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What Do We Mean By Control Systems?

These are triply parameterized families of ODEs of the form

Y ′(t) = F
(
t ,Y (t),u(t ,Y (t − τ)), Γ, δ(t)

)
, Y (t) ∈ Y. (1)

Y ⊆ Rn. We have freedom to choose the control function u.
The functions δ : [0,∞)→ D represent uncertainty. D ⊆ Rm.
The vector Γ is constant but unknown. τ is a constant delay.

Specify u to get a doubly parameterized closed loop family

Y ′(t) = G(t ,Y (t),Y (t − τ), Γ, δ(t)), Y (t) ∈ Y, (2)

where G(t ,Y (t),Y (t − τ), Γ,d) = F(t ,Y (t),u(t ,Y (t − τ)), Γ,d).

Typically we construct u such that all trajectories of (2) for all
possible choices of δ satisfy some control objective.
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What is One Possible Control Objective?

Input-to-state stability generalizes global asymptotic stability.

Y ′(t) = G(t ,Y (t),Y (t − τ), Γ), Y (t) ∈ Y (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y |[t0−τ,t0])

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Y ′(t) = G
(
t ,Y (t),Y (t − τ), Γ, δ(t)

)
, Y (t) ∈ Y (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y |[t0−τ ,t0])

)
+ γ3(|δ|[t0,t]) (ISS)

Find γi ’s by building special strict Lyapunov functions.

Ex: When τ = 0, Σpert is ISS iff it has an ISS Lf (Sontag-Wang).
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What is the Value Added by Your Research?

Active magnetic bearings, bioreactors, brushless DC motors,
heart rate controllers, marine robots, microelectromechanical
relays, neuromuscular electrical stimulation, underactuated
ships, unmanned air vehicles,..

For many systems, we design controls u that ensure ISS under
the delays τ and uncertainties δ that prevail in engineering.

We combine the plants with dynamics for parameter estimators
Γ̂(t) that converge to Γ, and then use Γ̂(t) in u, instead of Γ.

For state constrained systems, we choose Y to find maximal
perturbation sets D the system can tolerate without leaving Y.

To handle delays τ , we transform nonstrict Lyapunov functions
into strict ones, and then into Lyapunov-Krasovskii functionals.
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Motivation: Pollutants from Deepwater Horizon oil spill.

ρ = |r2 − r1|, φ = angle between x1 and x2, cos(φ) = x1 · x2
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Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

ρ̇ = − sinφ, φ̇ = κ cosφ
1+κρ − u2 , (ρ, φ) ∈ X . (Σ)

ρ = relative distance. φ = bearing. X = (0,+∞)× (−π/2, π/2).
κ = positive curvature at the closest point. u2 = steering control.

Lumelsky-Stepanov. Micaelli-Samson. Morin-Samson. Zhang..

Control Objectives in Undelayed Nonadaptive Case:
(A) Design u2 to get UGAS of an equilibrium E = (ρ0,0).
(B) Prove ISS properties under actuator errors δ added to u2.

ISS: |(ρ, φ)(t)|E ≤ γ1
(
γ2(|(ρ, φ)(0)|E)e−ct)+ γ3(|δ|[0,t]).

Feedback linearization with z = sin(φ) cannot be applied.
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Review of Zhang-Justh-Krishnaprasad CDC’04

They realized Control Objective (A) using controllers of the form

u2 = κ cos(φ)
1+κρ − h′(ρ) cos(φ) + µ sin(φ). (3)

Assumption 1: h : (0,+∞)→ [0,∞) is C1, h′ has only finitely
many zeros, limρ→0+ h(ρ) = limρ→∞ h(ρ) =∞, and h ∈ PD(ρ0).

Strategy: Use the Lyapunov function candidate

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) . (4)

Along ρ̇ = − sin(φ), φ̇ = h′(ρ) cos(φ)− µ sin(φ), we get

V̇ = −µ sin2(φ)
cos(φ) ≤ 0 . (5)

This gives global asymptotic stability, using LaSalle Invariance.
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Extra Properties to Achieve All Of Our Goals

To realize our goals, we added assumptions on h which hold for

h(ρ) = α
(
ρ+ ρ2

o/ρ− 2ρo
)

See my Automatica and TAC papers with Fumin Zhang.
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Our Adaptive Robust Curve Tracking Controller

{
ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ + Γ[u + δ]

(ρ, φ) ∈
full state space︷ ︸︸ ︷

(0,∞)× (−π/2, π/2) (Σc)

Control : u(ρ, φ, Γ̂) = −1
Γ̂

(
κ cos(φ)

1+κρ − h′(ρ) cos(φ) + µ sin(φ)
)

(6)

Estimator : ˙̂
Γ = (Γ̂− cmin)(cmax − Γ̂)∂V ](ρ,φ)

∂φ u(ρ, φ, Γ̂) (7)

V ](ρ, φ) = −h′(ρ) sin(φ) +

∫ V (ρ,φ)

0
γ(m)dm (8)

γ(q) = 1
µ

(
2

α2ρ4
0
(q + 2αρ0)3 + 1

)
+ µ

2 + 2 + 18α
ρ0

+ 576
ρ4

0α
2 q3 (9)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (10)
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Robustly Forwardly Invariant Hexagonal Regions

We must restrict the suprema of the perturbations δ(t) to keep
(ρ, φ) from exiting X = (0,∞)× (−π/2, π/2).

