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Abstract. We consider a class of optimal control problems defined on a strati-
fied domain. Namely, we assume that the state space R

N admits a stratification
as a disjoint union of finitely many embedded submanifolds Mi. The dynam-
ics of the system and the cost function are Lipschitz continuous restricted
to each submanifold. We provide conditions which guarantee the existence
of an optimal solution, and study sufficient conditions for optimality. These
are obtained by proving a uniqueness result for solutions to a corresponding
Hamilton-Jacobi equation with discontinuous coefficients, describing the value
function. Our results are motivated by various applications, such as minimum
time problems with discontinuous dynamics, and optimization problems con-
strained to a bounded domain, in the presence of an additional overflow cost
at the boundary.

1. Introduction. The theory of viscosity solutions was initially developed in con-
nection with continuous solutions of Hamilton-Jacobi equations, whose coefficients
are also continuous.

Various authors have then extended the theory in cases where the value function
is discontinuous [2, 15]. In particular, upper or lower solutions to a H-J equation
can now be defined within a more general class of semicontinuous functions. In
a different direction, motivated by problems in optimal control, sufficient condi-
tions for the optimality of a feedback synthesis have been established in [12], under
assumptions that do not require the continuity of the value function.

A further line of investigation, more recently pursued in [14, 5], is the case where
the coefficients of the H-J equation are themselves discontinuous. The present pa-
per represents a contribution in this direction, in a specific case. Namely, we study
the value function for an infinite-horizon optimal control problem, on a structured
domain. The space R

N is decomposed as the disjoint union of finitely many sub-
manifolds of different dimensions, and we assume that the dynamics of the system
as well as the running cost are sufficiently regular when restricted to each given
manifold, but may well differ from one manifold to the other.
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More precisely, we assume that there exists a decomposition

R
N = M1 ∪ · · · ∪MM (1)

with the following properties. Each Mj ⊂ R
N is an embedded submanifold. If

j 6= k, then Mj ∩Mk = ∅. In addition, if Mj ∩Mk 6= ∅, then Mj ⊂ Mk, where
the upper bar denotes closure.

We call dk
.
= dim(Mk) so that dk = 0 if Mk consists of a single point and

dk = N if Mk is an open subset of R
N . For example, in figure 1 we have

d1 = d2 = 2, d3 = d4 = d5 = d6 = 1, d7 = d8 = d9 = d10 = 0.

a

b

0

Figure 1. A stratification of R
2 induced by a rectangle.

We now consider an optimal control problem with infinite horizon and exponen-
tially discounted cost with β > 0:

minimize: J(x̄, α)
.
=

∫ ∞

0

e−βtℓ(x(t), α(t)) dt (2)

for a system with dynamics

ẋ(t) = f(x(t), α(t)), x(0) = x̄ ∈ R
N . (3)

Here t 7→ α(t) denotes the control function.
The value function is defined as

V (x̄)
.
= inf

α∈A
J(x̄, α), (4)

where A is the set of all admissible control functions.
Our key assumption is that both the field f and the cost ℓ are sufficiently regular

when restricted to each of the manifolds Mj . More precisely

(H1) For each i = 1, . . . , M there exists a compact set of controls Ai ⊂ R
m, a

continuous map fi : Mi × Ai 7→ R
N , and a cost function ℓi with the following

properties

(a) At each point x ∈ Mi, all vectors fi(x, a), a ∈ Ai are tangent to the
manifold Mi.

(b) |fi(x, a) − fi(y, a)| ≤ Lip(fi) |x − y|, for all x, y ∈ Mi, a ∈ Ai.
(c) Each cost function ℓi(x, a) is non-negative and continuous.
(d) We have f(x, a) = fi(x, a) and ℓ(x, a) = ℓi(x, a) whenever x ∈ Mi, i =

1, . . . , M .
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By Lip(fi) we denote here a Lipschitz constant for the function fi w.r.t. the first
variable. In the following, for any x ∈ R

N , the index i(x) ∈ {1, . . . , M} identifies
the manifold which contains the point x. In other words,

i(x)
.
= k if x ∈ Mk .

The assumption (d) can now be written as

f(x, a) = fi(x)(x, a) , ℓ(x, a) = ℓi(x)(x, a) , a ∈ Ai(x) .

We recall that the tangent cone TMi
(x) to the manifold Mi at the point x is

TMi
(x)

.
=

{
y ∈ R

N ; lim
h→0

d(x + hy;Mi)

h
= 0

}
, (5)

where d(x;Mi)
.
= infz∈Mi

|z − x|. The tangency condition in (H1-a) can thus be
restated as

fi(x, a) ∈ TMi
(x) ∀x ∈ Mi , a ∈ Ai .

Since the functions fi are Lipschitz continuous w.r.t. x and the sets of controls Ai

are assumed to be compact, it follows that trajectories of the control system cannot
approach infinity in finite time. Indeed, all solutions of (3) satisfy the a-priori
bounds ∣∣ẋ(t)

∣∣ ≤ C
(
1 + |x(t)|

)
, (6)

∣∣x(t)
∣∣ ≤ eCt

(
1 + |x(0)|

)
, (7)

for some constant C.

In the above setting, our main interest is in the existence of optimal controls,
and in the characterization of the value function as the unique solution to the
corresponding H-J equation, in an appropriate sense. In Section 3 we discuss a
simple example, showing that the standard definition of the viscosity solution is
not adequate in the case of discontinuous dynamics and cost functions. Indeed, in
addition to the value function, one can now have infinitely many other Lipschitz
continuous admissible solutions to the H-J equation. We then show how to modify
the definition of a solution, in connection with the stratification (1), in order to
uniquely characterize the value function.

