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BACKGROUND and GOAL

Basic Model: The two-species chemostat with nutrient concentrations(t)
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
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j=1 µj(s)xj ,

ẋi = [µi(s)−D]xi , i = 1, 2
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whereD(·) is the dilution rate,sin(·) is the concentration of the input

nutrient, andµ1, µ2 : [0,∞) → [0,∞) are uptake functions.
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ẋi = [µi(s)−D]xi , i = 1, 2
(Σc)

whereD(·) is the dilution rate,sin(·) is the concentration of the input

nutrient, andµ1, µ2 : [0,∞) → [0,∞) are uptake functions.

Importance:Chemostat models provide the foundation for much of

current research inbioengineering, ecology, andpopulation biology.

Objective: Choose the controlsD andsin(·) to forcex to oscillate

around predefined reference trajectories.



BACKGROUND and GOAL

Basic Model: The two-species chemostat with nutrient concentrations(t)
and organism concentrationsxi(t) evolving on[0,∞)× (0,∞)2 is





ṡ = D[sin − s]−∑2
j=1 µj(s)xj ,

ẋi = [µi(s)−D]xi , i = 1, 2
(Σc)

whereD(·) is the dilution rate,sin(·) is the concentration of the input
nutrient, andµ1, µ2 : [0,∞) → [0,∞) are uptake functions.

Importance:Chemostat models provide the foundation for much of
current research inbioengineering, ecology, andpopulation biology.

Objective: Choose the controlsD andsin(·) to forcex to oscillate
around predefined reference trajectories.

Competitive Exclusion:Whensin(·) andD are constant and theµi’s are
increasing,at most one species survives. (There is a steady state with at
most one nonzero species concentration, which attracts a.a. solutions.)
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Coexistence:In real ecological systems,n > 1 species can coexist, so

much of the literature aims at choosingsin and/orD to force coexistence.

“The Paradox of the plankton,” Hutchinson,American Naturalist, 1961.

Time-Varying Controls:Have competitive exclusion ifn = 2 and one of

the controls is fixed and the other is periodic. See Hal Smith (SIAP’81),

Hale-Somolinos (JMB’83), Butler-Hsu-Waltman (SIAP’85).

State-Dependent Controls:A feedback control perspective based on

mathematical control theorywas pursued e.g. in De Leenheer-Smith

(JMB’03) to generate a coexistence equilibrium forn = 2, 3.

Input-to-State Stability:Mazenc-M-De Leenheer (CDC’06, MBE’07)

designed feedbacksD andsin andLyapunov functionsfor one species

chemostats that gave(i)ISS trackingrelative toactuator errors.
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Assumption A1:µi(0) = 0, µi ∈ C1, µ′i > 0 bounded fori = 1, 2.
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when0 < s < sc, χ(s) > 0 whens > sc, andχ′(sc) > 0. Γ = µ1(sc).
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Theorem 1:Under Assumption A1, the control laws

D(t, ξ1) := Γ + α sin(αt) + (Γ−α)2

Γ (ξ1 − cos(αt))

sin(t) := sc + 2Γecos(αt)

Γ+α sin(αt)

render the error dynamics locally exponentially stable to0. Hence, they

locally exponentially stabilize the reference trajectory.
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EXAMPLE

We track(sr, x1r, x2r) = (0.9, exp(cos(t/4)), exp(cos(t/4))) for
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ṡ = D[sin − s]− 10s
1+20sx1 − s

1+sx2

ẋ1 =
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10s
1+20s −D

]
x1

ẋ2 =
[

s
1+s −D

]
x2.

(Σe)
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ẋ1 =
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10s
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x1

ẋ2 =
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s
1+s −D

]
x2.

(Σe)

Our assumptions are satisfied using

µ1(s) = 10s
1+20s , µ2(s) = s

1+s , sc = 9
10 , and Γ = 9

19 .

Therefore, we get the locally uniformly stabilizing controllers

D(t, ξ1) = 9
19 + 1

4 sin (t/4) + 19
9

(
9
19 − 1

4

)2 (ξ1 − cos (t/4))

sin(t) = 9
10 + 72ecos(t/4)

36+19 sin(t/4)

which cause the trajectories of(Σe) to locally track the green trajectory.
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STRICT LYAPUNOV FUNCTION

Step 1: Show that the error dynamics




ṡe = D[sin − sc − se]− µ1(sc + se)eξ1 − µ2(sc + se)eψ+ξ1

ξ̇1e = µ1(sc + se)−D − ξ̇1r(t)

ψ̇ = χ(sc + se)

has the nonstrict Lyapunov function

V (se, ξ1e, ψ) := 1
2s2

e + c1

(√
1 + ξ2

1e − 1
)

+ c2

(√
1 + ψ2 − 1

)

i.e. V̇ ≤ −Γ
8 s2

e − Γ
4 c1〈ξ1e〉2 ≤ 0 along the error dynamics.
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i.e. V̇ ≤ −Γ
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Step 2: Construct a positive increasing functionκ so that

Va(se, ξ1e, ψ) := se〈ψ〉+
∫ V (se,ξ1e,ψ)

0

κ(r)dr

is a strict Lyapunov function for the error dynamics.
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