View the state space (0,∞)× (−π/2, π/2)
as a union of compact hexagonally
shaped regions H1 ⊆ H2 ⊆ . . . ⊆ Hi ⊆ . . ..
[For each i , all trajectories of (Σc) starting
in Hi for all δ : [0,∞)→ [−δ∗i , δ∗i ] stay in
Hi .] The tilted legs have slope cminµ/cmax.

For each index i , we take δ∗i to be the largest allowable
disturbance bound to maintain forward invariance of Hi .

Then we prove ISS of the tracking and parameter identification
dynamics for each set Hi and the disturbance set D = [−δ∗i , δ∗i ].
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Hi .] The tilted legs have slope cminµ/cmax.

For each index i , we take δ∗i to be the largest allowable
disturbance bound to maintain forward invariance of Hi .

Then we prove ISS of the tracking and parameter identification
dynamics for each set Hi and the disturbance set D = [−δ∗i , δ∗i ].



Robustly Forwardly Invariant Hexagonal Regions

We must restrict the suprema of the perturbations δ(t) to keep
(ρ, φ) from exiting X = (0,∞)× (−π/2, π/2).

View the state space (0,∞)× (−π/2, π/2)
as a union of compact hexagonally
shaped regions H1 ⊆ H2 ⊆ . . . ⊆ Hi ⊆ . . ..

[For each i , all trajectories of (Σc) starting
in Hi for all δ : [0,∞)→ [−δ∗i , δ∗i ] stay in
Hi .] The tilted legs have slope cminµ/cmax.

For each index i , we take δ∗i to be the largest allowable
disturbance bound to maintain forward invariance of Hi .

Then we prove ISS of the tracking and parameter identification
dynamics for each set Hi and the disturbance set D = [−δ∗i , δ∗i ].



Robustly Forwardly Invariant Hexagonal Regions

We must restrict the suprema of the perturbations δ(t) to keep
(ρ, φ) from exiting X = (0,∞)× (−π/2, π/2).

View the state space (0,∞)× (−π/2, π/2)
as a union of compact hexagonally
shaped regions H1 ⊆ H2 ⊆ . . . ⊆ Hi ⊆ . . ..
[For each i , all trajectories of (Σc) starting
in Hi for all δ : [0,∞)→ [−δ∗i , δ∗i ] stay in
Hi .] The tilted legs have slope cminµ/cmax.

For each index i , we take δ∗i to be the largest allowable
disturbance bound to maintain forward invariance of Hi .

Then we prove ISS of the tracking and parameter identification
dynamics for each set Hi and the disturbance set D = [−δ∗i , δ∗i ].



Robustly Forwardly Invariant Hexagonal Regions

We must restrict the suprema of the perturbations δ(t) to keep
(ρ, φ) from exiting X = (0,∞)× (−π/2, π/2).

View the state space (0,∞)× (−π/2, π/2)
as a union of compact hexagonally
shaped regions H1 ⊆ H2 ⊆ . . . ⊆ Hi ⊆ . . ..
[For each i , all trajectories of (Σc) starting
in Hi for all δ : [0,∞)→ [−δ∗i , δ∗i ] stay in
Hi .] The tilted legs have slope cminµ/cmax.

For each index i , we take δ∗i to be the largest allowable
disturbance bound to maintain forward invariance of Hi .

Then we prove ISS of the tracking and parameter identification
dynamics for each set Hi and the disturbance set D = [−δ∗i , δ∗i ].



Robustly Forwardly Invariant Hexagonal Regions

We must restrict the suprema of the perturbations δ(t) to keep
(ρ, φ) from exiting X = (0,∞)× (−π/2, π/2).

View the state space (0,∞)× (−π/2, π/2)
as a union of compact hexagonally
shaped regions H1 ⊆ H2 ⊆ . . . ⊆ Hi ⊆ . . ..
[For each i , all trajectories of (Σc) starting
in Hi for all δ : [0,∞)→ [−δ∗i , δ∗i ] stay in
Hi .] The tilted legs have slope cminµ/cmax.

For each index i , we take δ∗i to be the largest allowable
disturbance bound to maintain forward invariance of Hi .

Then we prove ISS of the tracking and parameter identification
dynamics for each set Hi and the disturbance set D = [−δ∗i , δ∗i ].



Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants.
Georgia Tech Savannah Robotics Team (led by Fumin Zhang).



Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants.
Georgia Tech Savannah Robotics Team (led by Fumin Zhang).



Field Work at Grand Isle, LA

20 days of field work off Grand Isle.

Search for oil spill remnants.
Georgia Tech Savannah Robotics Team (led by Fumin Zhang).



Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants.

Georgia Tech Savannah Robotics Team (led by Fumin Zhang).



Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants.
Georgia Tech Savannah Robotics Team (led by Fumin Zhang).



Field Work at Grand Isle, LA



Field Work at Grand Isle, LA

(Loading Video...)


SM.mov
Media File (video/quicktime)



Schematic of ASV Victoria’s Electrical Systems



Schematic of ASV Victoria’s Software Architecture
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Crude Oil Concentration Maps



Conclusions

Adaptive nonlinear controllers are useful for many engineering
control systems with delays and uncertainties.

Curve tracking controllers for autonomous marine vehicles are
important for monitoring water quality, especially after oil spills.

Our curve trackers are adaptive and robust to the perturbations
and time delays that commonly arise in field work.

We can prove these properties using input-to-state stability,
parameter estimators, and Lyapunov-Krasovskii functionals.

We used our controls on student built marine robots to map
residual crude oil from the Deepwater Horizon spill.

In our future work, we will study adaptive robust control for
heterogeneous fleets of autonomous marine vehicles.
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