinear systems [21, 31, 32], we believe that the problem of constructing23

strict Lyapunov functions for SIR models with quarantine and vaccination on their24

entire spaces was open, owing to their bilinearities involving products of states.25

Here, we solve this problem in a recursive way. First, we build a strict Lyapunov26

function for a basic two-dimensional SI model. In the second step, we modify27

the strict Lyapunov function from the first step to cover a more general model28

with vaccination. Finally, we transform the Lyapunov function from the second29

step into a strict Lyapunov function for cases with vaccination and isolation. The30

last step uses the triangular structure of the dynamics. The augmented Lyapunov31

function and its time derivative contain all the state variables as desired. Our strict32

Lyapunov functions are ISS ones with explicit expressions, which enable us to prove33

ISS properties and design stabilizing feedback controls. Our simulations illustrate34

how our new feedback controls can reduce peak levels of infected populations in our35

models.36

A key ingredient in our strict Lyapunov function constructions is the non-classical37

use of logarithmic functions that had been used to build nonstrict global Lyapunov38

functions (meaning, Lyapunov functions whose time derivatives along solutions of39

the dynamics are only required to be nonpositive) [18, 26, 29]. For a given controller,40

nonstrict Lyapunov functions can sometimes verify the asymptotic convergence of41

trajectories to an equilibrium, with the help of LaSalle’s invariance principle. How-42

ever, nonstrict Lyapunov functions generally only lead to heuristic ways to find43

controllers. Moreover, the nonstrictness property cannot quantify the effects of44

uncertainties, even if the uncertainty magnitude is arbitrarily small. More impor-45

tantly, in prior literature, it is commonly assumed that the inflow is fixed to keep46

the total population constant [17], which precludes the possibility of considering the47

uncertainties in ISS. To achieve ISS and remove the assumption of constant total48

population, a strict Lyapunov function was proposed in [9] for a simpler three state49
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SIR model. However, the Lyapunov function obtained in [9] is semi-global and not1

differentiable, and it leads to discontinuities in controllers which make them less2

amenable to implementation than more standard continuous feedback controls.3

The major drawback of semi-global Lyapunov function constructions is that the4

negativity of their time derivatives is only on a subset of the state space, instead of5

being on the entire state space. The dependency of the negativity condition on the6

domain size makes the Lyapunov function inconvenient, insofar that it cannot be7

directly used in feedback control design because the time derivative is not conducive8

to indicating the performance of the controls. This work improves on the semi-global9

results [9, 10, 11, 12] for two- and three-dimensional models, by providing global10

strict ISS Lyapunov functions for higher dimensional systems which are conducive to11

ensuring ISS and to constructing continuous feedback controls. Therefore, [9, 11, 12]12

motivate our global strict Lyapunov function constructions in this work that are13

more conducive to control design.14

The SIR model with quarantine is sometimes called the SIQR model. It has been15

used widely for prediction and interpretation of infectious diseases [8, 14]. Recently,16

the model was used to estimate the basic reproduction number and to interpret sta-17

tistical figures of the COVID-19 outbreak in Brazil [6]. The SIQR model was also18

used to describe the COVID-19 outbreak in Japan, and to compare the effectiveness19

of quarantine versus lockdown measures [24]. The work [1] focused on numerical20

techniques to compute solutions to epidemic models. It also applied the Routh-21

Hurwitz criterion to the Jacobian approximation of the SIQR model to numerically22

detect bifurcations. Its local stability analysis applies under constant inflow (i.e.,23

constant immigration and newborn rates). The work [8] on the SIQR model con-24

structed a Lyapunov function in the so-called feasible region that is widely used in25

quasi-steady-state stability analysis under the assumption of constant inflow. The26

Lyapunov function contains only partial state measurements, and only leads to a27

nonpositive time derivative for the Lyapunov function. Hence, LaSalle’s invariance28

principle was used in [8], and then it was combined with a stability analysis for the29

remaining variables to complete the stability analysis. A similar approach was pur-30

sued in [20] by incorporating culling (i.e., elimination) into the SIQR model to study31

diseases in animals and quarantining for humans, under fixed constant values for32

the vaccination, quarantine, and culling rates. By contrast, our novel construction33

of a strict ISS Lyapunov function for the entire four-dimensional SIQR model on its34

entire state space combined with our feedback control approach enables us to quan-35

tify the effects of perturbations of the immigration/newborn rates using ISS, while36

also quantifying the effects of using different vaccination rates as state-dependent37

feedback controls. This has the potential to make our treatment more amenable to38

more realistic cases where the immigration/newborn rates are uncertain, and where39

a comparison is called for to compare the effects of different vaccination rates. Also,40

since [1], [14], and [20] are not based on strict Lyapunov function constructions for41

the full SIQR model, they are not amenable to proving ISS results.42

We use the following standard definitions and notation, which we simplify when43

no confusion would arise. The dimensions of our Euclidean spaces are arbitrary44

unless we indicate otherwise. We use |f |∞ (resp., |f |J) to denote the usual sup norm45

of a bounded function f over its entire domain (resp., a subset J of its domain).46

Let K denote the set of all strictly increasing continuous functions α : [0,+∞) →47

[0,+∞) such that α(0) = 0; if, in addition, α is unbounded, then we say that α is48

of class K∞. We say that a continuous function β : [0,+∞) × [0,+∞) → [0,+∞)49
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is of class KL provided for each fixed s > 0, the function β(·, s) belongs to class K,1

and for each fixed r ≥ 0, the function β(r, ·) is non-increasing and β(r, s) → 0 as2

s → +∞. A system of the form ẋ(t) = f(x(t), ε(t)) with a state space X ⊆ Rn is3

called input-to-state stable (or ISS) [16] on X with respect to a disturbance set S4

provided: There are β ∈ KL and γ ∈ K∞ such that for each initial state x(0) ∈ X5

and each locally bounded piecewise continuous function ε that is valued in S, the6

unique solution x(t) satisfies |x(t)| ≤ β(|x(0)|, t) + γ(|ε|[0,t]) for all t ≥ 0.7

2. SIR Model with Quarantine and Vaccination. Our main model for which
we will construct our strict Lyapunov function and feedback controls is

