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Chain of Exponential Integrators{
Ẋ = (Y ∗ − Y )X
Ẏ = (D∗ − D)Y , (X ,Y ) ∈ (0,∞)2

X = pest density, Y = predator density, D = control
Constant D∗ > 0 and Y ∗ > 0
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(
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)2

Theorem: The closed loop system is GAS to (Xr ,Y ∗) on (0,∞)2.
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Fig. 1: X (Left), Y (Right), D = 5Y/X (Bottom). Y ∗ = Xr = 1. D∗ = 5.
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Fig. 2: (X (t),Y (t)) Converging to (1,1) through Level Curves of V .



Importance of Strict Lyapunov Functions

Indirect ways to prove stability properties for nonlinear systems

Strictness means V̇ < 0 along all solutions outside equilibrium

Useful for proving robustness, e.g., input-to-state stability (ISS)

Facilitate ISSification through LgV feedback control redesigns

Strict Lyapunov functions for subsystems facilitate backstepping

Strictification turns nonstrict Lyapunov functions into strict ones

Malisoff, M., and F. Mazenc, Constructions of Strict Lyapunov
Functions, Communications and Control Engineering Series,
Springer-Verlag London Ltd., London, UK, 2009.
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Strictification

New variables x = ln(X/Xr ), y = ln(Y/Y ∗), and u = ln(D/D∗){
ẋ = Y ∗(1− ey )
ẏ = D∗(1− ey−x), (x , y) ∈ R2

Theorem: We can build a function R : [0,∞)→ [1,∞) such that

V3(x , y) =
∫ V1(x ,y)

0 R(s)ds − xy , where

V1(x , y) = x + e−x − 1 + Y∗

D∗ (ey − y − 1)

satisfies V3(x , y) ≥ 1
2V1(x , y) for all (x , y) ∈ R2 and

V̇3(x , y) ≤ −1
2

{
R(V1(x , y))e−xY ∗(1−ey )2 + D∗x(1−e−x)

}
along all solutions (x(t), y(t)) so V3 is a strict Lyapunov function.
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Extensions and Applications

Other changes of coordinates cover{
Ẋ = G(t ,X ,Y )X
Ẏ = H(t ,X ,Y ,D)Y , (X ,Y ) ∈ (0,∞)2

for many choices of G and H.

Predator-prey model for lynxes and hares:{
Ḣ = rH

(
1− H

k

)
− aHL

c+H

L̇ = abHL
c+H − DL

ISS under uncertainty, delays in gestation or in interconnection,..

Malisoff, M., and M. Krstic, “Stabilization and robustness
analysis for a chain of exponential integrators using strict
Lyapunov functions," Automatica, to appear.



Extensions and Applications

Other changes of coordinates cover{
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Conclusions

Nonstrict Lyapunov functions and LaSalle invariance are useful.

Strictification often helps certify robustness under delays.

Finding auxiliary functions in Matrosov’s approach can be hard.

Our strict Lyapunov constructions enable feedback redesigns.

Radial unboundedness of our −V̇3 helped prove robustness.

Our strictification covered interesting biology inspired systems.

Thank you for your attention!
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