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What Do We Mean By Delayed Control Systems ?

These are doubly parameterized families of ODEs of the form

Y ′(t) = F
(
t,Y (t), u(t,Y (t − τ)), δ(t)

)
, Y (t) ∈ Y. (1)

Y ⊆ Rn. We have freedom to choose the control function u.
The functions δ : [0,∞)→ D represent uncertainty. D ⊆ Rm.

Yt(θ) = Y (t + θ). Specify u to get a singly parameterized family

Y ′(t) = G(t,Yt , δ(t)), Y (t) ∈ Y, (2)

where G(t,Yt , d) = F(t,Y (t), u(t,Y (t − τ)), d).

Typically we construct u such that all trajectories of (2) for all
possible choices of δ satisfy some control objective.
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What is One Possible Control Objective ?

Input-to-state stability generalizes global asymptotic stability.

Y ′(t) = G(t,Yt), Y (t) ∈ Y. (Σ)

|Y (t)| ≤ γ1

(
et0−tγ2(|Yt0 |[−τ,0])

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Y ′(t) = G
(
t,Yt , δ(t)

)
, Y (t) ∈ Y. (Σpert)

|Y (t)| ≤ γ1

(
et0−tγ2(|Yt0 |[−τ,0])

)
+ γ2(|δ|[t0,t]) (ISS)

Find γi ’s by building certain LKFs for Y ′(t) = G(t,Yt , 0).
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How Do We Stabilize Systems Under Input Delays ?

Prediction :

The control values are trajectories of a new component of the
dynamics.
It typically allows arbitrarily long input delays but the control
law might not be explicit.
It may be difficult to accommodate input constraints, e.g.,
amplitude or control rate constraints.

Leveraging Undelayed Stabilizers :

First we render the undelayed system UGAS and build a LF
for the closed loop system.
Then we see how long an input delay can be introduced in the
controller without destroying the UGAS.
The stabilization analysis typically adds integral terms to the
LF to produce an LKF.
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What is a Lyapunov-Krasovskii Functional (LKF) ?

Definition: We call V ] an ISS-LKF for Y ′(t) = G(t,Yt , δ(t))
provided there exist functions γi ∈ K∞ such that:

1 γ1(|φ(0)|) ≤ V ](t, φ) ≤ γ2(|φ|[−τ,0])
for all (t, φ) ∈ [0,+∞)× C([−τ, 0],Rn) and

2
d
dt

[
V ](t,Yt)

]
≤ −γ3(V ](t,Yt)) + γ4(|δ(t)|)

along all trajectories of the system

Example: The function V (Y ) = 1
2 |Y |

2 is an ISS-LKF for
Y ′(t) = −Y (t) + 1

4 Y (t) + δ(t) for any D. Fix τ > 0.

V ](Yt) = V (Y (t)) + 1
4

∫ t
t−τ |Y (`)|2d`+ 1

8τ

∫ t
t−τ

[∫ t
s |Y (r)|2dr

]
ds

is an ISS-LKF for Y ′(t) = −Y (t) + 1
4 Y (t − τ) + δ(t).
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Linear Feedforward Systems

Consider the set of all systems having the feedforward form{
ẋ = h1(z) + h2(z)v(t − τ)
ż = f (z) + g(z)v(t − τ) .

(3)

The state space is Rn × Rp. Linearizing (3) around period τ
reference trajectories produces a system of the form{

ẋ(t) = C (t)z(t) + D(t)u(t − τ)
ż(t) = A(t)z(t) + B(t)u(t − τ) ,

(4)

where A, B, C , and D are C 1 matrix valued functions of period τ .

We focus on (4), and cases where uncertainties δ are added to u.
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ẋ(t) = C (t)z(t) + D(t)u(t − τ)
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ẋ(t) = C (t)z(t) + D(t)u(t − τ)
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Preliminary Technical Results

Assumption 1. The system

θ̇(t) = A(t)θ(t) (5)

is UGAS. The matrices A, B, C , and D are C 1 and have period τ .