Ṡ(t) = B + ε(t)− ρ(t)S(t)− µS(t)− βI(t)S(t), (1a)

İ(t) = βS(t)I(t)− (γ + ν + µ)I(t), (1b)

Q̇(t) = νI(t)− (τ + µ)Q(t), (1c)

Ṙ(t) = γI(t) + τQ(t)− µR(t) + ρ(t)S(t), (1d)

whose positive valued states S, I, Q, and R are numbers of susceptible, infected,8

quarantined, and recovered individuals, respectively [14]. The positive parame-9

ters β, γ and µ are the contact/transmission rate, the recovery rate and the non-10

associated mortality rate, respectively. The parameter ν > 0 is the rate at which11

infected individuals are isolated [14]. The parameter τ > 0 is the reciprocal of the12

average time spent in isolation, and the constant B > 0 is the immigration/newborn13

rate. The piecewise continuous locally bounded function ε represents the immigra-14

tion/newborn perturbation, and we assume that it satisfies15

ε(t)>−B for all t ≥ 0, (2)

which ensures that the positive orthant (0,+∞)4 is a forwardly invariant set for16

(1), meaning, each state component stays positive for all t ≥ 0 if the initial state17

for (1) is in (0,+∞)4. The vaccination rate ρ is18

ρ(t) = ρ̂+ u(t), (3)

where the control u (which will be specified in our theorem, and which will depend
on time t through its dependence on state components of the system) is valued in
[−ρ̂,+∞) and ρ̂ is a positive constant, which produces the system

Ṡ(t) = B − (ρ̂+ µ)S(t)− βI(t)S(t)− u(t)S(t) + ε(t), (4a)

İ(t) = βS(t)I(t)− (γ + ν + µ)I(t), (4b)

Q̇(t) = νI(t)− (τ + µ)Q(t), (4c)

Ṙ(t) = γI(t) + τQ(t)− µR(t) + ρ̂S(t) + u(t)S(t). (4d)

We assume that

βB > (ρ̂+ µ)(γ + ν + µ), (5)

which is equivalent to the usual condition that the basic reproduction R0 satisfies19

R0 > 1; see also Remark 4 below for a discussion on R0, and see Remark 1 for more20

on the derivation of the preceding model.21
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Let λ = γ + ν + µ and χ = ρ̂+ µ. When ε = 0 and u = 0, the system (4) admits
the componentwise positive (endemic) equilibrium point

(S?, I?, Q?, R?) =(
λ

β
,
B

λ
− χ

β
,

ν

τ + µ

(
B

λ
− χ

β

)
,

1

µ

[(
γ +

τν

τ + µ

)(
B

λ
− χ

β

)
+
ρ̂λ

β

])
. (6)

With the choices1

ξ = ln(I), ξ? = ln(I?), (ξ̃, S̃, Q̃, R̃) = (ξ − ξ?, S − S?, Q−Q?, R−R?)
and ψ? = λeξ? ,

(7)

we can then use the relation2

B −
(
χ+ βeξ?

)
S? = B −

[
χ+ β

(
B
λ −

χ
β

)]
λ
β = B − βBλ

λ
β = 0 (8)

to obtain

˙̃
ξ(t) =βS̃(t), (9a)

˙̃S(t) =−
(
χ+ βeξ̃(t)+ξ?

)
S̃(t) + ψ?

(
1− eξ̃(t)

)
+ ε(t)− u(t)S(t), (9b)

˙̃Q(t) =νeξ?(eξ̃(t) − 1)− (τ + µ)Q̃(t), (9c)

˙̃R(t) =γeξ?(eξ̃(t) − 1) + τQ̃(t)− µR̃(t) + ρ̂S̃(t) + u(t)S(t) (9d)

with ξ̃(t) ∈ R, S̃(t) ∈ (−S?,+∞), Q̃(t) ∈ (−Q?,+∞) and R̃(t) ∈ (−R?,+∞) for3

all t ≥ 0. Finally, we assume that4

|ε|∞ ≤
ψ?
4
. (10)

Our first goal in the next section is to find a strict Lyapunov function for (9) on5

its entire domain X = R× (−S?,+∞)× (−Q?,+∞)× (−R?,+∞) when u = 0 and6

ε = 0. By the change of variables that transformed (1) into (9), this is equivalent7

to finding a strict Lyapunov function for (1) and (6) on the positive orthant when8

u = 0 and ε = 0. Then, we will use this strict Lyapunov function for (9) to show9

that, for a suitable class of control functions u that are valued in [−ρ̂,+∞), the10

controlled system (9) satisfies ISS with respect to the immigration perturbation ε(t)11

with the disturbance set S = [−min{B,ψ?/4}, ψ?/4].12

Remark 1. In the special case where ρ = ε = 0 and B = µ, (1) agrees with13

the SIR model with quarantine in [14, Equation (8.6)] under the assumption in14

[14] that S(t) + I(t) + Q(t) + R(t) = 1 for all t ≥ 0, which calls for our use15

of the coefficient −(τ + µ) in the Q dynamics. As usual, model (1) employs the16

simple mechanism of massively vaccinating the susceptible population [14, Equation17

(8.6)] in the SIR model with isolation [14, Equation (8.24)]. Model (1) can be18

viewed as a four-dimensional core of the six-dimensional model for the study of19

controlling SARS outbreaks without vaccines, and it includes disease-associated20

death in the population R [14]. Importantly, this paper employs B + ε(t) for the21

newborn/immigration value to analyze the robustness of the nonlinear model with22

respect to its uncertainty ε. Hence, in addition to incorporating uncertainty and23

feedback control, a key difference between (1) and the popular models is that the24

model (1) does not require that the total population is S(t)+I(t)+Q(t)+R(t) = 1.25

The models in [14, Equations (8.6) and (8.24)]) use µ instead of B + ε(t) in order26

ensure that the total population at all times is S(t)+I(t)+Q(t)+R(t) = 1. In fact,27
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the normalization excludes the idea of globalness and perturbation in the robustness1

analysis. Model (1) removes the constant unity assumption on the population size2

for the study of global stability and robustness. In the special case where the3

perturbation is ε = 0 and when the vaccination rate ρ(t) is replaced by zero, the4

model (1) is identical to the model in [8, Equation (6)]5

3. Strict Lyapunov Function for (9). In terms of the constants from the pre-6

ceding section, any constants c > 0 and g > 0, the constants7

k1 = max

{
1 + 2c

χ
,

2

cψ?eξ?

