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Proving GAS of Nonlinear Time Delay Systems

Delay: arise from latencies, communication time lags, and time
consuming information gathering, often too long to ignore,...

Indirect methods: flow maps usually not expressible in explicit
closed form, hard to measure decay of solutions,...

Lyapunov-Krasovskii functionals: infinite dimensional domains,
sum of a Lyapunov function for undelayed system + integral,....

Razumikhin functions: finite dimensional domains, can be hard
to satisfy their negative decay rate requirements,...
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Nonlinear Time-Varying Systems

ẋ = F (t , xt ), where xt (θ) = x(t + θ) for all θ ∈ [−τ,0]

(1)

Assumption 1: There exist a function V : [0,∞)× Rn → [0,∞)
that is C1 on ([0,∞)×Rn) \ {0}, and α1 and α2 in K∞, such that

α1(|x |) ≤ V (t , x) ≤ α2(|x |) on [0,∞)× Rn (2)

and such that there are bounded piecewise continuous functions
a : R→ R and b : R→ [0,∞) such that

d
dt V (t , x(t)) ≤ a(t)V (t , x(t)) + b(t) sup

`∈[t−τ,t]
V (`, x(`)) (3)

holds along all trajectories of (1). �

Also standard growth and Lipschitzness conditions on F ...
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Alternative to Standard Razumikhin Theorem

d
dt V (t , x(t)) ≤ a(t)V (t , x(t)) + b(t) sup

`∈[t−τ,t]
V (`, x(`)) (3)

Assumption 2: There exist constants β > 0 and $ > 0 and a
bounded piecewise continuous function ε such that the function

κ(t) = sup
`∈[t−τ,t]

∫ t
` (−ε(s)− a(s)− b(s))ds (4)

is such that ∣∣∣∫ t
0(ε(`) + a(`) + b(`))d`

∣∣∣ ≤ β
and

(
eκ(t) − 1

)
b(t)− ε(t) ≤ −$

(5)

hold for all t ≥ 0. �

Theorem: Under the preceding assumptions, (1) is UGAS to 0.�
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Ideas of Proof of Theorem∣∣∣∫ t
0(ε(`) + a(`) + b(`))d`

∣∣∣ ≤ β
and

(
eκ(t) − 1

)
b(t)− ε(t) ≤ −$

(5)

Pick a constant r > 0 such that reτ(ε+a+b)b ≤ $
2 , where ε, a, and

b are upper bounds on |ε|, |a|, and b, respectively.

U(t , x) = exp
(
−
∫ t

0(ε(`) + a(`) + b(`))d`
)

V (t , x)

e−βα1(|x |) ≤ U(t , x) ≤ eβα2(|x |) on [0,∞)× Rn (R1)

U(t , x(t)) ≥ 1
r+1 sup

`∈[t−τ,t]
U(`, x(`))

=⇒ d
dt

(
U(t , x(t)

)
≤ −$

2 U(t , x(t))
(R2)
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Applications and Extensions

Conditions hold if a and b have a period T with ε(t) = ε∗, where

ε∗ = − 1
T
∫ T

0 (a(`) + b(`))d`, if τ < 1
sµ ln

(
1 + ε∗

b

)
(6)

and if sµ = sups∈[0,T ](−ε∗ − a(s)− b(s)) > 0.

ẋ(t) = −[1+2 cos(t)]x(t−τ), if
√

e12τ − 1<
√

2π√
6τ(π/3+2

√
3)

(7)

ẋ(t) = −m(t)m>(t)x(t −∆(t)) in any dimension. (8)

Constructions of LKF’s, discrete time analogs,...

Mazenc, F., and M. Malisoff, “Extensions of Razumikhin’s
theorem and Lyapunov-Krasovskii functional constructions for
time-varying systems with delay,” Automatica, regular paper.
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More about Identification Example

ẋ = −m(t)m>(t)x(t −∆(t)) in any dimension. (8)

Arises when identifying coefficients of a stable plant transfer
function; see Anderson’s 1977 adaptive identification TAC paper.

Aeyels-Sepulchre (94), Peuteman-Aeyels (02),...

Constant Delays using LKFs: Mazenc-M-Lin (08),...

∆ piecewise continuous, upper bounded by a constant τ > 0.

|m(t)| admits some Lipschitz constant lm > 0 and a period ω.

M = 1
ω

∫ ω
0 m(s)m>(s)ds positive definite (9)

∆ bound in terms of preceding coefficients....
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Conclusions

New way to relax decay condition on Razumikhin functions

Uses new strictification that produces Razumikhin functions

Allows nonlinear systems with time-varying and distributed delay

Covers identification theory and other interesting examples

Has discrete time analogs for discretized nonlinear systems

Our related results construct Lyapunov-Krasovskii functionals

Planning adaptive extensions with parameter identification

Thank you for your attention!
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