Hence, (5) admits a Lyapunov function V (t, θ) = θ>P(t)θ such
that V̇ ≤ −|θ|2 along all trajectories of (5) and P has period τ .

Let ψa be the inverse of the fundamental matrix for (5).{
∂ψa

∂t (t,m) = −ψa(t,m)A(t)
ψa(m,m) = I

(6)

for all t ∈ R and m ∈ R.
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Preliminary Technical Results

Lemma

Let Assumption 1 hold. Then the function I− ψa(`, `− τ) is
invertible for all ` ∈ R. Also, the function q : R→ Rn×p defined by

q(t) = −
∫ t

t−τ
C (`)[I− ψa(`, `− τ)]−1ψa(t, `)d` (7)

has period τ , and q̇(t) + q(t)A(t) + C (t) = 0 for all t ∈ R. �

Assumption 2. There exists a constant c > 0 such that the matrix
R(t) = q(t)B(t) + D(t) satisfies∫ t

t−τ
R(m)R(m)>dm ≥ cI (8)

for all t ∈ R. (That means I is the n × n identity matrix.)
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Main Result

Our coordinate change ξ(t) = x(t) + q(t)z(t) gave the system{
ξ̇(t) = R(t)u(t − τ)
ż(t) = A(t)z(t) + B(t)u(t − τ)

(9)

where R(t) = q(t)B(t) + D(t) and q is from the lemma.

Theorem

Let Assumptions 1 and 2 hold. Then for all constants τ > 0 and
ε ∈ (0, 1

1+4τ ||R||2 ), the controller

u(t − τ) = −εR(t−τ)>ξ(t−τ)√
1+|ξ(t−τ)|2 (10)

renders (9) UGAS.
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Proof of Theorem

Show that the closed loop system (9) admits the LKF

V ](t, ξt , z(t)) = z>(t)P(t)z(t) + 21β1W3(t, ξt), where

W3(t, ξt) = W2(t, ξt) + k
[
(1 + 2U(ξt))3/2 − 1

]
,

W2(t, ξt) = W1(t, ξt) + β0

∫ t
t−τ

∣∣∣∣ R(m)>ξ(m)√
1+|ξ(m)|2

∣∣∣∣2dm,

W1(t, ξt) = ξ(t)>
[∫ t

t−τ
∫ t
mR(`)R(`)>d`dm

]
ξ(t),

U(ξt) = 1
2 |ξ|

2+ 1
4τ

∫ t
t−2τ

∫ t
m

ε|R(`)>ξ(`)|2

2
√

2
√

1+|ξ(`)|2
d`dm,

β0 = 1
2c ||R||

6τ4ε2, k = 4
√

2
3ε (τ + β0),

β1 = max{v1, v2}, v1 = 2
c [4||P||2 ||B||2 ||R||2 + 1],

and v2 = 16
√

2τ
3εk (1 + 8τ ||P||2 ||B||2 ||R||4).
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Key Ideas of Proof

The ξ-subsystem ξ̇(t) = R(t)u(t − τ) is

ξ̇(t) = −εR(t)R(t)>ξ(t−τ)√
1+|ξ(t−τ)|2

, (11)

since R has period τ . For all t ≥ τ , we have

ξ(t − τ) = ξ(t) + ε

∫ t

t−τ

R(m)R(m)>ξ(m − τ)√
1 + |ξ(m − τ)|2

dm. (12)

Hence, for all t ≥ τ , we have

ξ̇(t) = −ε R(t)R(t)>√
1+|ξ(t−τ)|2

ξ(t)

−ε2 R(t)R(t)>√
1+|ξ(t−τ)|2

∫ t

t−τ

R(m)R(m)>ξ(m − τ)√
1 + |ξ(m − τ)|2

dm.
(13)
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Key Ideas of Proof

If the orange term were not present, the ξ subsystem would be

ξ̇(t) = −ε R(t)R(t)>√
1+|ξ(t−τ)|2

ξ(t). (14)

That admits the strict Lyapunov function

U(ξt) =
1

2
|ξ(t)|2+

1

4τ

∫ t

t−2τ

∫ t

m

ε|R(`)>ξ(`)|2

2
√

2
√

1 + |ξ(`)|2
d`dm.