[
2ce2ξ? +

(c+ 1)ψ?
2β

]}
, (11)

8

k2 = k1 +

(
4cχ2

β
+ (c+ 1)ψ?

)
4

cψ? (2χ+ βeξ?)
, (12)

9

k3 =

(
2cχ2

β
+

(c+ 1)ψ?
2

)
16β

c2ψ2
?χ

2
, (13)

10

k4 =
k2

2

4k2
3

, c] =
ln(2)cχ

β
+ ceξ? , c[ =

(1 + c)2

2χ
, and c♦ =

(τ + µ)cψ?
2ν2eξ?

, (14)

and the functions11

Uc(ξ̃, S̃) =
1

2
S̃2 +

c

2

[
S̃ +

χ

β
ξ̃ + eξ?

(
eξ̃ − 1

)]2

+
(c+ 1)ψ?

β

(
eξ̃ − 1− ξ̃

)
, (15)

12

Jc(ξ̃, S̃) = −
[
(1 + c)S̃ +

cχ

β
ξ̃ + ceξ?

(
eξ̃ − 1

)]
, (16)

and13

Nc(r) =
1

2

[√
k4 + min

{
1

k3
, 4
√
k4µ

}
r −

√
k4

]
, (17)

we prove the following, where we write the controls u as functions of t alone to14

keep the notation simple but where u will later depend on the state of (9), and15

where part (b) implies ISS of (9) with the controls u (by standard results from [16,16

Chapter 4] on the sufficiency of the existence of the ISS Lyapunov Vc to have ISS):17

Theorem 3.1. The following conclusions hold: (a) The time derivative of18

Vc(ξ̃, S̃, Q̃, R̃) = Uc(ξ̃, S̃) +
g

2

[
S̃ + eξ?

(
eξ̃ − 1

)
+ Q̃+ R̃

]2
+
c♦
2
Q̃2 (18)

along all trajectories of (9) satisfies

V̇c(t) ≤−Nc(Vc(ξ̃(t), S̃(t), Q̃(t), R̃(t))) + Jc(ξ̃(t), S̃(t))(S̃(t) + S?)u(t)

+ c]|ε(t)|+
[
c[ +

g

2µ

]
ε(t)2 (19)

for all t ≥ 0, all piecewise continuous functions19

ε : [0,+∞)→ [−min{B,ψ?/4}, ψ?/4], (20)

and all control functions u. (b) For each feedback control u(t) such that20

Jc(ξ̃(t), S̃(t))(S̃(t) + S?)u(t) ≤ 0 (21)

for all t ≥ 0, the function Vc is an ISS Lyapunov function for (9) on its state space21

X = R× (−S?,+∞)× (−Q?,+∞)× (−R?,+∞) (22)

for the disturbance set S = [−min{B,ψ?/4}, ψ?/4]. �22
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Remark 2. Condition (21) provides a systematic procedure for feedback control1

design, namely, we choose any u that is bounded below by −ρ̂ and that satisfies2

(21) along all solutions of (9); see for instance (76). Since the constant c > 0 arises3

in (21), different choices of c produce different feasible stabilizing feedback controls.4

We illustrate the effects of changing c (and the benefits of using nonzero choices5

of u) in our simulations below. The presence of g in the Vc formula implies that6

different choices of g lead to different rates of convergence of Vc to zero.7

4. Proof of Theorem 3.1. The proof has three parts. In the first part, we build8

a strict Lyapunov function for the SI dynamics corresponding to (1) (i.e., where9

the R and Q variables are not present), using three key lemmas that we prove in10

the appendix. The first of these lemmas provides nonstrict Lyapunov functions11

which we later transform into a strict Lyapunov function for the SI dynamics using12

a novel variant of the strictification approach [21]. In the second part, we build13

a strict Lyapunov function for the SIR dynamics corresponding to (1) (i.e., where14

Q is not present), using the first part of the proof. In the final part, we apply a15

cascade argument to the result from the second part to prove the theorem. Since16

the strict Lyapunov functions for the SI and SIR models that we construct in the17

proof of the theorem are of independent interest from both the mathematical and18

practical points of view, we state these two constructions as additional lemmas.19

4.1. SI Model. We consider the system

Ṡ(t) =B − χS(t)− βS(t)I(t) + δ(t), (23a)

İ(t) =βS(t)I(t)− λI(t), (23b)

where S and I are valued in (0,+∞), and B > 0, χ > 0, β > 0, and λ > 020

are constants, and the piecewise continuous locally bounded function δ represents21

uncertainty. In this subsection, we use δ instead of ε to represent the uncertainty,22

because when we apply this work from this subsection to later subsections, we will23

choose24

δ = δ1 + δ2, where δ1 = ε and δ2 = −Su (24)

for a suitable control u and the ε from our theorem. Throughout this subsection,25

we assume that (0,+∞)2 is a forward invariant set for (23), which will be the case26

if27

δ(t) ≥ −B (25)

for all t ≥ 0. We assume that the inequality28

βB > χλ (26)

is satisfied. The inequality (26) ensures that (23) admits the componentwise positive29

equilibrium30

(S?, I?) =
(
λ
β ,

B
λ −

χ
β

)
(27)

when δ = 0. Changing coordinates using the variables (7) as in the previous section
transforms (23) into

˙̃
ξ(t) =βS̃(t), (28a)

˙̃S(t) =−
(
χ+ βeξ̃(t)+ξ?

)
S̃(t) + ψ?

(
1− eξ̃(t)

)
+ δ(t) (28b)

with ψ? defined by (7) as before, and with ξ̃(t) ∈ R and S̃(t) ∈ (−S?,+∞) for all31

t ≥ 0.32



8 HIROSHI ITO, MICHAEL MALISOFF, AND FRÉDÉRIC MAZENC

In terms of the function Uc we defined in (15), and the functions1

V1(ξ̃, S̃) = 1
2 S̃

2 + ψ?
β

(
eξ̃ − 1− ξ̃

)
, (29)

2

V2(ξ̃, S̃) = 1
2

[
S̃ + χ

β ξ̃ + eξ?
(
eξ̃ − 1

)]2
+ ψ?

