Impulsive Dynamical Systems

Peter R. Wolenski Louisiana State University

Joint work with Stanislav Žabić

Workshop on Control Theory and Mathematical Biology Baton Rouge, July 26-27, 2007 Organizer: LSU Associate Professor Michael Malisoff

<u>Outline</u>

- (I) The Chemostat
- (II) Differential inclusions
- (III) Impulsive systems
- (IV) Solution concepts
 - (V) Invariance concepts
- (VI) A new sampling method

I. The Chemostat

A standard model for a Sequential Batch Reactor (SBR) is

$$\dot{x}_{i}(t) = \left(\mu_{i}(s) - \frac{u(t)}{v(t)} \right) x_{i}(t) \dot{s}(t) = -\sum_{j=1}^{n} \mu_{j}(s) x_{j}(t) + \frac{u(t)}{v(t)} \left(s_{\text{in}} - s \right) \dot{v}(t) = u(t),$$

plus initial conditions. Here, x_i , s, and v are the concentrations of the i^{th} species, substrate, and total volume, respectively. The variable u is the input flow rate and is the control variable.

The problem becomes nonstandard if the control variable u is allowed to be

II. Differential inclusions

A standard (nonlinear) **C**ontrol **D**ynamical (*CD*) system has the form

$$\begin{pmatrix} CD \end{pmatrix} \begin{cases} \dot{x}(t) = f(x(t), u(t)) & \text{a.e. } t \in [0, T] \\ u(t) \in \mathcal{U} & \text{a.e. } t \in [0, T] \\ x(0) = x_0, \end{cases}$$

where $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$, $\mathcal{U} \subseteq \mathbb{R}^m$, and $x_0 \in \mathbb{R}^n$.

A Differential Inclusion has the form

 $\begin{pmatrix} DI \end{pmatrix} \begin{cases} \dot{x}(t) \in F(x(t)) & \text{a.e. } t \in [0,T] \\ x(0) = x_0, \end{cases}$

where $F : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ is a multifunction (i.e. a set-valued map).

Remark: The trajectories $x(\cdot)$ of (*CD*) and (*DI*) coincide if

$$F(x) = \Big\{ f(x, u) : u \in \mathcal{U} \Big\}.$$

Basic Theory of (DI):

Hypotheses

A well-developed theory is established under Standard Hypotheses (SH) on F:

- Each set-value F(x) is nonempty, compact, and convex.
- The graph $\{(x, v) : v \in F(x)\}$ is closed $(F(\cdot)$ is *upper* or *outer* semicontinuous.)
- $F(\cdot)$ has linear growth: $\exists c > 0$ so that

 $v \in F(x) \Rightarrow ||v|| \le c(1 + ||x||).$

An *additional* Lipschitz hypothesis (SH)₊ is often invoked to obtain additional results:

•
$$F(x) \subseteq F(y) + k ||x - y|| \overline{B}.$$

Basic Theory of (DI):

Results

Under assumptions (SH):

- Existence of absolutely continuous solutions.
- Compactness of trajectories: a sequence of "approximate" solutions have a cluster point that is a solution.
- Characterization of weak invariance on a closed set C: if x₀ ∈ C, then there exists a solution x(·) to (DI) that remains in C for all time.

The (normal-type) characterization is that

$$-H(x,-\zeta) \leq 0 \quad \forall x \in C, \zeta \in N_C^P(x),$$

where $H : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is the Hamiltonian given by

$$H(x,\zeta) := \max_{v \in F(x)} \langle v, \zeta \rangle.$$

Notice that

$$-H(x,-\xi) = \min_{v \in F(x)} \langle v, \xi \rangle,$$

and recall the proximal normal cone $N_C^P(x)$ is defined by $N_C^P(x) :=$

$$\left\{\zeta: \exists \sigma > 0 \text{ s.t. } \langle y - x, \zeta \rangle \le \sigma \|y - x\|^2 \,\forall y \in C \right\}.$$

Thus the condition

$$-H(x,-\zeta) \leq 0 \quad \forall x \in C, \zeta \in N_C^P(x),$$

says that at each $x \in C$, there exists a velocity vector $v \in F(x)$ that "points into" C.

