Multi-strain virus dynamics with mutations: A global analysis

Patrick De Leenheer
Department of Mathematics, University of Florida

joint work with Sergei S. Pilyugin

Example: HIV infection

HIV infects T-cells (immune cells).

\[T + V \rightarrow T^* \]

1. Virus is a retrovirus: it carries single-stranded RNA instead of double-stranded DNA.

2. After infection, viral RNA is copied to DNA which is then integrated into the cell’s DNA. This process is error-prone and leads to mutations!

3. Now infected cell starts producing viral proteins, which assemble into new viruses.

4. Ultimately, infected cell dies and releases new viruses.

Other examples:

Influenza infects epithelial cells, Malaria parasite infects red blood cells.
Single-strain virus model

Standard model (see e.g. Perelson et al, Nowak et al).

\[
\begin{align*}
\dot{T} &= f(T) - kVT, \quad \text{healthy T-cells} \\
\dot{T}^* &= kVT - \beta T^*, \quad \text{infected T-cells} \\
\dot{V} &= N\beta T^* - \gamma V, \quad \text{viruses}
\end{align*}
\]

\(f(T)\) is the growth rate of an uninfected population of T-cells. As it is typically unknown, we only assume a sector condition:

\[\exists T_0 > 0 : f(T)(T - T_0) < 0, \quad T \neq T_0,\]

so that \(T(t) \rightarrow T_0\) as \(t \rightarrow \infty\) for \(\dot{T} = f(T)\).
Examples from literature:

1. Linear: $a - bT$.

2. Logistic: $rT(1 - T/T_{\text{max}})$.
Corrected single-strain virus model

\[
\begin{align*}
\dot{T} &= f(T) - kVT \\
\dot{T}^* &= kVT - \beta T^* \\
\dot{V} &= N\beta T^* - \gamma V - kVT
\end{align*}
\]

\(-kVT\) in \(V\)-equation accounts for loss of virus particle upon infection.
Corrected single-strain virus model

\[
\begin{align*}
\dot{T} &= f(T) - kVT \\
\dot{T}^* &= kVT - \beta T^* \\
\dot{V} &= N\beta T^* - \gamma V - kVT
\end{align*}
\]

\(-kVT\) in \(V\)-equation accounts for loss of virus particle upon infection.

All subsequent results remain valid with or without \(-kVT\) term, so we drop it henceforth.
Steady States

1. Disease-free steady state

\[E_0 = (T_0, 0, 0), \]
always exists.

2. A second disease steady state

\[E = (\bar{T}, \bar{T}^*, \bar{V}) \]
exists iff basic reproduction number

\[R^0 := \frac{kN}{\gamma} T_0 = \frac{T_0}{\bar{T}} > 1. \]
Global asymptotic stability

Thm Let E exist and assume sector condition:

$$(f(T) - f(\bar{T}))(T - \bar{T}) \leq 0.$$

Then E is GAS for IC $T^*(0) + V(0) > 0$.

Pf.

$$W = \int_{\bar{T}}^{T} \left(1 - \frac{\bar{T}}{\tau}\right) d\tau + \int_{\bar{T}^*}^{T^*} \left(1 - \frac{\bar{T}^*}{\tau}\right) d\tau + \frac{\beta}{N\beta} \int_{\bar{V}}^{V} \left(1 - \frac{\bar{V}}{\tau}\right) d\tau.$$

Then $\dot{W} \leq 0$ on $\text{int}(\mathbb{R}_+^3)$. Conclude via Lasalle.
Note: In PDL+Smith, SIAM J Appl Math 64 (2003), 1313-1327, it was shown that stable oscillatory solutions can occur if the sector condition fails (e.g. if $f(T)$ is logistic like in Perelson’s standard model, but not if $f(T)$ is linear like in Nowak’s model!)