β

(
eξ̃ − 1− ξ̃

)
, (30)

and3

Wc(a, b) =
(
χ+ βea+ξ?

)
b2 + cψ?

[
χ
β a+ eξ? (ea − 1)

]
(ea − 1) , (31)

for any constant c > 0, our first three lemmas are as follows, where the first lemma4

can be interpreted to mean that V1 and V2 are weak (or nonstrict) Lyapunov func-5

tions for (28) when δ = 0 in the sense of [21]:6

Lemma 4.1. The time derivative of the functions V1 and V2 defined in (29) and7

(30) satisfy8

V̇1(t) = −
(
χ+ βeξ̃(t)+ξ?

)
S̃(t)2 + S̃(t)δ(t) (32)

and

V̇2(t) =− ψ?
β

(
eξ̃(t) − 1

) [
χξ̃(t) + βeξ?

(
eξ̃(t) − 1

)]
+
[
S̃(t) + χ

β ξ̃(t) + eξ?
(
eξ̃(t) − 1

)]
δ(t) (33)

respectively along all trajectories of the system (28) for all t ≥ 0.9

Lemma 4.2. For all (a, b) ∈ R2, the inequality10

4β2

c2ψ2
?χ

2
Wc(a, b)

2 +
2

cψ?

(
χ
β + eξ?

2

)Wc(a, b) ≥ a2 (34)

is satisfied.11

Lemma 4.3. The constants k3 and k4 defined in (13)-(14) are such that12 √
k4 + 1

k3
Uc(a, b)−

√
k4 ≤ 1

2Wc(a, b) (35)

holds for all (a, b) ∈ R2.13

See the appendix below for proofs of Lemmas 4.1-4.3. We next use the preceding14

lemmas to provide our strict Lyapunov function construction for the SI model (28).15

In terms of the function Jc from (16) and the constants c] and c[ that we defined16

in (14), our strict Lyapunov function for (28) is provided by the following lemma,17

which shows that Uc is a strict Lyapunov function for (28) on its state space when18

δ = 0:19

Lemma 4.4. With the choices of Uc, Jc, and Wc in (15), (16), and (31), the time20

derivative of the function Uc(ξ̃, S̃) along all trajectories of the system (28) satisfies21

U̇c(t) = −Wc(ξ̃(t), S̃(t))− Jc(ξ̃(t), S̃(t))δ(t) (36)

for all t ≥ 0. Also, when δ has the form22

δ(t) = δ1(t) + δ2(t) (37)

where δ1 is a piecewise continuous function such that23

|δ1|∞ < ψ?
4 , (38)
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then, with the choices of c], c[, k3, and k4 defined in(13)-(14), the inequalities1

U̇c(t) ≤ −
1

2
Wc(ξ̃(t), S̃(t))− Jc(ξ̃(t), S̃(t))δ2(t) + c]|δ1(t)|+ c[δ1(t)2 (39)

and

U̇c(t) ≤−
(√

k4 + 1
k3
Uc(ξ̃(t), S̃(t))−

√
k4

)
− Jc(ξ̃(t), S̃(t))δ2(t) + c]|δ1(t)|+ c[δ1(t)2 (40)

hold along all solutions of (28) for all t ≥ 0.2

Proof. Since3

Uc(ξ̃, S̃) = V1(ξ̃, S̃) + cV2(ξ̃, S̃), (41)

we deduce from (32) and (33) that (36) is satisfied. Then, when δ(t) = δ1(t)+δ2(t),4

we have5

U̇c(t) = −Wc(ξ̃, S̃)− Jc(ξ̃, S̃)δ1 − Jc(ξ̃, S̃)δ2. (42)

Here, and in the rest of the proof, time derivatives of functions are along all solutions6

of (28) for all t ≥ 0. To complete the proof of the lemma, we first consider the case7

where δ2 = 0. Then8

U̇c(t) = −
(
χ+ βeξ̃+ξ?

)
S̃2 −

[
cψ?χ
β ξ̃

(
eξ̃ − 1

)
+ cψ?e

ξ?
(
eξ̃ − 1

)2
]

+
[
(1 + c)S̃ + cχ

β ξ̃ + ceξ?
(
eξ̃ − 1

)]
δ1.

(43)

Using the triangle inequality to get9

(1 + c)S̃δ1 ≤ χ
2 S̃

2 + (1+c)2

2χ δ2
1 , (44)

we obtain10

U̇c(t) ≤ −
(
χ
2 + βeξ̃+ξ?

)
S̃2 −

[
cψ?χ
β ξ̃

(
eξ̃ − 1

)
+ cψ?e

ξ?
(
eξ̃ − 1

)2
]

+
[
cχ
β ξ̃ + ceξ?

(
eξ̃ − 1

)]
δ1 + c[δ

2
1

(45)

where c[ is the constant defined in (14). Next, we distinguish between two cases.11

1) |ξ̃| ≤ ln(2). Then (45) gives

U̇c(t) ≤−
(
χ
2 + βeξ̃+ξ?

)
S̃2 −

[
cψ?χ
β ξ̃

(
eξ̃ − 1

)
+ cψ?e

ξ?
(
eξ̃ − 1

)2
]

+
[
cχ
β ln(2) + ceξ?

]
|δ1|+ c[δ

2
1 . (46)

2) |ξ̃| ≥ ln(2). Then |eξ̃ − 1| ≥ 1
2 . Consequently, since12

ξ̃(eξ̃ − 1) = |ξ̃||eξ̃ − 1|, (47)

we can use (45) to get

U̇c(t) ≤−
(
χ
2 + βeξ̃+ξ?

)
S̃2 − 1

2

[
cψ?χ
β ξ̃

(
eξ̃ − 1

)
+ cψ?e

ξ?
(
eξ̃ − 1

)2
]

− 1
4

(
cψ?χ
β |ξ̃|+ cψ?e

ξ?

∣∣∣eξ̃ − 1
∣∣∣)+

(
cχ
β |ξ̃|+ ceξ?