In the case of an upper solution v, the comparison result relies on an invariance
property of the epigraph of v, as in [15]. To analyze lower solutions, our techniques
resemble those used in [7] and [12] to prove the optimality of a regular feedback
synthesis. The main technical difficulty encountered here is due to the stratification
(1). In particular, the case of an optimal trajectory that enters and exits infinitely
many times from the same manifold Mi cannot be ruled out a priori, and requires
a more careful study.

Example 1 (Minimum time problem with discontinuous coefficients).
Consider a minimum time problem on R

2, assuming that the speed can be much
higher along “highways”, described by a finite number of curves in the plane. As
admissible velocity sets one can then take, for example

F0(x) = {y ∈ R
2 ; |y| ≤ c0(x)}

outside the highways, and

Fi(x) = {y ∈ R
2 ; y ∈ TMi

(x) , |y| ≤ ci(x)}
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along the highway Mi, for some speeds 0 < c0(x) << ci(x). Given a target point
x† ∈ R

2, consider the cost function ℓ(x, ·) = 1 if x 6= x† while ℓ(x†, ·) = 0. Then
value function for the problem

min
x(·)

∫ ∞

0

e−βtℓ(x(t), ẋ(t)) dt

subject to

x(0) = x̄ , ẋ(t) ∈ F (x(t))

is given by

V (x̄) =
1 − e−βT (x̄)

β
.

Here T (x̄) is the minimum time needed to steer the system from x̄ to the target point
x†. This provides a simple example of a minimum time problem with discontinuous
velocities, which can be recast in the form (1).

Example 2 (Optimization problem with reflecting boundary). Consider
an open domain Ω ⊂ R

N whose closure consists of finitely many smooth manifolds
such as Ω̄ = M1 ∪ · · · ∪MM . Typically, Ω could be a polytope in R

n. We assume
that its dynamics is described by the equation

ẋ(t) = πΩ̄(x)

(
g(x(t), α(t))

)
= g(x(t), α(t)) − n(x(t), α(t)) , x ∈ Ω̄, (8)

where n(x(t), α(t)) is a vector in the outer normal cone NΩ̄(x) to Ω̄ at the point x,
i.e.,

NΩ̄(x)
.
=

{
p ∈ R

N ; 〈p, v〉 ≤ 0 ∀v ∈ TΩ̄(x)
}

.

The map v 7→ πΩ̄(x)(v) here denotes the perpendicular projection of a vector v on

the tangent space to Ω̄ at the point x ∈ Ω̄. The measurable map, α : [0,∞) 7→ A, is
the control function, where A is a compact subset of R

m. The map g : Ω̄×A 7→ R
N

is Lipschitz continuous in the first variable.
In connection with (8), we consider the problem of minimizing a functional of

the discounted sum of a running cost plus an additional cost due to the boundary
reflection:

J(x̄, α)
.
=

∫ ∞

0

e−βt
{
c(x(t), α(t)) + b(x(t), n(x(t), α(t)))

}
dt, (9)

subject to the initial condition and the constraint

x(0) = x̄ , x(t) ∈ Ω̄, ∀t > 0. (10)

Let b(x, 0) = 0 and b(x, n) ≥ 0 for x ∈ ∂Ω, n ∈ NΩ̄(x).
In the case of a piecewise smooth boundary, this type of dynamics fits naturally

within our framework. Suppose Ω = M1 and ∂Ω = M2 ∪ · · · ∪ MM . On the
submanifold M1,

F1(x) = { g(x, a) ; a ∈ A }.

On Mi, i = 2, · · · , M .

Fi(x) = { g(x, a) − n(x, a) ; a ∈ Ai }.

where Ai = { a ∈ A ; g(x, a) − n(x, a) ∈ TMi
, ∀x ∈ Mi }.

In order to retain the whole space R
N as the domain for the control system, it

suffices to choose a cost c(x, a) very large when x /∈ Ω̄. This will force the solution of
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the optimization problem to remain inside Ω̄ at all times. Notice that the reflecting
(or overflow) cost, b(x(t), n(x(t), α(t)) is not present at points in the interior of Ω.

The case where boundary reflection occurs at no additional cost, i.e. b ≡ 0, has
been studied in the literature as the Skorokhod problem [9, 13].

A related differential inclusion. To study certain aspects of the optimization
problem, it is convenient to reformulate it as a differential inclusion, leaving aside
the parametrization of the velocity sets in terms of the control values.

For each x ∈ R
N , define the set of admissible velocities

F (x)
.
=

{
fi(x)(x, a) ; a ∈ Ai(x)

}
⊂ R

N . (11)

Sometimes, we will use Fi(x)(x) for F (x) in order to show i(x) explicitly. Moreover,
define the extended multifunction

F̂ (x)
.
=

{
(y, η) ; y = fi(x)(x, a) , η ≥ ℓi(x)(x, a) , a ∈ Ai(x)

}
⊂ R

N+1 . (12)

Denoting by co S the closed convex hull of a set S, we shall also consider the upper
semicontinuous, convex-valued regularization

G(x)
.
=

⋂

ε>0

co
{
(y, η) ∈ F̂ (x′) ; |x′ − x| < ε

}
⊂ R

N+1 . (13)

To achieve the existence of an optimal control for the problem (2)-(3), we shall
use the following assumption.

(H2) For every x ∈ R
N one has

{
(y, η) ∈ G(x) ; y ∈ TMi(x)

(x)
}

= F̂ (x) . (14)

In particular, (H2) implies

(H2′) For each fixed x ∈ R
N , the set F (x) ⊂ R

N is convex. Moreover, the function

p 7→ L(x, p)
.
= min

{
ℓi(x)(x, a) ; fi(x)(x, a) = p, a ∈ Ai(x)

}
,

defined for p ∈ F (x), is convex.