Under assumptions (SH)₊:

• The reachable set

$$R^{T}(x_{0}) := \left\{ x(T) : x(\cdot) \text{ solves } (\mathsf{DI}) \right\}$$

can be characterized in several ways.

- *Every* solution is a limit of *Euler* approximate trajectories (Sampling).
- Relaxation.
- Characterization of strong invariance on a closed set *C*:

$$H(x,\zeta) \leq 0 \quad \forall x \in C, \zeta \in N_C^P(x).$$

III. Impulsive Systems

Impulsive systems arise naturally by asking

The theory loses many desirable properties, especially compactness of trajectories. In particular, trajectories can tend to limit to arcs that have **jumps**.

We consider the impulsive dynamical systems having the following *differential* form:

$$\begin{pmatrix} \star \end{pmatrix} \qquad \begin{cases} dx \in F(x(t)) dt + G(x(t)) d\mu(dt) \\ \mu \in \mathcal{B}_K([0,T]) \\ x(0-) = x_0, \end{cases}$$

where $x(\cdot)$ is an arc of bounded variation.

Given Data

- The multifunction $F : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ has linear growth with nonempty, compact, and convex values;
- The multifunction $G : \mathbb{R}^n \rightrightarrows \mathcal{M}_{n \times m}$ also with linear growth with nonempty, compact, and convex values, where $\mathcal{M}_{n \times m}$ denotes the $n \times m$ dimensional matrices with real entries;
- The measure μ belongs to $\mathcal{B}_K[0,T]$, the set of vector-valued Borel measures taking values in the closed convex cone $K \subseteq \mathbb{R}^m$.

If F and G are as above, we say **(SH)** is satsified, and if they are in addition locally Lipschitz, then **(SH)**₊ is satisfied.

$$\begin{pmatrix} \star \end{pmatrix} \begin{cases} dx \in F(x(t)) dt + G(x(t)) d\mu(dt) \\ \mu \in \mathcal{B}_K([0,T]) \\ x(0-) = x_0 \end{cases}$$

We are interested in the following

Questions:

(Q1) What is meant by a solution to (*)?

(Q2) What are the natural invariance notions?

- (Q3) How can the invariance properties be infinitesimally characterized?
- (Q4) Can solutions be generated by time discretization?

IV. Solution Concepts

Suppose $\mu \in \mathcal{B}_K[0,T]$ is fixed. Recall

$$(\star)$$
 $dx \in F(x(t)) dt + G(x(t)) d\mu(dt)$

(Q1) What is meant by a solution to (\star) ?

The case m = 1 or, more generally, when the columns of G(x) commute, can be handled in a natural way:

Approximate μ by *continuous* (w.r.t. Lebesgue) measures $d\mu_i = \dot{u}_i(t)dt$, and take limits of the solutions $\{x_i(\cdot)\}$ to the differential inclusions

$$\dot{x}_i(t) \in F(x_i(t)) + G(x_i(t))\dot{u}_i(t).$$

This is not a well-defined concept for more general $G(\cdot)$! (Bressan-Rampazzo)

Graph completions

The distribution of μ and the time reparametrization are defined respectively by

$$u(t) = \mu([0,t]),$$

$$\eta(t) = t + |\mu|([0,t])$$

Let $S = \eta(T)$. A graph completion of $u(\cdot)$ is a Lipschitz map

$$(\phi_0,\phi): [0,S] \to [0,T] \times \mathbb{R}^n$$

with $\phi_0(\cdot)$ nondecreasing and mapping onto [0,T], and such that for every $t \in [0,T]$, there exists an $s \in [0,S]$ with

$$(\phi_0(s),\phi(s)) = (\eta(t),u(t)).$$

Simple Example

The graph of $\phi_0(\cdot)$ looks like

Solution data

Given $\mu \in \mathcal{B}_K([0,T])$ with atoms $\{t_i\}_{i \in \mathcal{I}}$, consider

$$\begin{split} X_{\mu} = \Big(\underbrace{x(\cdot)}_{\text{arc of }}, \underbrace{\phi(\cdot)}_{\text{graph }}, \underbrace{\{y_i(\cdot)\}_{i \in \mathcal{I}}}_{\text{arcs defined }} \Big) \\ & \text{bounded completion on the jump } \\ & \text{variation } \quad \text{intervals} \end{split}$$

The jump intervals have the form

$$I_i = [\eta(t_i -), \eta(t_i +)] \subseteq [0, S], \quad i \in \mathcal{I}$$

and have length $|\mu(t_i)|$, which is the magnitude of the atom.

Bressan-Rampazzo concept

The idea: Recast the dynamics in the reparameterize time interval, and reduce the system to a classical control problem

Given

$$X_{\mu} = \Big(x(\cdot), \phi(\cdot), \{y_i(\cdot)\}_{i \in \mathcal{I}}\Big),$$

define $y(\cdot) : [0,S] \to \mathbb{R}^n$ by

$$y(s) = \begin{cases} x(\phi_0(s)) & \text{if } s \notin \cup_{i \in \mathcal{I}} I_i \\ y_i(s) & \text{if } i \in I_i \end{cases}$$

Then X_{μ} is a **Bressan-Rampazzo** solution to

$$(\star) \qquad \begin{cases} dx \in F(x(t)) dt + G(x(t)) d\mu(dt) \\ x(0-) = x_0. \end{cases}$$

provided $y(\cdot)$ is Lipschitz and satisfies $y(0) = x_0$ and

$$\dot{y}(s) \in F(y(s))\dot{\phi}_0(s) + G(y(s))\dot{\phi}(s)$$
 a.e. $s \in [0, S]$.

Another definition

Recall

$$d\mu = \dot{u}(t) dt + d\mu_{\sigma} + d\mu_{\mathsf{D}}.$$

where $d\mu_{\sigma}$ is continuous (Lebesgue) singular and $d\mu_{\rm D}$ is discrete. Similarly, one has

$$dx = \dot{x}(t) dt + dx_{\sigma} + dx_{\mathsf{D}}.$$

$$(\star) \qquad \begin{cases} dx \in F(x(t)) dt + G(x(t)) d\mu(dt) \\ x(0-) = x_0. \end{cases}$$

We introduce a new solution concept by requiring the "parts" of the decomposition to "match up". We say

$$X_{\mu} = (x(\cdot), \phi(\cdot), \{y_i(\cdot)\}_{i \in \mathcal{I}}),$$

is a solution to (*) if $x(0-) = x_0$ and

•
$$\dot{x}(t) \in F(x(t)) + G(x(t))\dot{u}(t)$$
 a.e. $t \in [0,T]$,

- $dx_{\sigma} = \gamma(t) d\mu_{\sigma}$ for some μ_{σ} -measurable selection $\gamma(\cdot)$ of $G(x(\cdot))$.
- the atoms of dx and μ coincide, and for each $i \in \mathcal{I}$, the arc $y_i(\cdot)$ satisfies

$$\dot{y}_i(s) \in G(y_i(s))\dot{\phi}(s)$$
 a.e. $s \in I_i$
 $y_i(t_i-) = x(t_i-)$
 $y_i(t_i+) = x(t_i+)$

Theorem 1

Under the assumption (SH), the two notions of solution coincide.

V. invariance

We next consider

(Q2) What are the invariance notions?

The graph gr X_{μ} of the 3-tuple X_{μ} is defined by

gr
$$X_{\mu} := \left\{ (t, x(t)) : t \in [0, T] \right\}$$

 $\bigcup \left\{ (t_i, y_i(s)) : s \in I_i, i \in \mathcal{I} \right\}$

(*) is weakly invariant on $C \subseteq \mathbb{R}^n$:

For all S > 0 and $x_0 \in C$, there exist $T \in [0, S]$, $\mu \in \mathcal{B}_K([0, T])$, a graph completion $\phi(\cdot)$, and a solution X_μ so that the projection of the graph of X_μ into the second component is contained in C.

Strong invariance is defined similarly, where **every** trajectory satisfies the projection property.

(Q3) How are the invariance properties characterized infinitesimally?