∣∣∣eξ̃ − 1
∣∣∣) |δ1|

+ c[δ
2
1 . (48)



10 HIROSHI ITO, MICHAEL MALISOFF, AND FRÉDÉRIC MAZENC

From (38), we deduce that in case 2), we have

U̇c(t) ≤−
(
χ
2 + βeξ̃+ξ?

)
S̃2 − 1

2

[
cψ?χ
β ξ̃

(
eξ̃ − 1

)
+ cψ?e

ξ?
(
eξ̃ − 1

)2
]

+ c[δ
2
1 . (49)

We deduce that in both cases, U̇c(t) ≤ −1
2Wc(ξ̃(t), S̃(t)) + c]|δ1(t)| + c[δ1(t)2. It1

follows that (39) is satisfied when δ2 = 0. To check that (39) is also satisfied when2

δ2 is not necessarily 0, it suffices to notice that ∂Uc/∂S̃ = −Jc. Finally, Lemma 4.33

ensures that (40) is satisfied.4

4.2. SIR Model. We next consider the more sophisticated model

Ṡ(t) = B + ε(t)− ρ(t)S(t)− µS(t)− βI(t)S(t), (50a)

İ(t) = βS(t)I(t)− (γ + µ)I(t), (50b)

Ṙ(t) = γI(t)− µR(t) + ρ(t)S(t). (50c)

where S, I and R are valued in (0,+∞), and where B, µ, β, and γ are positive5

constants. The variables S and I and constants have the same interpretations as in6

the preceding subsections, and R is the number of recovered or resistant individuals,7

as a result of mass vaccination of susceptible individuals. The piecewise continuous8

locally bounded function ε represents uncertainty as before.9

Let the vaccination rate ρ(t) be represented by

ρ(t) = ρ̂+ u(t), (51)

where ρ̂ ≥ 0 is a constant, and the control u satisfies u(t) ∈ [−ρ̂,+∞) for all t ≥ 0.10

We assume that the analog11

βB > (ρ̂+ µ)(γ + µ) (52)

of (26) is satisfied. We also use the notation λ = γ + µ and χ = ρ̂+ µ and S? and12

ξ? from (6) and (7). Let13

R? = 1
µ

(
γeξ? + ρ̂S?

)
. (53)

Notice that14

R? = γB
µ(γ+µ) + ρ̂−γ

β . (54)

Also, (52) implies that (26) is satisfied. The inequality (52) ensures that with the
choices in (6), the componentwise positive vector

(S, I,R) = (S?, I?, R?) (55)

is the endemic equilibrium for a given constant B > 0 when ε and u are the zero
function. Then, with S̃ and ξ̃ defined in the previous section, and with R̃ = R−R?
and ψ? defined as in (7), the reasoning that led to (9) produces the system

˙̃
ξ(t) =βS̃(t), (56a)

˙̃S(t) =−
(
χ+ βeξ̃(t)+ξ?

)
S̃(t) + ψ?

(
1− eξ̃(t)

)
+ ε(t)− u(t)S(t), (56b)

˙̃R(t) =γeξ?(eξ̃(t) − 1)− µR̃(t) + ρ̂S̃(t) + S(t)u(t) (56c)

with ξ̃ valued in R, and with S̃(t) ∈ (−S?,+∞) and R̃(t) ∈ (−R?,+∞) for all t ≥ 0.15

As in the preceding subsection, we assume that ε(t) is a piecewise continuous16

function that is valued in S = [−min{B,ψ?/4}, ψ?/4] which ensures the forward17
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invariance of the state space as before. In terms of the notation from (14), the1

function Uc from (15), the function Jc from (16), and the functions2

F1(ξ̃, S̃, R̃) =
1

2

[
S̃ + eξ?(eξ̃ − 1) + R̃

]2
(57)

and3

WU,c(ξ̃, S̃, R̃) =

√
k4 +

1

k3
Uc(ξ̃, S̃)−

√
k4 + µF1(ξ̃, S̃, R̃), (58)

we then have the following analog of Theorem 3.1 for the SIR dynamics, which im-4

plies the ISS property of (56) on its state space XU = R× (−R?,+∞)× (−S?,+∞)5

when ε is restricted to S = [−min{B,ψ?/4}, ψ?/4] and when u satisfies the require-6

ments of part (b) of the lemma, and where the class of feasible controls u satisfying7

(21) depends on the parameter c > 0:8

Lemma 4.5. The following conclusions hold: (a) The time derivative of the func-9

tion10

VU,c(ξ̃, S̃, R̃) = Uc(ξ̃, S̃) + F1(ξ̃, S̃, R̃) (59)

along all trajectories of (56) satisfies

V̇U,c(t) ≤−WU,c(ξ̃(t), S̃(t), R̃(t)) + Jc(ξ̃(t), S̃(t))S(t)u(t)

+ c]|ε(t)|+
(
c[ + 1

2µ

)
ε(t)2 (60)

for all t ≥ 0. (b) For any choice of the control u such that (21) is satisfied for all11

t ≥ 0, the function VU,c is an ISS Lyapunov function for (56) on its state space12

XU = R× (−R?,+∞)× (−S?,+∞) (61)

for the disturbance set S = [−min{B,ψ?/4}, ψ?/4].13

Proof. We deduce from (40) (applied with δ1 = ε and δ2 = −uS) and the definition14

of Jc in (16) that15

U̇c(t) ≤ −
(√

k4 + 1
k3
Uc(ξ̃, S̃)−

√
k4

)
+ Jc(ξ̃, S̃)Su+ c]|ε|+ c[ε

2. (62)

On the other hand, since ρ̂−χ = γ−λ = −µ, it follows from our formula ψ? = λeξ?16

that with the choice17

S̃] = S̃ + eξ?(eξ̃ − 1) + R̃, (63)

we have18

Ḟ1(t) = S̃]
[
−
(
χ+ βeξ̃+ξ?

)
S̃ + ψ?

(
1− eξ̃

)
− uS + βeξ?eξ̃S̃

+γeξ?(eξ̃ − 1)− µR̃+ ρ̂S̃ + Su
]

+ S̃]ε

= S̃]
[
(ρ̂− χ) S̃ +

(
γeξ? − ψ?