The Hamilton-Jacobi equation. Besides proving the existence of an optimal
control, we wish to characterize the value function as the unique solution of the
corresponding Hamilton-Jacobi (H-J) equation

βu(x) + H(x, Du(x)) = 0 . (15)

Here the Hamiltonian function is defined as

H(x, p)
.
= sup

(f,η)∈G(x)

{
− f · p − η

}
. (16)

We mention here some relations of the present work with earlier literature. The
type of stratified control system which we consider in (H1) is reminiscent of the
definition of regular synthesis by Boltyanskii [3] and by Brunovský [4]. However,
in their case the stratification referred to the structure of the value function, while
here the stratification is a property of the control system. In certain ways, our
framework is similar to a hybrid control system [11, 16], where the state can jump
within a finite set of manifolds. The main differences here are that (i) the times ti
where the state moves from one manifold to another are determined by the position
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of the system itself, and not directly by the controller, and (ii) there is no cost
associated to the transition from one manifold to another. As a result, an optimal
trajectory may well leave and re-enter a given manifold Mi infinitely many times.

Various studies on H-J equations with discontinuous coefficients have appeared
in recent years, due to a growing recognition of the importance of these equations.

Newcomb and Su [10] introduced the Monge solution for an equation of eikonal
type

H(Du) = n(x),

where H is assumed to be convex and n(x) is a positive, measurable function. In [14],
Soravia studied a class of optimal control problems with discontinuous Lagrangian.
The H-J equations take the special form

βu(x) + sup
a∈A

{−f(x, a) · Du(x) − h(x, a)} = g(x), (17)

where f and h are locally Lipschitz continuous and g is a Borel measurable function.
In a paper by Camilli and Siconolfi, a general class of H-J equations with measur-

able coefficients is considered. In [5], they propose a definition of a solution which
disregards sets of measure zero. This is very different from our approach, where
the form of the control system on submanifolds Mj of dimension dj < N (hence of
measure zero) plays a key role in the optimization problem.

In Section 2 we prove a theorem on the existence of optimal controls. The main
ingredients of the proof are the same as in the standard case, with continuous
dynamic and cost functionals. The convexity assumption (H2) here provides the
key tool for passing to the limit in a minimizing sequence.

In the remaining sections we seek conditions which imply the optimality of a
given trajectory. Toward this goal, in Section 3, we introduce suitable notions of
upper and lower solutions to the corresponding H-J equation with discontinuous
coefficients (15)-(16), valid in connection with the given stratification. We then
prove that the value function V in (4) is an admissible solution. In Section 4, its
uniqueness, within the class of admissible solutions, is proved by showing that

u(x) ≤ V (x) ≤ v(x) for all x ∈ R
N .

where u and v denote respectively a lower and an upper solution. These comparison
results require some minimum regularity assumptions. Namely, the value function
V should be globally Hölder continuous of exponent 1/2, and its restriction to
each submanifold Mk should be a.e. differentiable (almost everywhere w.r.t. the
dk-dimensional measure). By Rademacher’s theorem, this last condition certainly
holds if V is locally Lipschitz continuous in a neighborhood of a.e. point x ∈ Mk .
For example, the function V (x, y) =

√
|x| +

√
|y| satisfies the above requirements,

for a stratification with M1 = {(x, y) ; y = 0}, M2 = R
2 \M1 .

2. Existence of an optimal control. The aim of this section is to prove a the-
orem on the existence of optimal controls. This will be achieved by a suitable
modification of Filippov’s argument [6], to account for the discontinuities in the
dynamics and in the cost functions.

Theorem 1. Consider the optimization problem (2), for the control system (3) on
a stratified domain. Let the assumptions (H1), (H2) hold. If there exists at least
one trajectory having finite cost, then the minimization problem admits an optimal
solution.
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Proof. The proof will be given in several steps.

1. (Existence of a minimizing sequence). By assumption, there exists a
sequence of admissible controls αk(·) with corresponding trajectories xk(·) such
that

ẋk(t) = f(xk(t), αk(t)) , xk(0) = x̄

lim
k→∞

∫ ∞

0

e−βt ℓ(xk(t), αk(t)) dt = inf
α∈A

J(x̄, α)
.
= m < +∞ . (18)

2. (Compactness =⇒ existence of a convergent subsequence). By the
continuity assumption in (H1), the cost function ℓ is locally bounded. We can thus
find a continuous function x 7→ K†(x) such that

ℓ(x, a) < K†(x) for all x ∈ R
N , a ∈ Ai(x) . (19)

Recalling (13), we define the truncated, time dependent multifunction

G†(t, x)
.
=

{
(y , e−βtη) ; (y, η) ∈ G(x) , η ≤ K†(x)

}
⊂ R

N+1. (20)

We observe that G† is upper semicontinuous with convex, compact values. Define

γk(t)
.
=

∫ t

0

e−βsℓ
(
xk(s), αk(s)

)
ds .

Then for each k ≥ 1 the map

t 7→
(
xk(t) , γk(t)

)

provides a solution to the differential inclusion

d

dt
(x(t), γ(t)) ∈ G†(t, x(t)) , (x(0), γ(0)

)
= (x̄, 0). (21)

The Lipschitz continuity of the functions fi, and the compactness of the sets of
controls Ai, imply that all solutions of (3) satisfy the a-priori bounds (6), (7). In
particular, on any given time interval [0, T ], all values |xk(t)| as well as all derivatives
|ẋk(t)| remain uniformly bounded. Because of (19), the cost functions ℓ(xk, αk) are
also uniformly bounded. By the Ascoli-Arzelà compactness theorem, by possibly
taking a subsequence, we can assume the convergence

xk(t) → x∗(t) , γk(t) → γ∗(t)

for some limit functions x∗(·), γ∗(·), uniformly for t in bounded sets.

3. (The limit trajectory is admissible). By the theory of differential inclusions
[1], the upper semicontinuity and convexity properties of the multifunction G† imply
that the limit trajectory satisfies

d

dt

(
x∗(t), γ∗(t)

)
∈ G†

(
t, x∗(t)

)
,

(
x∗(0), γ∗(0)

)
= (x̄, 0).