Then we must take the orange term for ξ̇ into account.

When the asymptotic stability of the ξ-subsystem is established,
we can (more) easily prove the UGAS result with the additional
component ż(t) = A(t)z(t) + B(t)u(t − τ) from the dynamics.

Benefit of LKF: Leads to robustness to actuator errors, using ISS.
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2
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Then we must take the orange term for ξ̇ into account.

When the asymptotic stability of the ξ-subsystem is established,
we can (more) easily prove the UGAS result with the additional
component ż(t) = A(t)z(t) + B(t)u(t − τ) from the dynamics.

Benefit of LKF: Leads to robustness to actuator errors, using ISS.
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ISS Result

Allowing additive uncertainties on the control gives{
ξ̇(t) = R(t)

[
u(t − τ) + δ(t)

]
ż(t) = A(t)z(t) + B(t)

[
u(t − τ) + δ(t)

]
.

(15)

δ = c
9k||R||(1+2u)1/2 , where k = 4

√
2

3ε

(
τ + 1

2c ||R||
6τ4ε2

)
and u = max

{
1
2 + ε||R||2τ

4
√

2
, ε||R||

2τ

4
√

2

(
1 + 2ε||R||2τ

)}
.

(16)

Theorem

Under the preceding assumptions, (15) in closed loop with

u(t − τ) = −εR(t−τ)>ξ(t−τ)√
1+|ξ(t−τ)|2 (17)

is ISS with respect to the set of all disturbances δ bounded by δ.
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ż(t) = A(t)z(t) + B(t)

[
u(t − τ) + δ(t)

]
.

(15)

δ = c
9k||R||(1+2u)1/2 , where k = 4

√
2

3ε

(
τ + 1

2c ||R||
6τ4ε2

)
and u = max

{
1
2 + ε||R||2τ

4
√

2
, ε||R||

2τ

4
√

2

(
1 + 2ε||R||2τ

)}
.

(16)

Theorem

Under the preceding assumptions, (15) in closed loop with

u(t − τ) = −εR(t−τ)>ξ(t−τ)√
1+|ξ(t−τ)|2 (17)

is ISS with respect to the set of all disturbances δ bounded by δ.

Michael Malisoff (LSU) and Frederic Mazenc (INRIA) Stabilization for Feedforward Systems with Delayed Feedbacks



14/25

Application to UAV Dynamics

We study the UAV with standard autopilots which is first order for
heading and Mach hold and second order for the altitude hold.


ẋ = v cos(θ)
ẏ = v sin(θ)

θ̇ = αθ(θc(t − τ)− θ)
v̇ = αv (vc(t − τ)− v),

(18)

where we omit the altitude subdynamics ḧ = −αhḣ + αh(hc − h).

Key Model : Underactuated kino-dynamic representation that is
justifiable for high-level formation flight control.

See e.g. 2004 IEEE-TCST paper by Ren and Beard.
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Application to UAV Dynamics

We are given a C 1 reference trajectory (xr , yr , θr , vr ) : R→ R4, so
there is a reference input (θcr , vcr ) : R→ R2 such that

ẋr (t) = vr (t) cos(θr (t))
ẏr (t) = vr (t) sin(θr (t))

θ̇r (t) = αθ(θcr (t)− θr (t))
v̇r (t) = αv (vcr (t)− vr (t))

(19)

holds for all t ∈ R.

Assumption 3 : The functions cos(θr (t)) and sin(θr (t)) have
period τ , there exists a constant tc ∈ [0, τ ] such that θ̇r (tc) 6= 0,
and vr is bounded.

