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Basic Model: The two-species chemostat with nutrient concentraion
and organism concentratioms(t) evolving on[0, o) x (0, c0)? is

: 2
$ = Dlsin—s]— Zj:l pi(s)x;
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whereD(-) is the dilution rates,,, () is the concentration of the input
nutrient, anduy, u2 : [0,00) — [0, 00) are uptake functions.

Importance:Chemostat models provide the foundation for much of
current research inioengineeringecology andpopulation biology

Objective: Choose the control® ands;,, (-) to forcex to oscillate
around predefined reference trajectories.

Competitive ExclusionWhens;,, () and D are constant and the’s are
Increasingat most one species survivgd here is a steady state with at
MOSt one nonzero species concentration, which attracts a.a. solutions.)
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Time-Varying ControlsHave competitive exclusion #f = 2 and one of
the controls is fixed and the other is periodic. See Hal SnitAP81),
Hale-SomolinosJMB'83), Butler-Hsu-Waltman$IAPS85).

State-Dependent Controla:feedback control perspective based on
mathematical control theowyas pursued e.g. in De Leenheer-Smith
(JMB03) to generate a coexistence equilibrium foe 2, 3.

Input-to-State StabilityMazenc-M-De LeenheeCDC 06, MBEQ7)
designed feedbacki3 ands;,, andLyapunov functiondor one species
chemostats that gaygISS trackingrelative toactuator errors
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Theorem 1:Under Assumption Al, the control laws
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EXAMPLE '

We track(s,., 1, z2,) = (0.9, exp(cos(t/4)), exp(cos(t/4))) for

(

. 10s s
5 = Dlsin — 5] — 155571 — 15522
. _ 10s
§ ¥ = | TH20s D} ! (2e)
. _ S .

Our assumptions are satisfied using

ul(s):%%sos, Ha(s) = 135, S =15, and I' = 2.

Therefore, we get the locally uniformly stabilizing controllers
D(t,€) = 5+ sin(t/4)+ % (5 — 1) (& — cos (t/4))

| 9 72€cos(t/4)
Szn(t) — 10 + 36+19sin(t/4)

which cause the trajectories @f.) to locally track the green trajectory.
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—c1py(se)(Ere) — c2lps(se) — pa(se) ()}

render the error dynamics GAS and locally exponentially stable to the
origin. Hence(s,., r1,,x2,.) = (s, exp(cos(at)), exp(cos(at))) is GAS.
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Step 1: Show that the error dynamics

( *ée — D[SZ’FL — S¢ — Se] _ Ml(sc + Se)egl — ,LLQ(SC + Se)ew+£1
9 éle = M (Sc + Se) —D — glr(t)
\ ¢ — X(SC _I_ 86)

has the nonstrict Lyapunov function

V(se,&1e,0) := %Sg + 1 (\/1 +§%e — 1) + ¢o (\/1 + )2 — 1)

e,V < —Ls2 — Lei(&.)? < 0along the error dynamics.

Step 2: Construct a positive increasing functierso that

V(se,€1e,%)
Va(Sea‘Sleaw) = Se<w>+/o /i(?“)d?“

IS a strict Lyapunov function for the error dynamics.
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