Extension of Razumikhin's Theorem for Time-Varying Systems with Delay

Frederic Mazenc

Michael Malisoff

Proving GAS of Nonlinear Time Delay Systems

Delay: arise from latencies, communication time lags, and time consuming information gathering, often too long to ignore,...

Indirect methods: flow maps usually not expressible in explicit closed form, hard to measure decay of solutions,...

Lyapunov-Krasovskii functionals: infinite dimensional domains, sum of a Lyapunov function for undelayed system + integral,....

Razumikhin functions: finite dimensional domains, can be hard to satisfy their negative decay rate requirements,...

Proving GAS of Nonlinear Time Delay Systems

Delay: arise from latencies, communication time lags, and time consuming information gathering, often too long to ignore,...

Indirect methods: flow maps usually not expressible in explicit closed form, hard to measure decay of solutions,...

Lyapunov-Krasovskii functionals: infinite dimensional domains, sum of a Lyapunov function for undelayed system + integral,....

Razumikhin functions: finite dimensional domains, can be hard to satisfy their negative decay rate requirements,...

E. Fridman, ZP. Jiang, M. Krstic, SI. Niculescu, P. Pepe, B. Zhou

Proving GAS of Nonlinear Time Delay Systems

Delay: arise from latencies, communication time lags, and time consuming information gathering, often too long to ignore,...

Indirect methods: flow maps usually not expressible in explicit closed form, hard to measure decay of solutions,...

Lyapunov-Krasovskii functionals: infinite dimensional domains, sum of a Lyapunov function for undelayed system + integral,....

Razumikhin functions: finite dimensional domains, can be hard to satisfy their negative decay rate requirements,...

E. Fridman, ZP. Jiang, M. Krstic, SI. Niculescu, P. Pepe, B. Zhou

 $\dot{x} = F(t, x_t)$, where $x_t(\theta) = x(t + \theta)$ for all $\theta \in [-\tau, 0]$

$$\dot{x} = F(t, x_t)$$
, where $x_t(\theta) = x(t + \theta)$ for all $\theta \in [-\tau, 0]$ (1)

Assumption 1: There exist a function $V : [0, \infty) \times \mathbb{R}^n \to [0, \infty)$ that is C^1 on $([0, \infty) \times \mathbb{R}^n) \setminus \{0\}$, and α_1 and α_2 in \mathcal{K}_{∞} , such that

$$\alpha_1(|\mathbf{x}|) \le V(t, \mathbf{x}) \le \alpha_2(|\mathbf{x}|) \text{ on } [0, \infty) \times \mathbb{R}^n$$
 (2)

and such that there are bounded piecewise continuous functions $a : \mathbb{R} \to \mathbb{R}$ and $b : \mathbb{R} \to [0, \infty)$ such that

$$\frac{d}{dt}V(t,x(t)) \le a(t)V(t,x(t)) + b(t) \sup_{\ell \in [t-\tau,t]} V(\ell,x(\ell))$$
(3)

holds along all trajectories of (1).

$$\dot{x} = F(t, x_t)$$
, where $x_t(\theta) = x(t + \theta)$ for all $\theta \in [-\tau, 0]$ (1)

Assumption 1: There exist a function $V : [0, \infty) \times \mathbb{R}^n \to [0, \infty)$ that is C^1 on $([0, \infty) \times \mathbb{R}^n) \setminus \{0\}$, and α_1 and α_2 in \mathcal{K}_{∞} , such that

$$\alpha_1(|\mathbf{x}|) \le V(t, \mathbf{x}) \le \alpha_2(|\mathbf{x}|) \text{ on } [0, \infty) \times \mathbb{R}^n$$
 (2)

and such that there are bounded piecewise continuous functions $a: \mathbb{R} \to \mathbb{R}$ and $b: \mathbb{R} \to [0, \infty)$ such that

$$\frac{d}{dt}V(t,x(t)) \le a(t)V(t,x(t)) + b(t) \sup_{\ell \in [t-\tau,t]} V(\ell,x(\ell))$$
(3)

holds along all trajectories of (1).

Also standard growth and Lipschitzness conditions on F...

$$\dot{x} = F(t, x_t)$$
, where $x_t(\theta) = x(t + \theta)$ for all $\theta \in [-\tau, 0]$ (1)

Assumption 1: There exist a function $V : [0, \infty) \times \mathbb{R}^n \to [0, \infty)$ that is C^1 on $([0, \infty) \times \mathbb{R}^n) \setminus \{0\}$, and α_1 and α_2 in \mathcal{K}_{∞} , such that

$$\alpha_1(|\mathbf{x}|) \le V(t, \mathbf{x}) \le \alpha_2(|\mathbf{x}|) \text{ on } [0, \infty) \times \mathbb{R}^n$$
 (2)

and such that there are bounded piecewise continuous functions $a : \mathbb{R} \to \mathbb{R}$ and $b : \mathbb{R} \to [0, \infty)$ such that

$$\frac{d}{dt}V(t,x(t)) \le a(t)V(t,x(t)) + b(t) \sup_{\ell \in [t-\tau,t]} V(\ell,x(\ell))$$
(3)

holds along all trajectories of (1).