Tracking Error : (x̄ , ȳ , θ̄, v̄) = (x − xr , y − yr , θ − θr , v − vr ).
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Application to UAV Tracking Dynamics



ẋ = cos(θr (t))v

+ [v + vr (t)][cos(θ + θr (t))− cos(θr (t))]
ẏ = sin(θr (t))v

+ [v + vr (t)][sin(θ + θr (t))− sin(θr (t))]
v̇ = −αvv + u(t − τ)

θ̇ = −αθθ .

(20)

We apply our theory to the (x̄ , ȳ , v̄) dynamics obtained by setting
θ̄ = 0, and then we reincorporate the θ̄ dynamics to get θc and vc .

x = (x , y), z = v , A(t) = −αv , ψa(t, `) = eαv (t−`), B(t) = 1,
C (t) = (cos(θr (t)), sin(θr (t)))>, D(t) = 0,
ξ = (ξ1, ξ2)> = (x , y)> + q(t)v , q(t) = R(t),

R(t) =
1

eαv τ − 1

∫ t

t−τ

(
cos(θr (`))
sin(θr (`))

)
eαv (t−`)d` . (21)
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UAV Simulations

We proved ISS for the full 4 state (x̄ , ȳ , v̄ , θ̄) tracking dynamics by
treating the θ̄ subdynamics separately at the end.

To illustrate our work, we simulated the UAV dynamics
ẋ = v cos(θ)
ẏ = v sin(θ)

θ̇ = αθ(θc(t − τ)− θ)
v̇ = αv (vc(t − τ) + δ(t)− v),

(22)

with our controllers

θc(t − τ) = θcr (t) and

vc(t − τ) = vcr (t)− ε
αv

R(t−τ)>ξ(t−τ)√
1+|ξ(t−τ)|2

. (23)
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UAV Simulations

Autopilot constants: αv = 0.192 and αθ = 0.55.

Delay: τ = 2

Reference trajectory: (20 + 10 sin(πt)/π, 20−10 cos(πt)/π, πt, 10).

Reference control: (θcr (t), vcr (t)) = (π(t + 1/αθ), 10).

Controller parameter: ε = 0.257732.

Disturbance: δ(t) = 0.1 sin(t) added to vc .

Initial function: (x0, y0, θ0, v0) = (17, 22,−0.5, 8).
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UAV Simulations

Figure: (x(t), y(t)) for Times [480, 1000]
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UAV Simulations

Figure: x(t)− xr (t)
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UAV Simulations

Figure: y(t)− yr (t)
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UAV Simulations

Figure: θ(t)− θr (t)
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UAV Simulations

Figure: v(t)− vr (t)
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UAV Simulations

Figure: vc(t − τ)
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Conclusions

Input delays naturally occur in many engineering applications
and preclude the use of standard control designs.

Our controllers provide UGAS under arbitrarily long input
delays and ISS via a LKF and have arbitrarily small amplitude.

Our work applies to a broad class of feedforward linear
systems including a key model for UAVs.

It would be interesting to extend the analysis to{
ẋ(t) = E (t)x(t)+C (t)z(t) + D(t)u(t − τ)
ż(t) = A(t)z(t) + B(t)u(t − τ) .

(24)

Nonlinear analogs involving PDEs would also be interesting.
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ż(t) = A(t)z(t) + B(t)u(t − τ) .

(24)

Nonlinear analogs involving PDEs would also be interesting.

Michael Malisoff (LSU) and Frederic Mazenc (INRIA) Stabilization for Feedforward Systems with Delayed Feedbacks



25/25

Conclusions

Input delays naturally occur in many engineering applications
and preclude the use of standard control designs.

Our controllers provide UGAS under arbitrarily long input
delays and ISS via a LKF and have arbitrarily small amplitude.

Our work applies to a broad class of feedforward linear
systems including a key model for UAVs.

It would be interesting to extend the analysis to{
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