Results there were not based on Lyapunov approach, but on fact that system is 3D competitive dynamical system, for which a Poincaré-Bendixson theory is available.
Multi-strain model without mutations

\[
\dot{T} = f(T) - \sum_{i=1}^{n} k_i V_i T
\]
\[
\dot{T}_i^* = k_i V_i T - \beta_i T_i^*, \quad i = 1, \ldots, n
\]
\[
\dot{V}_i = N_i \beta_i T_i^* - \gamma_i V_i, \quad i = 1, \ldots, n
\]

Steady States: Disease-free \(E_0 \) (as before) and \(n \) single-strain disease steady states \(E_i \) on boundary iff basic reproduction numbers

\[
\mathcal{R}_i^0 := \frac{k_i N_i}{\gamma_i} T_0 = \frac{T_0}{T_i} > 1.
\]
Competitive exclusion

Order wlog: $\bar{T}_1 < \bar{T}_2 \leq \cdots \leq \bar{T}_{n-1} \leq \bar{T}_n < T_0$,

Equivalently: $1 < \mathcal{R}_n^0 \leq \mathcal{R}_{n-1}^0 \leq \cdots \leq \mathcal{R}_2^0 < \mathcal{R}_1^0$.

Thm Let all E_i exist and assume sector condition for \bar{T}_1:

$$(f(T) - f(\bar{T}_1))(T - \bar{T}_1) \leq 0.$$

Then E_1 is GAS for IC $T_1^*(0) + V_1(0) > 0$.

Pf.

$$\dot{\tilde{W}} = W + \sum_{i=2}^{n} \left(T_i^* + \frac{1}{N_i} V_i \right).$$

Then $\dot{\tilde{W}} \leq 0$. Conclude via Lasalle.
Including mutations

\[
\dot{T} = f(T) - k'VT, \quad T \in \mathbb{R}_+ \\
\dot{T^*} = KVT - BT^*, \quad T^* \in \mathbb{R}_+^n \\
\dot{V} = P(\mu) \hat{N} BT^* - \Gamma V, \quad V \in \mathbb{R}_+^n,
\]

where

\[
P(\mu) = I + \mu Q, \quad Q \text{ mutation matrix has 0 column sums.}
\]

What happens to the equilibria \(E_i \) when \(\mu > 0 \)? (\(E_0 \) unaffected)

For small \(\mu > 0 \), they still exist assuming hyperbolicity (e.g. when \(f'(\tilde{T}_i) \leq 0 \)) by the Implicit Function Theorem.

But, are they still in closed orthant? More careful analysis required; \(Q \) plays key role.
Define: \(A(\mu) = \Gamma^{-1}\hat{N}P(\mu)K \), non-negative matrix, and wlog rewrite (by relabeling indices):

\[
A(\mu) = \begin{pmatrix}
A_1(\mu) & 0 & \ldots & 0 \\
\mu B_{2,1} & A_2(\mu) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\mu B_{k,1} & \mu B_{k,2} & \ldots & A_k(\mu)
\end{pmatrix},
\]

where each diagonal block \(A_i(\mu) \) is irreducible.

[Recall that \(X \in \mathbb{R}^{n\times n} \) is irreducible iff its digraph (\(n \) nodes, directed edge \(i \rightarrow j \) iff \(X_{ji} \neq 0 \)) is strongly connected.]

Note: For \(\mu = 0 \), \(A(0) = \Gamma^{-1}\hat{N}K \) is diagonal with (shuffled) diagonal entries:

\[
0 < \frac{1}{\bar{T}_n} < \frac{1}{\bar{T}_{n-1}} < \cdots < \frac{1}{\bar{T}_1},
\]
Def: strain group j is reachable from strain group $i < j$ if

\[\exists \text{ nonzero } B_{k_1 k_2}, B_{k_2 k_3}, \ldots, B_{k_{l-1} k_l} \text{ with } i = k_1 < \cdots < k_l = j. \]
For small $\mu > 0$, by continuity of $\sigma (A(\mu)) = \bigcup_i \sigma (A_i(\mu))$:

$$0 < \frac{1}{\tilde{T}_n(\mu)} < \frac{1}{\tilde{T}_{n-1}(\mu)} < \cdots < \frac{1}{\tilde{T}_1(\mu)}, \quad \tilde{T}_i(0) = \bar{T}_i.$$

Prop 1

1. $A(\mu)$ has eigenvector $(v_1, v_2, \ldots, v_k) > 0$ iff $\frac{1}{\tilde{T}_1(\mu)}$ is dominant eigenvalue of $A_1(\mu)$, and all strain groups $j \geq 2$ are reachable from strain group 1;

2. $A(\mu)$ has an eigenvector $(v_1, v_2, \ldots, v_k) \geq 0$ for each eigenvalue $\frac{1}{\tilde{T}_r(\mu)}$ for which $\frac{1}{\tilde{T}_r(\mu)}$ is a dominant eigenvalue of some $A_i(\mu)$, and $s(A_j(\mu)) < \frac{1}{\tilde{T}_r(\mu)}$ for all $j = i + 1, \ldots, k$ such that strain group j is reachable from strain group i; $v_j > 0 (= 0)$ if group j is reachable (not reachable) from strain group i.