For i = 1, . . . , M , consider the set of times

Ji
.
=

{
t ≥ 0 ; x∗(t) ∈ Mi

}
. (22)

Each Ji is a Borel measurable subset of the real line. Moreover,

ẋ∗(t) ∈ TMi
(x∗(t)) for a.e. t ∈ Ji .
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We can thus use the assumption (H2′) and deduce that, for a.e. time t ≥ 0,

ẋ∗(t) ∈ F (x∗(t)) ,

γ̇∗(t) ≥ min
{
e−βtℓi(x∗(t))

(
x∗(t), a

)
; fi(x∗(t))

(
x∗(t) , a

)
= ẋ∗(t), a ∈ Ai(x∗(t))

}
.

4. (The limit trajectory is optimal). By the previous step, and by Filippov’s
measurable selection theorem [6], we can select control functions α∗

i : Ji 7→ Ai such
that

ℓi(x
∗(t), α∗

i (t)) = min
{
ℓi(x

∗(t), a) ; a ∈ Ai , fi(x
∗(t), a) = ẋ∗(t)

}

for a.e. t ∈ Ji. Defining

α∗(t) = α∗
i (t) for t ∈ Ji ,

we obtain

ẋ∗(t) = fi(x∗(t))

(
x∗(t), α∗(t)

)
. (23)

Moreover, for every fixed T > 0,
∫ T

0

e−βt ℓ
(
x∗(t), α∗(t)

)
dt ≤ γ∗(T ) = lim

k→∞

∫ T

0

e−βt ℓ
(
xk(t), αk(t)

)
dt ≤ m .

Letting T → ∞ we obtain
∫ ∞

0

e−βt ℓ
(
x∗(t), α∗(t)

)
dt = sup

T>0

∫ T

0

e−βt ℓ
(
x∗(t), α∗(t)

)
dt ≤ m . (24)

Together, (23) and (24) yield the result.

3. Viscosity solutions of the Hamilton-Jacobi equation. For optimal control
problems with continuous dynamics, it is well known that the value function pro-
vides a solution of a corresponding Hamilton-Jacobi equation, in a viscosity sense
[2, 8]. In the remainder of this paper, we show how the definition of the viscosity
solution can be adapted to the case of stratified control system, and extend the well
known comparison and uniqueness results to this case.

3.1. Upper and lower solutions. We now introduce the definitions of upper and
lower solution for (15)-(16), relative to the stratified domain (1).

Definition 1. We say that a continuous function w is an upper solution of (15)-
(16) relative to the stratification (1) if the following holds. If w − ϕ has a local
minimum at x̄ for some ϕ ∈ C1, then

βw(x̄) + sup
(y,η)∈G(x̄)

{
− y · Dϕ(x̄) − η

}
≥ 0. (25)

Definition 2. We say that a continuous function w is a lower solution of (15)-
(16) relative to the stratification (1) if the following condition holds. If x̄ ∈ Mi and
the restriction of w − ϕ to Mi has a local maximum at x̄ for some ϕ ∈ C1, then

βw(x̄) + sup
(y,η)∈G(x̄)

{
− y · Dϕ(x̄) − η

}
≤ 0. (26)

Definition 3. A continuous function, which is at the same time an upper and a
lower solution relative to the stratification (1), will be called a viscosity solution.
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Notice that, in the definition of a lower solution, we restrict the analysis to the
manifold Mi(x̄) . This is motivated by the following example.

Example 3. Consider the problem of reaching the origin in minimum time, for the
system of R

2 described by

d

dt
(x1, x2) ∈ F (x1, x2)

.
=

{ {
(y1, 0) ; |y1| ≤ 3

}
if x2 = 0 ,

{
(y1, y2) ; |y1| + |y2| ≤ 1

}
if x2 6= 0 .

In this case, the optimal trajectories are easy to describe: To reach the origin
starting from (x̄1, x̄2) we first move vertically toward the point (x̄1, 0) with speed
1, then move horizontally to the origin, with speed 3. The minimum time function
is thus

V (x1, x2) =
|x1|

3
+ |x2| .

This provides a viscosity solution on R
2 \ {0} to the corresponding H-J equation

sup
y∈F (x)

{
− y · ∇v(x)

}
− 1 = 0 . (27)

However, if we use the standard notion of a viscosity solution, then also the function

U(x1, x2) =
|x1|

2
+ |x2| .

provides a solution. Indeed, at any point x̄ = (x̄1, 0) there is no C1 function ϕ such
that u− ϕ has a local maximum at x̄. Therefore, the usual definition of a viscosity
subsolution does not pose any requirement at these points.

Recalling Example 1, one checks that the functions

Ṽ (x)
.
= 1 − e−V (x), Ũ(x)

.
= 1 − e−U(x)

provide two distinct viscosity solutions (in the standard sense) to the same equation

u(x) + sup
y∈F (x)

{
− y · ∇u(x)

}
− 1 = 0 (28)

on R
2 \{0}. Notice however that Ũ does not satisfy our present definition of a lower

solution.

3.2. The value function as a viscosity solution.

Proposition 1. Consider the optimal control problem (2), for the control system
(3) on a stratified domain. Let the assumptions (H1), (H2) hold and assume that
the value function V is continuous. Then, V is a viscosity solution according to
Definition 3.

Proof. The argument naturally consists of two parts.

1. V is an upper solution. Let ϕ ∈ C1 and let x̄ be a point where V −ϕ attains
a local minimum. We can assume that, for some r > 0,

ϕ(x̄) = V (x̄) , ϕ(x′) ≤ V (x′) ∀x′ ∈ B(x̄, r). (29)

Let t 7→ α∗(t) and t 7→ x∗(t) be respectively an optimal control and a correspond-
ing optimal trajectory, starting from the point x̄. Their existence was proved in
Theorem 1. For all T ≥ 0 we now have

V (x̄) =

∫ T

0

e−βtℓ(x∗(t), α∗(t))dt + e−βT V (x∗(T )) , (30)
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If we had x∗(t) ∈ Mj for a fixed index j ∈ {1, . . . , M} and all t ∈]0, δ], δ > 0, it
would now be easy to conclude. However, we must consider the possibility that the
optimal trajectory x∗(·) switches infinitely many times between different manifolds
Mi. To handle this more general situation, we consider the minimum dimension
among these manifolds:

d−
.
= lim inf

t→0
di(x∗(t)) .