Also standard growth and Lipschitzness conditions on F...

Alternative to Standard Razumikhin Theorem

 $\frac{d}{dt}V(t,x(t)) \le a(t)V(t,x(t)) + b(t) \sup_{\ell \in [t-\tau,t]} V(\ell,x(\ell))$ (3)

Alternative to Standard Razumikhin Theorem

 $\frac{d}{dt}V(t,x(t)) \le a(t)V(t,x(t)) + b(t) \sup_{\ell \in [t-\tau,t]} V(\ell,x(\ell))$ (3)

Assumption 2: There exist constants $\beta > 0$ and $\varpi > 0$ and a bounded piecewise continuous function ϵ such that the function

$$\kappa(t) = \sup_{\ell \in [t-\tau,t]} \int_{\ell}^{t} (-\epsilon(s) - a(s) - b(s)) \mathrm{d}s \tag{4}$$

is such that

$$\left| \int_{0}^{t} (\epsilon(\ell) + a(\ell) + b(\ell)) d\ell \right| \leq \beta$$

and $(e^{\kappa(t)} - 1) b(t) - \epsilon(t) \leq -\varpi$ (5)

hold for all $t \ge 0$.

Alternative to Standard Razumikhin Theorem

 $\frac{d}{dt}V(t,x(t)) \le a(t)V(t,x(t)) + b(t) \sup_{\ell \in [t-\tau,t]} V(\ell,x(\ell))$ (3)

Assumption 2: There exist constants $\beta > 0$ and $\varpi > 0$ and a bounded piecewise continuous function ϵ such that the function

$$\kappa(t) = \sup_{\ell \in [t-\tau,t]} \int_{\ell}^{t} (-\epsilon(s) - a(s) - b(s)) \mathrm{d}s \tag{4}$$

is such that

$$\left|\int_{0}^{t} (\epsilon(\ell) + a(\ell) + b(\ell)) d\ell\right| \leq \beta$$

and $(e^{\kappa(t)} - 1) b(t) - \epsilon(t) \leq -\varpi$ (5)

hold for all $t \ge 0$.

Theorem: Under the preceding assumptions, (1) is UGAS to $0. \Box$

$$\left| \int_{0}^{t} (\epsilon(\ell) + a(\ell) + b(\ell)) d\ell \right| \leq \beta$$

and $(e^{\kappa(t)} - 1) b(t) - \epsilon(t) \leq -\varpi$ (5)

$$\left| \int_{0}^{t} (\epsilon(\ell) + a(\ell) + b(\ell)) d\ell \right| \leq \beta$$

and $(e^{\kappa(t)} - 1) b(t) - \epsilon(t) \leq -\varpi$ (5)

Pick a constant r > 0 such that $re^{\tau(\overline{\epsilon} + \overline{a} + \overline{b})}\overline{b} \leq \frac{\overline{\omega}}{2}$, where $\overline{\epsilon}$, \overline{a} , and \overline{b} are upper bounds on $|\epsilon|$, |a|, and b, respectively.

$$\left|\int_{0}^{t} (\epsilon(\ell) + a(\ell) + b(\ell)) d\ell\right| \le \beta$$

and $(e^{\kappa(t)} - 1) b(t) - \epsilon(t) \le -\varpi$ (5)

Pick a constant r > 0 such that $re^{\tau(\overline{\epsilon} + \overline{a} + \overline{b})}\overline{b} \leq \frac{\omega}{2}$, where $\overline{\epsilon}$, \overline{a} , and \overline{b} are upper bounds on $|\epsilon|$, |a|, and b, respectively.

$$U(t,x) = \exp\left(-\int_0^t (\epsilon(\ell) + a(\ell) + b(\ell))d\ell\right) V(t,x)$$

 $e^{-eta}lpha_1(|x|) \le U(t,x) \le e^{eta}lpha_2(|x|)$ on $[0,\infty) imes \mathbb{R}^n$ (R1)

$$U(t, x(t)) \ge \frac{1}{r+1} \sup_{\ell \in [t-\tau, t]} U(\ell, x(\ell))$$

$$\implies \frac{d}{dt} (U(t, x(t)) \le -\frac{\varpi}{2} U(t, x(t))$$
 (R2)

$$\left|\int_{0}^{t} (\epsilon(\ell) + a(\ell) + b(\ell)) d\ell\right| \leq \beta$$

and $(e^{\kappa(t)} - 1) b(t) - \epsilon(t) \leq -\varpi$ (5)

Pick a constant r > 0 such that $re^{\tau(\overline{\epsilon} + \overline{a} + \overline{b})}\overline{b} \leq \frac{\omega}{2}$, where $\overline{\epsilon}$, \overline{a} , and \overline{b} are upper bounds on $|\epsilon|$, |a|, and b, respectively.

$$U(t,x) = \exp\left(-\int_0^t (\epsilon(\ell) + a(\ell) + b(\ell))d\ell\right) V(t,x)$$