)
(eξ̃ − 1)− µR̃

]
+ S̃]ε

= −µ
[
S̃ + eξ?(eξ̃ − 1) + R̃

]2
+
[
S̃ + eξ?(eξ̃ − 1) + R̃

]
ε

≤ −µ2
[
S̃ + eξ?(eξ̃ − 1) + R̃

]2
+ 1

2µε
2 = −µF1(ξ̃, S̃, R̃) + 1

2µε
2,

(64)

where the last inequality in (64) used Young’s inequality. It follows from adding19

(62) and (64) that conclusion (a) of the lemma holds.20
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To check part (b) of the lemma, note that our formulas (14) give

WU,c(ξ̃, S̃, R̃) ≥
√
k4 +

1

k3
Uc(ξ̃, S̃) + 2µ

√
k4F1(ξ̃, S̃, R̃)−

√
k4

≥
√
k4 + χ0VU,c(ξ̃, S̃, R̃)−

√
k4, (65)

where1

χ0 = min
{

1
k3
, 2µ
√
k4

}
. (66)

The function VU,c is positive definite and radially unbounded. Thus VU,c is a strict2

Lyapunov function for the system (56) on its state space when ε and u are zero,3

from which an ISS inequality can be deduced when u satisfies the requirements of4

part (b) of the lemma. This completes the proof of part (b) of the lemma.5

Remark 3. The added function F1 in the formula (59) for VU,c was used to trans-6

form the strict Lyapunov function Uc for the lower dimensional system (28) into7

a strict Lyapunov function for (56). This is necessary because Uc is not a proper8

positive definite function of the state of the three-dimensional system (56), and also9

because the time derivative of Uc lacks the required negative definiteness require-10

ment for (56), because the right side of the decay condition (62) for Uc could be zero11

without R̃ being zero. Therefore, Uc lacks the two basic properties for being a strict12

Lyapunov function for (56) when ε and u are zero, namely, the shape requirement13

(of being a proper and positive definite function of the three-dimensional state) and14

the decay condition (on its time derivative along solutions of (56)). On the other15

hand, when u = 0, the sum of the right sides of (62) and (64) can only be zero when16

all components of (ξ̃, S̃, R̃) are zero. Therefore, adding the function F1 to Uc plays17

the dual role of providing the required proper and positive definiteness conditions18

for VU,c while also acting as the auxiliary function in the Matrosov approach to19

strict Lyapunov function constructions (e.g., from [21]), by providing the required20

negative definiteness of the decay condition on the strict Lyapunov function VU,c.21

From (50) it is clear that the increase of the total population S + I + R is exactly22

the inflow B + ε(t), and the decrease is the outflow −µ(S + I + R) since (50) is a23

compartmental system inheriting conservation. The function F1 makes use of the24

conserved variable in terms of the deviation from the equilibrium.25

4.3. Proof of Theorem 3.1. To simplify, we first consider the case of (9) where26

u is the zero function. Let us introduce the functions27

κ̃ = S̃ + eξ?
(
eξ̃ − 1

)
+ Q̃+ R̃, F2(κ̃) = 1

2 κ̃
2, and F3(Q̃) = 1

2 Q̃
2. (67)

Since ρ̂ − χ = −µ and −λ + ν + γ = −µ and ψ? = λeξ? , simple calculations give28

˙̃κ(t) = −µκ̃(t) + ε(t). Here and in the sequel, all equalities and inequalities are29

along solutions of (9) for all t ≥ 0. Hence,30

Ḟ2(t) = −µκ̃2 + κ̃ε ≤ −µ2 κ̃
2 + 1

2µε
2 and (68)

31

Ḟ3(t) = −(τ + µ)Q̃2 + νeξ?
(
eξ̃ − 1

)
Q̃ ≤ − τ+µ

2 Q̃2 + ν2e2ξ?

2(τ+µ)

(
eξ̃ − 1

)2
(69)

follow from Young’s inequality. Now, we observe that32

Vc(ξ̃, S̃, Q̃, R̃) = Uc(ξ̃, S̃) + gF2(κ̃) + c♦F3(Q̃). (70)
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Since the (ξ̃, S̃) dynamics in (9) is the same as (28) when u = 0 (with ε in (9)
replaced by δ in (28)), it follows from from (39) (with δ2 = 0 and δ1 = ε), (68) and
(69) that

V̇c(t) ≤− 1
2Wc(ξ̃, S̃) + c]|ε|+ c[ε

2 − gµ
2 κ̃

2 + g
2µε

2

− c♦ τ+µ
2 Q̃2 + c♦

ν2e2ξ?

2(τ+µ)

[
eξ̃ − 1

]2
=−

(
χ
2 + β

2 e
ξ̃+ξ?

)
S̃2 − cψ?

2

[
χ
β ξ̃ + eξ?

(
eξ̃ − 1

)](
eξ̃ − 1

)
− gµ

2 κ̃
2

− c♦ τ+µ
2 Q̃2 + c♦

ν2e2ξ?

2(τ+µ)

(
eξ̃ − 1

)2

+ c]|ε|+
(
c[ + g

2µ

)
ε2

≤−
(
χ
2 + β

2 e
ξ̃+ξ?

)
S̃2 − cψ?

2

[
χ
β ξ̃ + eξ?

2

(
eξ̃ − 1

)](
eξ̃ − 1

)
− gµ

2 κ̃
2

− c♦ τ+µ
2 Q̃2 + c]|ε|+

(
c[ + g

2µ

)
ε2

≤− 1
4Wc(ξ̃, S̃)− gµ

2 κ̃
2 − c♦ τ+µ

2 Q̃2 + c]|ε|+
(
c[ + g

2µ

)
ε2, (71)

where the second to last inequality followed from our formula for c♦ from (14).
Hence, Lemma 4.3 gives