3. All other eigenvectors of $A(\mu)$, $\mu > 0$ are not sign definite.
Prop 2

1. \(E_j(\mu) > 0 \) iff \(\frac{1}{T_j(\mu)} \) is eigenvalue of \(A(\mu) \) with eigenvector \(> 0 \).

2. \(E_j(\mu) \geq 0 \) iff \(\frac{1}{T_j(\mu)} \) is eigenvalue of \(A(\mu) \) with eigenvector \(\geq 0 \).

3. \(E_j(\mu) \notin \mathbb{R}_+^{2n+1} \) iff \(\frac{1}{T_j(\mu)} \) is eigenvalue of \(A(\mu) \) with eigenvector which is not sign-definite.

Note that \(E_1(\mu) \) always persists, either \(> 0 \), or \(\geq 0 \).

Not surprisingly, our next question will be whether it is still GAS. But first, some examples...
Examples of extreme cases

1. Q irreducible $\iff A(\mu)$ irreducible as well:

Then by the Perron-Frobenius Thm, $A(\mu)$ has dominant eigenvalue $1/\tilde{T}_1(\mu)$ with positive eigenvector; there are no other non-negative eigenvectors.

Then $E_1(\mu) > 0$ is only remaining non-negative steady state for $\mu > 0$.

So only E_1 persists, others disappear.

Interpretation: Q irreducible means that every strain type can mutate (directly or indirectly) to any other strain type.
Examples of extreme cases (cont.)

2. \(Q \) is lower triangular \(\iff A(\mu) \) lower triangular as well:

If diagonal entries of \(A(\mu) \) are arranged in decreasing order, and for each pair \(i < j, j \) is reachable from \(i \), then \(E_1(\mu) > 0 \) and \(E_k(\mu) \geq 0 \) for \(k = 2, \ldots, n \).

So all steady states persist.

Ex:

\[
A(\mu) = \begin{pmatrix}
\tilde{T}_1^{-1}(\mu) & 0 & 0 & \cdots & 0 \\
+ & \tilde{T}_2^{-1}(\mu) & 0 & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & \vdots \\
\vdots & \cdots & \cdots & \cdots & \vdots \\
0 & 0 & \cdots & + & \tilde{T}_n^{-1}(\mu)
\end{pmatrix}
\]

Interpretation: This means that strain type \(i \) can only mutate (directly or indirectly) to “downstream” strain types \(j > i \).

Mutation is “uni-directional”.

17
Main result

\[\dot{T} = f(T) - k'VT, \quad T \in \mathbb{R}_+ \]
\[\dot{T}^* = KVT - BT^*, \quad T^* \in \mathbb{R}_+^n \]
\[\dot{V} = P(\mu)\hat{N}BT^* - \Gamma V, \quad V \in \mathbb{R}_+^n, \]

Let

\[\bar{T}_1 < \bar{T}_2 < \cdots < \bar{T}_{n-1} < \bar{T}_n < T_0, \]
\[(f(T) - f(\bar{T}_1))(T - \bar{T}_1) \leq 0, \quad f'(\bar{T}_1) \leq 0 \]

and

\[U = \{(T, T^*, V) \in \mathbb{R}_+^{2n+1} | \ T_1^* + V_1 > 0\} \]
Main result (cont.)

Thm

\[\exists \mu_0 > 0, \quad E_1(\mu) \in C([0, \mu_0] \rightarrow U) : \]

1. \(E_1(\mu) \) is steady state for all \(\mu \in [0, \mu_0] \) with \(E_1(0) = E_1 \).

2. \(E_1(\mu) \) is GAS for IC in \(U \).

Proof requires use of a perturbation result of the GAS + hyperbolic steady state \(E_1 \) for unperturbed system where \(\mu = 0 \), see: