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I. The Chemostat

A standard model for a Sequential Batch Re-

actor (SBR) is

ẋi(t) =
(
µi(s)− u(t)

v(t)

)
xi(t)

ṡ(t) = −
∑n

j=1 µj(s)xj(t) + u(t)
v(t)

(
sin − s

)
v̇(t) = u(t),

plus initial conditions. Here, xi, s, and v are the

concentrations of the ith species, substrate,

and total volume, respectively. The variable

u is the input flow rate and is the control vari-

able.

The problem becomes nonstandard if the con-

trol variable u is allowed to be

unbounded



II. Differential inclusions

A standard (nonlinear) Control Dynamical (CD)

system has the form

(
CD

) 
ẋ(t) = f

(
x(t), u(t)

)
a.e. t ∈ [0, T ]

u(t) ∈ U a.e. t ∈ [0, T ]
x(0) = x0,

where f : IRn×IRm → IRn, U ⊆ IRm, and x0 ∈ IRn.

A Differential Inclusion has the form(
DI

) {
ẋ(t) ∈ F

(
x(t)

)
a.e. t ∈ [0, T ]

x(0) = x0,

where F : IRn ⇒ IRn is a multifunction (i.e. a

set-valued map).

Remark: The trajectories x(·) of (CD) and

(DI) coincide if

F (x) =
{
f(x, u) : u ∈ U

}
.



Basic Theory of (DI):

Hypotheses

A well-developed theory is established under
Standard Hypotheses (SH) on F :

• Each set-value F (x) is nonempty, com-
pact, and convex.

• The graph {(x, v) : v ∈ F (x)} is closed (F (·)
is upper or outer semicontinuous.)

• F (·) has linear growth: ∃ c > 0 so that

v ∈ F (x) ⇒ ‖v‖ ≤ c(1 + ‖x‖).

An additional Lipschitz hypothesis (SH)+ is
often invoked to obtain additional results:

• F (x) ⊆ F (y) + k‖x− y‖IB.



Basic Theory of (DI):

Results

Under assumptions (SH):

• Existence of absolutely continuous solutions.

• Compactness of trajectories: a sequence of

“approximate” solutions have a cluster point

that is a solution.

• Characterization of weak invariance on a closed

set C: if x0 ∈ C, then there exists a solution x(·)
to (DI) that remains in C for all time.

The (normal-type) characterization is that

−H(x,−ζ) ≤ 0 ∀x ∈ C, ζ ∈ NP
C (x),

where H : IRn × IRn → IR is the Hamiltonian

given by

H(x, ζ) := max
v∈F (x)

〈v, ζ〉.



Notice that

−H(x,−ξ) = min
v∈F (x)

〈v, ξ〉,

and recall the proximal normal cone NP
C (x) is

defined by NP
C (x) :={

ζ : ∃σ > 0 s.t. 〈y − x, ζ〉 ≤ σ‖y − x‖2 ∀y ∈ C
}
.

Thus the condition

−H(x,−ζ) ≤ 0 ∀x ∈ C, ζ ∈ NP
C (x),

says that at each x ∈ C, there exists a velocity

vector v ∈ F (x) that “points into” C.



Under assumptions (SH)+:

• The reachable set

RT (x0) :=
{
x(T ) : x(·) solves (DI)

}
can be characterized in several ways.

• Every solution is a limit of Euler approxi-
mate trajectories (Sampling).

• Relaxation.

• Characterization of strong invariance on a
closed set C:

H(x, ζ) ≤ 0 ∀x ∈ C, ζ ∈ NP
C (x).



III. Impulsive Systems

Impulsive systems arise naturally by asking

What if

F (x) is unbounded?

The theory loses many desirable properties, es-

pecially compactness of trajectories. In partic-

ular, trajectories can tend to limit to arcs that

have jumps.

We consider the impulsive dynamical systems

having the following differential form:

(
?
) 

dx ∈ F
(
x(t)

)
dt + G

(
x(t)

)
dµ(dt)

µ ∈ BK([0, T ])
x(0−) = x0,

where x(·) is an arc of bounded variation.



Given Data

• The multifunction F : IRn ⇒ IRn has lin-

ear growth with nonempty, compact, and

convex values;

• The multifunction G : IRn ⇒ Mn×m also

with linear growth with nonempty, com-

pact, and convex values, where Mn×m de-

notes the n×m dimensional matrices with

real entries;

• The measure µ belongs to BK[0, T ], the

set of vector-valued Borel measures taking

values in the closed convex cone K ⊆ IRm.