V̇c(t) ≤− 1
2

[√
k4 + 1

k3
Uc(ξ̃, S̃)−

√
k4

]
− gµ

2 κ̃
2 − c♦ τ+µ

2 Q̃2 + c]|ε|

+
(
c[ + g

2µ

)
ε2

≤− 1
2

[√
k4 + 1

k3
Uc(ξ̃, S̃) + 4

√
k4

(
gµ
2 κ̃

2 + c♦
τ+µ

2 Q̃2
)
−
√
k4

]
+ c]|ε|+

(
c[ + g

2µ

)
ε2, (72)

where the second inequality in (72) used the relation1 √
k4 + s+ r ≥

√
k4 + s+ 2

√
k4r (73)

for suitable nonnegative values of r and s. It follows that (19) is satisfied when2

u = 0. Therefore, due to the way u enters the dynamics (9), the general case of the3

theorem where u is not necessarily the zero function follows because our choices of4

Jc and V in (16) and (18) give5

∂Vc
∂R̃

(ξ̃, S̃, Q̃, R̃)− ∂Vc
∂S̃

(ξ̃, S̃, Q̃, R̃) = −∂Uc
∂S̃

(ξ̃, S̃) = Jc(ξ̃(t), S̃(t)). (74)

This allows us to conclude.6

Remark 4. An alternative expression of (5) is R0 > 1, where7

R0 =
βB

(ρ̂+ µ)(γ + ν + µ)
(75)

is called the basic reproduction number [14]. The condition (5) in Theorem 3.1
has no conservativeness since this strict inequality is not only necessary for the
component-wise positiveness of the equilibrium (6), but is also needed for the local
asymptotic stability of the equilibrium via Jacobian analysis. For the SIRQ model
(1), the function

F2(κ̃) = 1
2 κ̃

2 = 1
2

[
S̃ + eξ?

(
eξ̃ − 1

)
+ Q̃+ R̃

]2
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used in the formula (18) for the strict Lyapunov function Vc replaces the role F11

played in adding R for the lower dimensional SIR model (50). For obtaining a strict2

Lyapunov function of the four state variables for (1), adding the two variables R and3

Q to the function Uc cannot be completed by the single function F2. This is why4

the new function F3(Q̃) = 1
2 Q̃

2 is also incorporated into the construction process5

for the strict Lyapunov function (18) by using a cascade argument. Since the SI6

dynamics drives Q, the time derivative of F3 is allowed to consume a portion of the7

decay provided by Uc appropriately, as seen in (69) and (71).8

5. Comparison of Controlled and Uncontrolled Cases. In addition to pro-9

viding robustness to model uncertainty through ISS, Lemma 4.5 (for the SIR model)10

and Theorem 3.1 (for the full model with quarantines and vaccination) provide a11

framework for comparing the performance of different possible controls u, namely,12

different choices of u’s that satisfy the ISS requirements from (21) in part (b) of13

each of the two results. We next illustrate this point for the full model (1), but14

analogous reasoning applies to the special case of the SIR model (50).15

Consider the feedback control law

u = max
{
−ρ̂,−ωSJc(ξ̃, S̃)

}
(76)

which depends on time through its dependence on the states ξ̃ and S̃, for constants16

ω ≥ 0 and ρ̂ > 0, which satisfies the requirements from part (b) of Theorem 3.1.17

The choice ω = 0 removes the control u from the vaccination ρ in dynamics (1).18

In Figures 1-3, we compare the performance of (1) using u = 0 (in Figure 1), the19

control (76) with ω = 0.01 and c = 1 (in Fig. 2), and (76) with ω = 0.1 and20

c = 0.1 (in Fig. 3). In each case, we chose ε = 0, β = 0.45/6.5, µ = 0.000034,21

γ = 0.0416, B = 221 × 10−6, τ = 0.0454, ν = 0.03 and ρ̂ = 0.0001. The peak22

of the infected population I is reduced by (76) when ω > 0, so this illustrates the23

value of our feedback control. The two controlled cases differ in the coefficient of S̃24

appearing in the Jc formula from (76), according to (16). The more the susceptible25

individuals are removed when the population is large, the smaller the population of26

infected individuals becomes. The guarantee we proved is global, as illustrated by27

the convergence in Fig. 4 which is computed for a different set of initial populations.28

For the same parameters and the initial populations as in Figs. 1-3, simulations are29

performed and plotted in Fig. 5 for the non-zero immigration/newborn perturbation30

ε(t) = −20×10−6 cos(πt/150) million, which satisfies ε(t) ∈ [−min{B,ψ?/4}, ψ?/4]31

in Theorem 3.1. With the 20% increase of immigrants (from B+ ε(0) = 201× 10−6
32

to B + ε(150) = 241 × 10−6), the reduction of the infection peak with (76) with33

ω = 0.1 and c = 0.1 is larger than the reduction with the other two control inputs.34

Remark 5. The values for the parameters µ, γ, B, and τ we chose above were35

based on the data reported in [7] for the outbreak of SARS in 2003, by combining36

four variables into two variables and incorporating the disease-associated death in37

the population R. The data is for Hong Kong, which has a population of 6.5 million.38

In the simulations, the unit of population is in millions, and the time t is in days.39

In our simulations, the transmission rate β triples 0.15/6.5 in [7] so that the basic40

reproduction number is increased to 6.282 since the transmission rate of COVID-41

19 has been reported as large as 7 or even higher numbers [19, 28, 30]. The initial42

conditions used in Fig. 1-4 are the populations obtained by simulation 25 days after43

March 1, 2003 which was the initial time in [7]. In other words, Figures 1-4 simulate44
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Figure 1. Populations of (1) with u = 0 and ρ̂ = 0.0001.
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Figure 2. Populations of (1) under the control (76) with ω = 0.01,
c = 1, and ρ̂ = 0.0001.

the vaccine administration starting 30 days after the emergence of the disease in1

the region.2

6. Conclusion. We provided new global strict Lyapunov function constructions3

for an SIR model that also includes quarantine and vaccination. Since our strict4

Lyapunov functions were also ISS Lyapunov functions, this made it possible to5

prove ISS properties with respect to piecewise continuous locally bounded uncer-6

tainties, under suitable bounds on the uncertainties. The ISS robustness property7

was beyond the scope of prior treatments of SIR models that did not provide ISS8

Lyapunov functions or that led to discontinuous feedbacks. Our strict Lyapunov9
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Figure 3. Populations of (1) under the control (76) with ω = 0.1,
c = 0.1, and ρ̂ = 0.0001.
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Figure 4. Populations of (1) under the control (76) with ω = 0.1,
c = 0.1, and ρ̂ = 0.0001.

function constructions also made it possible to directly design feedback controllers,1

and our simulations illustrated how nonzero choices of the feedback controls can2

have beneficial effects by reducing the peak infection levels. Our stepwise construc-3

tion of ISS Lyapunov functions directly provided reasonable controllers that are4

independent of downstream populations and allowed us to concentrate only on sus-5

ceptible and infected populations in achieving the ISS guarantee involving all four6

populations. In future work, we will study the effects of input delays [4, 13, 22]7

in our feedback controls, as well as delay compensation based on exact predictors,8

chain predictors [3, 5], or other dynamic extensions [25].9
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Figure 5. Infected population of (1) with three different controls
in the presence of perturbation ε(t).