 $e^{-eta}lpha_1(|x|) \le U(t,x) \le e^{eta}lpha_2(|x|)$ on $[0,\infty) imes \mathbb{R}^n$ (R1)

$$U(t, x(t)) \ge \frac{1}{r+1} \sup_{\ell \in [t-\tau, t]} U(\ell, x(\ell))$$

$$\implies \frac{d}{dt} (U(t, x(t)) \le -\frac{\omega}{2} U(t, x(t))$$
 (R2)

Applications and Extensions

Conditions hold if *a* and *b* have a period T with $\epsilon(t) = \epsilon_*$, where

$$\epsilon_* = -\frac{1}{\mathcal{T}} \int_0^{\mathcal{T}} (a(\ell) + b(\ell)) d\ell, \text{ if } \tau < \frac{1}{s_\mu} \ln\left(1 + \frac{\epsilon_*}{\overline{b}}\right)$$
(6)
and if $s_\mu = \sup_{s \in [0,\mathcal{T}]} (-\epsilon_* - a(s) - b(s)) > 0.$

Applications and Extensions

Conditions hold if *a* and *b* have a period T with $\epsilon(t) = \epsilon_*$, where

$$\epsilon_* = -\frac{1}{\tau} \int_0^{\tau} (a(\ell) + b(\ell)) d\ell, \quad \text{if } \tau < \frac{1}{s_{\mu}} \ln\left(1 + \frac{\epsilon_*}{\overline{b}}\right)$$
(6)
and if $s_{\mu} = \sup_{s \in [0, \tau]} (-\epsilon_* - a(s) - b(s)) > 0.$
$$\dot{x}(t) = -[1 + 2\cos(t)]x(t - \tau), \quad \text{if } \sqrt{e^{12\tau} - 1} < \frac{\sqrt{2\pi}}{\sqrt{6\tau}(\pi/3 + 2\sqrt{3})}$$
(7)
$$\dot{x}(t) = -m(t)m^{\top}(t)x(t - \Delta(t)) \text{ in any dimension.}$$
(8)

Constructions of LKF's, discrete time analogs,...

Applications and Extensions

Conditions hold if *a* and *b* have a period T with $\epsilon(t) = \epsilon_*$, where

$$\epsilon_* = -\frac{1}{\tau} \int_0^{\tau} (a(\ell) + b(\ell)) d\ell, \quad \text{if} \quad \tau < \frac{1}{s_{\mu}} \ln\left(1 + \frac{\epsilon_*}{\overline{b}}\right) \tag{6}$$

and if $s_{\mu} = \sup_{s \in [0, \tau]} (-\epsilon_* - a(s) - b(s)) > 0.$

$$\dot{x}(t) = -[1+2\cos(t)]x(t-\tau), \text{ if } \sqrt{e^{12\tau}-1} < \frac{\sqrt{2\pi}}{\sqrt{6\tau}(\pi/3+2\sqrt{3})}$$
 (7)

 $\dot{x}(t) = -m(t)m^{\top}(t)x(t - \Delta(t))$ in any dimension. (8)

Constructions of LKF's, discrete time analogs,...

Mazenc, F., and M. Malisoff, "Extensions of Razumikhin's theorem and Lyapunov-Krasovskii functional constructions for time-varying systems with delay," *Automatica*, regular paper.

More about Identification Example

$$\dot{x} = -m(t)m^{\top}(t)x(t - \Delta(t))$$
 in any dimension. (8)

Arises when identifying coefficients of a stable plant transfer function; see Anderson's 1977 adaptive identification TAC paper.

Aeyels-Sepulchre (94), Peuteman-Aeyels (02),...

Constant Delays using LKFs: Mazenc-M-Lin (08),...

More about Identification Example

 $\dot{x} = -m(t)m^{\top}(t)x(t - \Delta(t))$ in any dimension. (8)

Arises when identifying coefficients of a stable plant transfer function; see Anderson's 1977 adaptive identification TAC paper.

Aeyels-Sepulchre (94), Peuteman-Aeyels (02),...

Constant Delays using LKFs: Mazenc-M-Lin (08),...

 Δ piecewise continuous, upper bounded by a constant $\tau > 0$.

|m(t)| admits some Lipschitz constant $I_m > 0$ and a period ω .

$$M = \frac{1}{\omega} \int_0^{\omega} m(s) m^{\top}(s) \mathrm{d}s$$
 positive definite (9)

 Δ bound in terms of preceding coefficients....

Conclusions

New way to relax decay condition on Razumikhin functions Uses new strictification that produces Razumikhin functions Allows nonlinear systems with time-varying and distributed delay Covers identification theory and other interesting examples Has discrete time analogs for discretized nonlinear systems Our related results construct Lyapunov-Krasovskii functionals Planning adaptive extensions with parameter identification

Conclusions

New way to relax decay condition on Razumikhin functions Uses new strictification that produces Razumikhin functions Allows nonlinear systems with time-varying and distributed delay Covers identification theory and other interesting examples Has discrete time analogs for discretized nonlinear systems Our related results construct Lyapunov-Krasovskii functionals Planning adaptive extensions with parameter identification

Thank you for your attention!