If F and G are as above, we say (SH) is sat-

sified, and if they are in addition locally Lips-

chitz, then (SH)+ is satisfied.



(
?
) 

dx ∈ F
(
x(t)

)
dt + G

(
x(t)

)
dµ(dt)

µ ∈ BK([0, T ])
x(0−) = x0

We are interested in the following

Questions:

(Q1) What is meant by a solution to (?)?

(Q2) What are the natural invariance notions?

(Q3) How can the invariance properties be

infinitesimally characterized?

(Q4) Can solutions be generated by time dis-

cretization?



IV. Solution Concepts

Suppose µ ∈ BK[0, T ] is fixed. Recall(
?
)

dx ∈ F
(
x(t)

)
dt + G

(
x(t)

)
dµ(dt)

(Q1) What is meant by a solution to
(
?
)
?

The case m = 1 or, more generally, when the

columns of G(x) commute, can be handled in

a natural way:

Approximate µ by continuous (w.r.t. Lebesgue)

measures dµi = u̇i(t)dt, and take limits of the

solutions {xi(·)} to the differential inclusions

ẋi(t) ∈ F
(
xi(t)

)
+ G

(
xi(t)

)
u̇i(t).

This is not a well-defined concept for more

general G(·)! (Bressan-Rampazzo)



Graph completions

The distribution of µ and the time reparametriza-

tion are defined respectively by

u(t) = µ
(
[0, t]

)
,

η(t) = t +
∣∣∣µ∣∣∣([0, t]

)
Let S = η(T ). A graph completion of u(·) is a

Lipschitz map

(φ0, φ) : [0, S] → [0, T ]× IRn

with φ0(·) nondecreasing and mapping onto

[0, T ], and such that for every t ∈ [0, T ], there

exists an s ∈ [0, S] with(
φ0(s), φ(s)

)
=

(
η(t), u(t)

)
.



Simple Example

In this example, µ has 2 point
masses, and so η(·) has 2 jumps.

We shall take φ0(·) as the
graph inverse of η and refer to a
graph completion as just φ(·).

The graph of φ0(·) looks like



Solution data

Given µ ∈ BK([0, T ]) with atoms {ti}i∈I, con-

sider

Xµ =
(

x(·)︸ ︷︷ ︸
arc of

bounded
variation

, φ(·)︸ ︷︷ ︸
graph

completion

, {yi(·)}i∈I︸ ︷︷ ︸
arcs defined
on the jump

intervals

)

The jump intervals have the form

Ii = [η(ti−), η(ti+)] ⊆ [0, S], i ∈ I

and have length |µ(ti)|, which is the magnitude

of the atom.

Bressan-Rampazzo concept

The idea: Recast the dynamics in the repa-

rameterize time interval, and reduce the sys-

tem to a classical control problem



Given

Xµ =
(
x(·), φ(·), {yi(·)}i∈I

)
,

define y(·) : [0, S] → IRn by

y(s) =

x
(
φ0(s)

)
if s /∈ ∪i∈IIi

yi(s) if i ∈ Ii

Then Xµ is a Bressan-Rampazzo solution to

(
?
) {

dx ∈ F
(
x(t)

)
dt + G

(
x(t)

)
dµ(dt)

x(0−) = x0.

provided y(·) is Lipschitz and satisfies y(0) =

x0 and

ẏ(s) ∈ F
(
y(s)

)
φ̇0(s)+G

(
y(s)

)
φ̇(s) a.e. s ∈ [0, S].



Another definition

Recall

dµ = u̇(t) dt + dµσ + dµD.

where dµσ is continuous (Lebesgue) singular

and dµD is discrete. Similarly, one has

dx = ẋ(t) dt + dxσ + dxD.

(
?
) {

dx ∈ F
(
x(t)

)
dt + G

(
x(t)

)
dµ(dt)

x(0−) = x0.

We introduce a new solution concept by re-

quiring the “parts” of the decomposition to

“match up”.



We say

Xµ =
(
x(·), φ(·), {yi(·)}i∈I

)
,

is a solution to (?) if x(0−) = x0 and

• ẋ(t) ∈ F
(
x(t)

)
+G

(
x(t)

)
u̇(t) a.e. t ∈ [0, T ],

• dxσ = γ(t) dµσ for some µσ-measurable se-

lection γ(·) of G
(
x(·)

)
.