Appendix: Proofs of Lemmas 4.1-4.3. We provide proofs of our Lemmas 4.1-1

4.3 which we used to prove our result for the SI case in Section 4.1.2

Proof of Lemma 4.1. The time derivative of V1 along the trajectories of the3

system (28) satisfies4

V̇1(t) = S̃
[
−
(
χ+ βeξ̃+ξ?

)
S̃ + ψ?

(
1− eξ̃

)]
+
ψ?
β

(
eξ̃ − 1

)
βS̃ + S̃δ. (A.1)

We deduce that the equality (32) is satisfied. Next, let5

$ = S̃ +
χ

β
ξ̃ + eξ?

(
eξ̃ − 1

)
. (A.2)

Then (28) can be rewritten as

˙̃
ξ(t) =β

[
$(t)−

(
χ

β
ξ̃(t) + eξ?

(
eξ̃(t) − 1

))]
, (A.3a)

$̇(t) =−
(
χ+ βeξ̃(t)+ξ?

)
S̃(t) + ψ?

(
1− eξ̃(t)

)
+
χ

β
˙̃
ξ(t) + eξ̃(t)+ξ?

˙̃
ξ(t) + δ(t), (A.3b)

which we rewrite as

$̇(t) =ψ?

(
1− eξ̃(t)

)
+ δ(t), (A.4a)

˙̃
ξ(t) =−

[
χξ̃(t) + βeξ?

(
eξ̃(t) − 1

)]
+ β$(t) (A.4b)

by using the fact that
˙̃
ξ = βS̃. Using the equalities (A.4) and recalling that6

V2(ξ̃, S̃) =
1

2
$2 +

ψ?
β

(
eξ̃ − 1− ξ̃

)
(A.5)
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we can easily prove that the time derivative of the function V2 along the trajectories
of (28) satisfies

V̇2(t) =
[
S̃ + χ

β ξ̃ + eξ?
(
eξ̃ − 1

)]
ψ?

(
1− eξ̃

)
− ψ?

β

(
eξ̃ − 1

) [
χξ̃ + βeξ?

(
eξ̃ − 1

)]
+ ψ?

β

(
eξ̃ − 1

)
β
[
S̃ + χ

β ξ̃ + eξ?
(
eξ̃ − 1

)]
+
[
S̃ + χ

β ξ̃ + eξ?
(
eξ̃ − 1

)]
δ (A.6)

for all t ≥ 0. We deduce that the equality (33) is satisfied.1

Proof of Lemma 4.2. For all (a, b) ∈ R2 such that |a| ≥ ln(2), the inequality2

Wc(a, b) ≥ cψ?χ
β a (ea − 1) ≥ cψ?χ

2β |a| (A.7)

is satisfied. On the other hand, for all (a, b) ∈ R2 such that |a| ≤ ln(2), we have3

|ea − 1| ≥ 1
2 |a|. Hence,4

Wc(a, b) ≥ cψ?
(
χ
β |a|+

eξ?

2 |a|
)

1
2 |a| =

cψ?
2

(
χ
β + eξ?

2

)
a2 (A.8)

in this case. From (A.7) and (A.8), we deduce that (34) holds.5

Proof of Lemma 4.3. From (15), we deduce that for all (a, b) ∈ R2, we have

Uc(a, b) ≤ 1+2c
2 b2 + c

[
χ
β a+ eξ? (ea − 1)

]2
+ (c+1)ψ?

β (ea − 1− a)

≤ 1+2c
2 b2 + 2cχ2

β2 a2 + 2ce2ξ? (ea − 1)
2

+ (c+1)ψ?
β (ea − 1− a) , (A.9)

by applying the relation (q +m)2 ≤ 2q2 + 2m2 for suitable real values of q and m.6

Hence, using the relation7

ea − 1− a =
∫ a

0
(e` − 1)d` ≤ a (ea − 1) ≤ 1

2a
2 + 1

2 (ea − 1)
2

(A.10)

(which follows, e.g., by separately considering the cases a ≥ 0 and a < 0) we obtain

Uc(a, b) ≤
1 + 2c

2
b2 +

2cχ2

β2
a2 + 2ce2ξ? (ea − 1)

2

+ (c+1)ψ?
2β a2 + (c+1)ψ?

2β (ea − 1)
2

=
1 + 2c

2
b2 +

[
2ce2ξ? +

(c+ 1)ψ?
2β

]
(ea − 1)

2

+
[

2cχ2

β2 + (c+1)ψ?
2β

]
a2

≤ k1

2
Wc(a, b) +

[
2cχ2

β2
+

(c+ 1)ψ?
2β

]
a2 (A.11)

with k1 defined in (11). From (34), we deduce that

Uc(a, b) ≤ k1
2 Wc(a, b)

+
[

2cχ2

β2 + (c+1)ψ?
2β

] [
4β2

c2ψ2
?χ

2Wc(a, b)
2 + 2

cψ?
(
χ
β+ eξ?

2

)Wc(a, b)

]
= k2

2 Wc(a, b) + k3
4 Wc(a, b)

2 (A.12)
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with k2 and k3 defined in (12) and (13). It follows that

k2
2

4k3
+ Uc(a, b) ≤ k22

4k3
+ k2

2 Wc(a, b) + k3
4 Wc(a, b)

2

= k3

(
1
2Wc(a, b) + k2

2k3

)2

. (A.13)

By our formula for k4 from (14), we deduce that (35) is satisfied.1
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