Let $K_1 = \{k : k \in K, ||k|| = 1\}.$

Theorem 2

(a) Weak invariance is equivalent to: For each $x \in C$ and $\zeta \in N_C^P(x)$ (= the proximal normal cone to C at x), there exists $\lambda \in [0, 1]$ and $v \in [\lambda F(x) + (1 - \lambda)G(x)K_1]$ so that $\langle v, \zeta \rangle \leq 0.$

(b) Strong invariance is equivalent to: For each

$$x \in C, \zeta \in N_C^P(x), \lambda \in [0, 1], \text{ and}$$

 $v \in [\lambda F(x) + (1 - \lambda)G(x)K_1],$

one has

 $\langle v,\zeta\rangle\leq 0.$

VI. Sampling Methods

Given the measure μ , a natural sampling method of

$$\dot{y}(s) \in F(y(s))\dot{\phi}_0(s) + G(y(s))\dot{\phi}(s)$$

is the following. Let S > 0, and partition [0, S]: $N \in \mathbb{N}$, h = S/N, $s_j = jh$, $t_j = \phi_0(s_j)$, $\lambda_j = t_{j+1} - t_j$.

 $x_0 = x_0; \quad f_0 \in F(x_0); \quad g_0 \in G(x_0);$

$$x_{1} = x_{0} + \lambda_{1} f_{0} + (g_{0}) (\phi(s_{1}) - \phi(s_{0}));$$

$$f_{1} \in F(x_{1}); \quad g_{1} \in G(x_{1});$$

i i i

$$x_{j+1} = x_j + \lambda_j f_j + (g_j) (\phi(s_j) - \phi(s_{j-1}))$$

$$f_{j+1} \in F(x_{j+1}); \quad g_{j+1} \in G(x_{j+1});$$

:

÷

But the issue here is that we must also produce the measure and graph completion. In particular, the λ_j must also be selected. Let S > 0, and partition [0, S] with $N \in \mathbb{N}$ and h = S/N.

$$x_0 := x_0, \quad \lambda_0 \in [0, 1], \quad f_0 \in F(x_0), \\ k_0 \in K_1, \quad g_0 \in G(x_0);$$

$$x_{1} := x_{0} + \lambda_{0}hf_{0} + (1 - \lambda_{0})hg_{0}k_{0},$$

$$\lambda_{1} \in [0, 1], \quad f_{1} \in F(x_{1}),$$

$$k_{1} \in K_{1}, \quad g_{1} \in G(x_{1});$$

$$x_{j+1} := x_j + \lambda_j h f_j + (1 - \lambda_j) h g_j k_j,$$

$$\lambda_{j+1} \in [0, 1], f_{j+1} \in F(x_{j+1}),$$

$$k_{j+1} \in K_1, \quad g_{j+1} \in G(x_{j+1});$$

E E E

 $x_N := x_{N-1} + \lambda_{N-1} h f_{N-1} + (1 - \lambda_{N-1}) h g_{N-1} k_{N-1}.$

Let $t_j = \sum_{i=1}^j \lambda_i$, and $\chi^N = \{(t_j, x_j) : j = 1, \dots, N\}$ be the sampled graph.

Our answer to

(Q4) How can solutions be generated by time discretization?

is the following theorem.

Theorem 3 (a) Suppose assumption **(SH)** holds, and let $\{\chi^N\}$ be a sequence of sampled graphs. Then there exists a measure $\mu \in$ $\mathcal{B}_K[0,T]$ and a solution X_μ for which

$$\lim_{N \to \infty} \inf dist_{\mathcal{H}} (\chi^N, gr X_{\mu}) = 0,$$

where gr X_{μ} is the graph of X_{μ} ; i.e. equals
 $\{(t, x(t)) : t \in [0, T]\} \cup \{(t_i, y_i(s)) : i \in \mathcal{I}, s \in I_i\}.$

(b) Suppose assumption (SH)₊holds. Then the graph of every solution is the limit of a sampled sequence.

Conclusions

- A solution concept for impulsive equations is defined through "matching" the decomposition of the measures.
- Weak and strong invariance is infinitesimally characterized through Hamilton-Jacobi inequalities.
- The proof technique of the invariance results rely on an Euler-type sampling method in the reparameterized time space and they generate solutions.