We then choose a manifold Mk of minimum dimension d− such that

x∗(Tn) ∈ Mk

for a sequence of times Tn → 0.
By possibly taking a subsequence, as Tn → 0 we can assume that

lim
n→∞

x∗(Tn) − x̄

Tn

= lim
n→∞

1

Tn

∫ Tn

0

f
(
x∗(t), α∗(t)

)
dt = f̄ , (31)

lim
n→∞

1

Tn

∫ Tn

0

e−βtℓ
(
x∗(t), α∗(t)

)
dt = η̄ , (32)

for some vector f̄ ∈ TMk
(x̄) and some η̄ ≥ 0. Observing that

d

dt

(
x∗(t), −V

(
x∗(t)

))

=
(
fi(x∗(t))

(
x∗(t), α∗(t)

)
, −βV

(
x∗(t)

)
+ ℓi(x∗(t))

(
x∗(t), α∗(t)

))
,

we have
d

dt

(
x∗(t), −V

(
x∗(t)

))
+

(
0, β V

(
x∗(t)

))
∈ G

(
x∗(t)

)
. (33)

By (30) and (32) it follows

lim
n→∞

V (x̄) − V
(
x∗(Tn)

)

Tn

+ β V (x̄) = lim
n→∞

1

Tn

∫ Tn

0

e−βtℓ
(
x∗(t), α∗(t)

)
dt = η̄ .

(34)
The upper semicontinuity and the convexity of the multifunction G implies (f̄ , η̄) ∈
G(x̄).

To prove that V is a supersolution, we need to show that

βϕ(x̄) + sup
(y,η)∈G(x̄)

{
− y · ∇ϕ(x̄) − η

}
≥ βϕ(x̄) − f̄ · ∇ϕ(x̄) − η̄ ≥ 0 . (35)

From (34) and (29) it now follows

η̄ − β V (x̄) = lim
n→∞

V (x̄) − V
(
x∗(Tn)

)

Tn

≤ lim
n→∞

ϕ(x̄) − ϕ
(
x∗(Tn)

)

Tn

= −f̄ · ∇ϕ(x̄) ,

proving (35).

2. V is a lower solution. Assume that ϕ ∈ C1 and that the function V − ϕ,
restricted to Mi, attains a strict local maximum at x̄ ∈ Mi We can assume that,
for some r > 0,

ϕ(x̄) = V (x̄) , ϕ(x′) ≥ V (x′), ∀x′ ∈ B(x̄, r) ∩Mi . (36)

Fix any (y, η) ∈ G(x̄). We need to show that

βV (x̄) − y · Dϕ(x̄) − η ≤ 0. (37)
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By the assumption (H2), there exists a control value a ∈ Ai such that

y = fi(x̄, a) , η ≥ ℓi(x̄, a) . (38)

Consider the trajectory t 7→ x(t) corresponding to the constant control α(t) ≡ a.
Our assumptions imply

x(t) ∈ Mi ∩ B(x̄, r) ,

at least for a short time interval, say t ∈ [0, T ]. Since

V (x̄) ≤

∫ t

0

e−βsℓi

(
x(s), a) ds + e−βtV

(
x(t)

)
,

we compute

lim
t→0

ϕ(x̄) − e−βtϕ
(
x(t))

t
≤ lim

t→0

V (x̄) − e−βtV
(
x(t))

t

≤ lim
t→0

1

t

∫ t

0

e−βsℓi

(
x(s), a

)
ds = ℓi(x̄, a) .

Therefore, by (38),

η ≥ ℓi(x̄, a) ≥ lim
t→0

ϕ(x̄) − e−βtϕ
(
x(t))

t
= β ϕ(x̄)−fi(x̄, a)·∇ϕ(x̄) = β V (x̄)−y·∇ϕ(x̄) .

This establishes (37), completing the proof.

4. Uniqueness of the viscosity solution. The aim of this section is to charac-
terize the value function V as the unique solution to the Hamilton-Jacobi equation
(15)-(16). Toward this goal, we shall establish comparison results stating that

u(x) ≤ V (x) ≤ v(x) for all x ∈ R
N , (39)

where V is the value function for the optimal control problem (2)-(3), while v and
u are respectively an upper and a lower solution relative to the stratification (1),
according to Definitions 1 and 2.

For an upper solution v ≥ 0, a continuity assumption already suffices to achieve
the comparison result. For lower solutions, a comparison theorem is valid under
stronger assumptions, such as the Lipschitz continuity of the value function. An
alternative set of assumptions, somewhat less restrictive than Lipschitz continuity,
is the following.

(H3) The function u is Hölder continuous of exponent 1/2. Moreover, the restriction
of u to each manifold Mi is locally Lipschitz continuous outside a countable union
of C1 sub-manifolds of strictly smaller dimension.

Still in connection with lower solutions, we shall need a bound on the growth of
u as |x| → ∞.

(H4) Either u is globally bounded or

|u(x)| ≤ C0

(
1 + |x|

)
,

∣∣fi(x, a)
∣∣ ≤ C1

(
1 + |x|

)
,

where C0 and C1 are some positive constants, with C1 < β .
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4.1. The upper solution and the value function.

Theorem 2. Consider the optimal control problem (2), for the control system (3)
on a stratified domain. Let the assumptions (H1), (H2) hold. Let V be the value
function and let v be a non-negative, continuous upper solution to the H-J equation
(15)-(16). Then

V (x) ≤ v(x) x ∈ R
N . (40)

Proof. Recalling (13), we introduce a new multifunction Γ on R
N+1, defined as

Γ(x, z)
.
=

{
(y, ξ) ; (y , βz − ξ) ∈ G(x), βz − ξ ≤ K†(x)

}
, (x, z) ∈ R

N ×R . (41)

By the properties of G it follows that Γ is upper semicontinuous, with compact
convex, nonempty values. We then consider the differential inclusion

(ẋ, ż) ∈ Γ(x, z). (42)

Assuming that v : R
N 7→ R is a continuous supersolution of (15)-(16), we claim

that its epigraph

epi{v}
.
=

{
(x, z) ∈ R

N × R ; z ≥ v(x)
}

is positively invariant w.r.t. the differential inclusion (42). By a basic viability
theorem [1], to prove this invariance it suffices to check that, at each point (x, z) ∈
epi{v}, one has

Γ(x, z) ∩ Tepi{v}(x, z) 6= ∅ . (43)

By TS(p) we denote here the Bouligand contingent cone to a set S at a point p,
namely

TS(p)
.
=

{
y ∈ R

N ; lim inf
h→0

d(p + hy; S)

h
= 0

}
.

We recall here that the set D−v(x) of lower differentials to a function v at a
point x is

D−v(x) =

{
p ∈ R

N ; lim inf
y→0

v(x + y) − v(x) − p · y

|y|
≥ 0

}
. (44)

According to Theorem 4.3 in [15], the nonempty intersection property (43) holds
at every point (x, z) ∈ epi{v} if and only if

βv(x) + sup
(y,η)∈G(x)

{
− y · p − η

}
≥ 0 (45)

for every x ∈ R
N and p ∈ D−v(x). This condition holds if v is an upper solution.

We can thus construct a trajectory t 7→
(
x∗(t), z∗(t)

)
of the differential inclusion

(42), with initial data (
x∗(0), z∗(0)

)
= (x̄, v(x̄)

)
.

Consider the set of times

Ji
.
=

{
t ≥ 0 ; x∗(t) ∈ Mi

}
.

We then have

ẋ∗(t) ∈ TMi

(
x∗(t)

)

for a.e. t ∈ Ji. By the property (H2), and using Filippov’s measurable selection
theorem, we can find measurable control functions αi : Ji 7→ Ai such that

ẋ∗(t) = fi

(
x∗(t), αi(t)

)
, ℓi

(
x∗(t), αi(t)

)
≤ β z∗(t) − ż∗(t)
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for a.e. t ∈ Ji. Setting α(t)
.
= αi(t) for t ∈ Ji, the above implies

d

dt

[∫ t

0

e−βsℓ
(
x∗(s), α(s)

)
ds +

[
e−βsv

(
x∗(s)

)]t

0

]
≤ 0

for a.e. t ≥ 0. Assuming that v(x) ≥ 0 ∀x ∈ R
N and letting t → ∞, we conclude

v(x̄) ≥ lim
t→∞

∫ t

0

e−βsℓ
(
x∗(s), α(s)

)
ds ≥ V (x̄) .

as desired.

4.2. The lower solution and the value function.

Theorem 3. Consider the optimal control problem (2), for the control system (3)
on a stratified domain. Let the assumptions (H1), (H2) hold. Let V be the value
function and let u be a lower solution to the H-J equation (15)-(16). Let the cost
functions ℓi be Lipschitz continuous w.r.t. x, so that

∣∣ℓi(x, a) − ℓi(y, a)
∣∣ ≤ Lip(ℓi) |x − y|, ∀ x, y ∈ Mi, a ∈ Ai , (46)

for some Lipschitz constants Lip(ℓi). If u satisfies the assumptions (H3) and (H4),
then

u(x) ≤ V (x) x ∈ R
N . (47)

Proof. For clarity of exposition, we first give a proof assuming that u, V are both
locally Lipschitz. Then we mention the minor changes needed in the more general
case where the assumptions (H3) hold.

Fix any point x̄ and let t 7→ x∗(t) be an optimal trajectory, corresponding to the
optimal control t 7→ α∗(t). This will achieve the minimum cost

V (x̄) =

∫ ∞

0

e−βtℓ
(
x∗(t), α∗(t)

)
dt . (48)

In order to show that

V (x̄) ≥ u(x̄) , (49)

for any fixed time interval [a, b] we shall first establish the following basic estimate:

e−βau
(
x∗(a)

)
− e−βbu

(
x∗(b)

)

≤

∫ b

a

e−βtℓ
(
x∗(t), α∗(t)

)
dt = e−βaV

(
x∗(a)

)
− e−βbV

(
x∗(b)

)
.

(50)

To prove (50), we consider various cases.

CASE 1: For all t ∈ ]a, b[ , the trajectory x∗(·) remains inside one single manifold
Mj of maximal dimension N .

In this case, the estimate (50) follows by standard argument. Assume first that
x∗(t) ∈ Mj for all t ∈ [a, b], i.e., including the end-points of the interval. By our
assumptions, the O.D.E.

ẋ(t) = fj

(
x(t), α∗(t)

)
(51)

is Lipschitz continuous w.r.t. x and measurable w.r.t. t. Therefore, for each initial
condition

x(a) = y ∈ Mj , (52)
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the Cauchy problem (51)-(52) admits a unique solution t 7→ x(t, y). Moreover, for
a suitable Lipschitz constant L = Lip(fj), the solutions corresponding to different
initial data y, ỹ satisfy

e−L(t−a)|y − ỹ| ≤
∣∣x(t, y) − x(t, ỹ)

∣∣ ≤ eL(t−a)|y − ỹ| t ≥ a . (53)

Since the function u is differentiable a.e. on the open set Mj ⊂ R
N , we can find a

sequence of initial points yn and trajectories t 7→ xn(t)
.
= x(t, yn) such that:

(i) yn → x∗(a), and hence xn(t) → x∗(t) uniformly for t ∈ [a, b].

(ii) For each n ≥ 1, the function u is differentiable at the point xn(t), for a.e.
t ∈ [a, b].

We now compute

e−βau(xn(a)) − e−βbu
(
xn(b)

)
= −

∫ b

a

[
d

dt
e−βtu

(
xn(t)

)]
dt

=

∫ b

a

e−βt
[
βu

(
xn(t)

)
−∇u

(
xn(t)

)
· fj

(
xn(t), α∗(t)

)]
dt

≤

∫ b

a

e−βt ℓj

(
xn(t), α∗(t)

)
dt ,

(54)

because of the definition of lower solution. Letting n → ∞ in (54) we obtain the
desired inequality (50).

If now x∗(t) ∈ Mj only for t ∈ ]a, b[ , we can still apply the above result to the
smaller closed interval [a + ε , b − ε]. This yields

e−β(a+ε)u
(
x∗(a + ε)

)
− e−β(b−ε)u

(
x∗(b − ε)

)
≤

∫ b−ε

a+ε

e−βtℓ
(
x∗(t), α∗(t)

)
dt .

Letting ε → 0 we recover again (50).

CASE 2: We assume now that x∗(a), x∗(b) ∈ Mj , the dimension of Mj is dj =
N − 1, and moreover the trajectory t 7→ x∗(t) remains either inside Mj or inside
other manifolds of dimension N , for all t ∈ [a, b].

Using a local chart, we can assume that

Mj =
{
(x1, . . . , xN ) ∈ R

N ; xN = 0
}
. (55)

By continuity, x∗(·) leaves Mj and enters some other N -dimensional manifold Mk

on an open set of times, say
{
t ∈ [a, b] ; x∗(t) /∈ Mj} =

⋃

i∈I

]ai, bi[ .

Here I is a finite or countable set of indices.
For every i ∈ I, by the analysis in Case 1 we already know that

e−βaiu
(
x∗(ai)

)
− e−βbiu

(
x∗(bi)

)
≤ e−βaiV

(
x∗(ai)

)
− e−βbiV

(
x∗(bi)

)
(56)

A further estimate will be needed. For each i ∈ I, by the assumption (H1) of
Lipschitz continuity of the functions fj , fk, and by the assumption (H2) of upper



OPTIMAL CONTROL PROBLEMS ON STRATIFIED DOMAINS 327

semicontinuity of the velocity sets, we have

co




⋃

t∈[ai,bi]

Fk

(
x∗(t)

)


 ∩ TMj
⊆ B

(
F

(
x∗(ai)

)
, L(bi − ai)

)
, (57)

for some Lipschitz constant L. Here B(S, r) denotes the closed neighborhood of
radius r around the set S.

By (57) we can choose a constant control αj,i ∈ Aj such that
∣∣∣∣∣fj

(
x∗(ai), αj,i

)
−

1

bi − ai

∫ bi

ai

fk

(
x∗(t), α∗(t)

)
dt

∣∣∣∣∣ ≤ L(bi − ai) (58)

observing that
fj

(
x∗(ai), αj,i

)
∈ F (x∗(ai)

)
,

x∗(bi) − x∗(ai)

bi − ai

=
1

bi − ai

∫ bi

ai

fk

(
x∗(t), α∗(t)

)
dt ∈ co




⋃

t∈[ai,bi]

Fk

(
x∗(t)

)

∩TMj

.

Moreover, by the Jensen’s inequality and the Lipschitz continuity of the cost
function ℓk, we can also achieve

ℓj

(
x∗(ai), αj,i

)
≤

1

bi − ai

∫ bi

ai

ℓk

(
x∗(t), α∗(t)

)
dt + C(bi − ai) . (59)

Using the constant control αj,i on the whole interval [ai, bi], the solution of

ẋ(t) = fj(x(t), αj,i) x(ai) = x∗(ai) ,

satisfies

yi
.
= x(bi) = x∗(ai) + fj(x

∗(ai), αj,i)(bi − ai) + O(1)(bi − ai)
2,

and yi ∈ Mj . Hence, setting
vi

.
= x∗(bi) − yi

we have
|vi| ≤ κ(bi − ai)

2 . (60)

for some constant κ, uniformly valid for all i ∈ I.

We are now ready to define a family of perturbed trajectories. Define the control
function

α†(t)
.
=

{
α∗(t) if t /∈

⋃
i ]ai, bi[ ,

αj,i if t ∈ ]ai, bi[ for some i ∈ I.
(61)

For each initial point y ∈ Mj close to x∗(a), let t 7→ x(t, y) be the solution of
the impulsive Cauchy problem

ẋ(t) = fj(x(t), α†(t)
)

x(a) = y , x(bi) = x(bi−) + vi .

The figure 2 illustrates the solution. Notice that this trajectory is unique, because
it corresponds to the unique fixed point of the integral transformation x(·) 7→ T x(·),
defined as

T x(t) = y +

∫ t

0

fj(x(t), α†(t)
)
dt +

∑

bi≤t

vi .

As in Case 1, we can select a sequence of initial points yn, with corresponding
trajectories x(·, yn), such that
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(i) As n → ∞, one has yn → x∗(a), and hence xn(t) → x∗(t) uniformly for t ∈ [a, b].

(ii) For each n ≥ 1, the restriction of u to Mj is differentiable at the point xn(t),
for a.e. t ∈ [a, b].

Using (59) and (60) we now compute

e−βau
(
xn(a)

)
− e−βbu

(
xn(b)

)

= −

∫ b

a

[
d

dt
e−βtu

(
xn(t)

)]
dt −

∑

i∈I

e−βbi
[
u
(
xn(bi)

)
− u

(
xn(bi−)

)]

≤

∫ b

a

e−βt
[
βu

(
xn(t)

)
−∇u

(
xn(t)

)
· fj

(
xn(t), α†(t)

)]
dt

+
∑

i∈I

e−βbiLuκ(bi − ai)
2

≤

∫ b

a

e−βt ℓj

(
xn(t), α†(t)

)
dt +

∑

i∈I

e−βbiLuκ(bi − ai)
2

≤

∫ b

a

e−βt ℓ
(
xn(t), α∗(t)

)
dt +

∑

i∈I

e−βaiC(bi − ai)
2

+
∑

i∈I

e−βbiLuκ(bi − ai)
2 ,

(62)

because u is a lower solution. The Lipschitz constant of u is denoted by Lu.

Let ε > 0 be given. Choose a finite subset of indices I ′ ⊂ I such that

∑

i∈I\I′

e−βaiC(bi − ai)
2 +

∑

i∈I\I′

e−βbiLuκ(bi − ai)
2 < ε .

To fix the ideas, let I ′ = {1, . . . , ν}, with

a ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ aν < bν ≤ b .

We can now use the estimate (56) on each of the subintervals [ak, bk], k = 1, . . . , ν,
and an estimate of the form (62) on the remaining finitely many intervals

[a, a1] , [b1, a2] , . . . , [bν , b] .

Setting for convenience b0 = a, aν+1 = b, we thus obtain
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e−βau
(
xn(a)

)
− e−βbu

(
xn(b)

)

=

ν+1∑

k=1

(
e−βbk−1u

(
xn(bk−1)

)
− e−βaku

(
xn(ak)

))

+

ν∑

k=1

(
e−βaku

(
xn(ak)

)
− e−βbku

(
xn(bk)

))

≤

∫ b

a

e−βt ℓ
(
xn(t), α∗(t)

)
dt +

∑

i∈I\I′

e−βaiC(bi − ai)
2

+
∑

i∈I\I′

e−βbiLuκ(bi − ai)
2 .

(63)

Letting n → ∞, from (63) it follows

e−βau
(
x∗(a)

)
− e−βbu

(
x∗(b)

)

≤

∫ b

a

ℓ
(
x∗(t), α∗(t)

)
dt +

∑

i∈I\I′

e−βaiC(bi − ai)
2

+
∑

i∈I\I′

e−βbiLuκ(bi − ai)
2

≤ e−βaV
(
x∗(a)

)
− e−βbV

(
x∗(b)

)
+ ε .

(64)

Since ε > 0 was arbitrary, once again we obtain the basic inequality (50).

CASE 3: During the interval [a, b] the optimal trajectory x∗(·) remains inside
manifolds of dimension N or N − 1.

This is a slight generalization of the previous case. The validity of (50) is clear,
observing that we can find finitely many times a = t0 < t1 < · · · < tn = b such that
the restriction of x∗ to each subinterval [ti−1, ti] satisfies the conditions in Case 2.

CASE 4: We now assume that the estimate (50) holds whenever the optimal
trajectory x∗(·) remains on manifolds of dimension ≥ m + 1, and prove that it still
holds when x∗(·) stays on manifolds of dimension ≥ m. By induction, this will
establish (50) in the general case.

The proof of this inductive step relies on the same ideas used in Case 2. We thus
only sketch the main lines.

Assume that x∗(·) remains inside a manifold Mj of dimension dj = m, or other
manifolds of strictly higher dimension. Using a local chart, we can assume that

Mj =
{
(x1, . . . , xN ) ∈ R

N ; xi = 0, i = m + 1, . . . , N
}

.

By continuity, we again have
{
t ∈ [a, b] ; x∗(t) /∈ Mj} =

⋃

i∈I

]ai, bi[ ,

where I is a finite or countable set of indices. For every i ∈ I, by the inductive
assumption we still have (56). Furthermore, for each subinterval [ai, bi] we can find
a control αj,i such that (58) and (59) hold. We thus define the control α† as in (61),



330 ALBERTO BRESSAN AND YUNHO HONG

choose a sequence of trajectories xn = x(yn, α†) and retrace all steps (62)–(64).
This concludes the proof of (50).

We now conclude the proof of (49). For any given initial condition x̄, let α∗(·)
and x∗(·) be a corresponding optimal control and optimal trajectory. For every
T > 0, using (50) on the interval [0, T ] we find

u(x̄) ≤ V (x̄) + e−βT u
(
x∗(T )

)
. (65)

Letting T → ∞, by (H4) we have

e−βT u
(
x∗(T )

)
→ 0.

i
i

i

jMx (a)
x (a  )

x(b )

x (b  ) x (b)

*
*

* *

Figure 2. The solution of the impulsive Cauchy problem

Finally, we observe that the above result remains valid if the assumption of
Lipschitz continuity of the lower solution u is replaced by the assumption (H3).
The proof would go through as before, except that the last term in (62) would be
replaced by ∑

i∈I

e−βbiLuκ(bi − ai) .

Now Lu denotes the Hölder constant of u. This estimate suffices to complete the
remainder of the proof.

From the above comparison theorems one immediately obtains a uniqueness re-
sult:

Corollary 1. Consider the optimal control problem (2), for the control system (3)
on a stratified domain (1). Let the assumptions (H1), (H2), (H4) and (46) hold.
Let’s assume that the value function V satisfies the regularity assumptions (H3).
Then V is the unique non-negative solution to the H-J equation (15)-(16) with such
regularity properties.

Remark 1. All the results in this paper remain valid in the more general case
where we allow the control set Ai to be empty, i.e. Ai = ∅, on some manifold Mi

of dimension di < N .
Notice that, in this case, there is no control which keeps the system inside Mi.

The assumption (H2) now implies that
{

(y, η) ∈ G(x) ; y ∈ TMi(x)
(x)

}
= ∅ ,

for all x ∈ Mi. In particular, this means that all trajectories cross the manifold
Mi transversally, spending a zero amount of time inside Mi .
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