• the atoms of dx and µ coincide, and for

each i ∈ I, the arc yi(·) satisfies

ẏi(s) ∈ G
(
yi(s)

)
φ̇(s) a.e. s ∈ Ii

yi(ti−) = x(ti−)

yi(ti+) = x(ti+)



Theorem 1

Under the assumption (SH), the

two notions of solution coincide.



V. invariance

We next consider

(Q2) What are the invariance notions?

The graph gr Xµ of the 3-tuple Xµ is defined
by

gr Xµ :=
{
(t, x(t)) : t ∈ [0, T ]

}
⋃{

(ti, yi(s)) : s ∈ Ii, i ∈ I
}

(
?
)

is weakly invariant on C ⊆ IRn :

For all S > 0 and x0 ∈ C, there exist T ∈ [0, S],
µ ∈ BK([0, T ]), a graph completion φ(·), and a
solution Xµ so that the projection of the graph
of Xµ into the second component is contained
in C.

Strong invariance is defined similarly, where
every trajectory satisfies the projection prop-
erty.



(Q3)
How are the invariance properties
characterized infinitesimally?

Let K1 = {k : k ∈ K, ‖k‖ = 1}.

Theorem 2

(a) Weak invariance is equivalent to: For each
x ∈ C and ζ ∈ NP

C (x) (= the proximal nor-
mal cone to C at x), there exists λ ∈ [0,1]
and v ∈

[
λF (x) + (1− λ)G(x)K1

]
so that

〈v, ζ〉 ≤ 0.

(b) Strong invariance is equivalent to: For each

x ∈ C, ζ ∈ NP
C (x), λ ∈ [0,1], and

v ∈
[
λF (x) + (1− λ)G(x)K1

]
,

one has

〈v, ζ〉 ≤ 0.



VI. Sampling Methods

Given the measure µ, a natural sampling method

of

ẏ(s) ∈ F
(
y(s)

)
φ̇0(s) + G

(
y(s)

)
φ̇(s)

is the following. Let S > 0, and partition [0, S]:

N ∈ N, h = S/N , sj = jh, tj = φ0(sj), λj =

tj+1 − tj.

x0 = x0; f0 ∈ F (x0); g0 ∈ G(x0);

x1 = x0 + λ1f0 +
(
g0

)(
φ(s1)− φ(s0)

)
;

f1 ∈ F (x1); g1 ∈ G(x1);

... ... ...

xj+1 = xj + λjfj +
(
gj

)(
φ(sj)− φ(sj−1)

)
fj+1 ∈ F (xj+1); gj+1 ∈ G(xj+1);

... ... ...



But the issue here is that we must also produce
the measure and graph completion. In partic-
ular, the λj must also be selected. Let S > 0,
and partition [0, S] with N ∈ N and h = S/N .

x0 := x0, λ0 ∈ [0,1], f0 ∈ F (x0),
k0 ∈ K1, g0 ∈ G(x0);

x1 := x0 + λ0hf0 + (1− λ0)hg0k0,
λ1 ∈ [0,1], f1 ∈ F (x1),
k1 ∈ K1, g1 ∈ G(x1);

... ... ...

xj+1 := xj + λjhfj + (1− λj)hgjkj,
λj+1 ∈ [0,1], fj+1 ∈ F (xj+1),
kj+1 ∈ K1, gj+1 ∈ G(xj+1);

... ... ...

xN := xN−1 + λN−1hfN−1 + (1− λN−1)hgN−1kN−1.

Let tj =
∑j

i=1 λi, and χN = {(tj, xj) : j =
1, . . . , N}be the sampled graph.



Our answer to

(Q4)
How can solutions be generated
by time discretization?

is the following theorem.

Theorem 3(a) Suppose assumption (SH)holds,

and let {χN} be a sequence of sampled

graphs. Then there exists a measure µ ∈
BK[0, T ] and a solution Xµ for which

lim inf
N→∞

distH
(
χN ,gr Xµ

)
= 0,

where gr Xµ is the graph of Xµ; i.e. equals{
(t, x(t)) : t ∈ [0, T ]

}
∪

{
(ti, yi(s)) : i ∈ I, s ∈ Ii

}
.

(b) Suppose assumption (SH)+holds. Then

the graph of every solution is the limit of

a sampled sequence.



Conclusions

• A solution concept for impulsive equations

is defined through “matching” the decom-

position of the measures.

• Weak and strong invariance is infinitesi-

mally characterized through Hamilton-Jacobi

inequalities.

• The proof technique of the invariance re-

sults rely on an Euler-type sampling method

in the reparameterized time space and they

generate solutions.


