Stabilization and Robustness Analysis for a Chemostat Model with Two Species and Monod Growth Rates Via a Lyapunov Approach

MICHAEL MALISOFF
Department of Mathematics
Louisiana State University

Joint with Frédéric Mazenc and Jérôme Harmand

Control of Biological Systems Session ThC01.6
46th IEEE Conference on Decision and Control – 12/13/07
Hilton New Orleans Riverside, The Big Easy, LA
• Background and Objectives
• Main Stability Theorem
• Proof Ideas: Explicit Lyapunov Function
• Robustness to Disturbances
• Numerical Validation
• Conclusions and Further Research
OUTLINE

- Background and Objectives
- Main Stability Theorem
- Proof Ideas: Explicit Lyapunov Function
- Robustness to Disturbances
- Numerical Validation
- Conclusions and Further Research
CHEMOSTAT SET-UP

Feed Vessel → Culture Vessel → Collecting Receptacle
Basic Model: The two-species chemostat with nutrient concentration $S(t)$ and organism concentrations $X_i(t)$ evolving on $\mathcal{X} := (0, \infty)^3$ is

$$\begin{align*}
\dot{S} &= D[S_0 - S] - \frac{\mu_1(S)}{\mathcal{Y}_1} X_1 - \frac{\mu_2(S)}{\mathcal{Y}_2} X_2, \\
\dot{X}_i &= [\mu_i(S) - D] X_i, \quad i = 1, 2
\end{align*}$$
Basic Model: The two-species chemostat with nutrient concentration $S(t)$ and organism concentrations $X_i(t)$ evolving on $\mathcal{X} := (0, \infty)^3$ is

$$\begin{align*}
\dot{S} &= D[S_0 - S] - \frac{\mu_1(S)}{Y_1} X_1 - \frac{\mu_2(S)}{Y_2} X_2 , \\
\dot{X}_i &= [\mu_i(S) - D] X_i , \quad i = 1, 2
\end{align*}$$

$D(\cdot) = \text{dilution rate.} \ S_0(\cdot) = \text{input nutrient concentration.} \ Y_i = \text{yield.} \ \mu_i(S) = \frac{K_i S}{L_i + S} = \text{(Monod) uptake function, with} \ K_i, L_i > 0 \ \text{constants.}$
BACKGROUND and GOAL

Basic Model: The two-species chemostat with nutrient concentration $S(t)$ and organism concentrations $X_i(t)$ evolving on $\mathcal{X} := (0, \infty)^3$ is

$$\begin{align*}
\dot{S} &= D[S_0 - S] - \frac{\mu_1(S)}{Y_1} X_1 - \frac{\mu_2(S)}{Y_2} X_2 , \\
\dot{X}_i &= [\mu_i(S) - D] X_i , \quad i = 1, 2
\end{align*}$$

$D(\cdot) =$ dilution rate. $S_0(\cdot) =$ input nutrient concentration. $Y_i =$ yield. $\mu_i(S) = \frac{K_i S}{L_i + S} =$ (Monod) uptake function, with $K_i, L_i > 0$ constants.

Importance: bioengineering, ecology, population biology
BACKGROUND and GOAL

Basic Model: The two-species chemostat with nutrient concentration $S(t)$ and organism concentrations $X_i(t)$ evolving on $\mathcal{X} := (0, \infty)^3$ is

$$\begin{cases}
\dot{S} &= D[S_0 - S] - \frac{\mu_1(S)}{\mathcal{Y}_1} X_1 - \frac{\mu_2(S)}{\mathcal{Y}_2} X_2, \\
\dot{X}_i &= [\mu_i(S) - D]X_i, \quad i = 1, 2
\end{cases}$$

$D(\cdot) =$ dilution rate. $S_0(\cdot) =$ input nutrient concentration. $\mathcal{Y}_i =$ yield. $\mu_i(S) = \frac{K_i S}{L_i + S} =$ (Monod) uptake function, with $K_i, L_i > 0$ constants.

Goal: Given any $X_{i*} > 0$, design S_0 and $D(\cdot)$, depending only on $Y = X_1 + A X_2$ (where A is a given positive constant), that render $(S_*, X_{1*}, X_{2*}) \in \mathcal{X}$ robustly GAS.
BACKGROUND and GOAL

Basic Model: The two-species chemostat with nutrient concentration $S(t)$ and organism concentrations $X_i(t)$ evolving on $\mathcal{X} := (0, \infty)^3$ is

\[
\begin{align*}
\dot{S} &= D[S_0 - S] - \frac{\mu_1(S)}{Y_1} X_1 - \frac{\mu_2(S)}{Y_2} X_2 , \\
\dot{X}_i &= [\mu_i(S) - D]X_i , \quad i = 1, 2
\end{align*}
\]

$D(\cdot) =$ dilution rate. $S_0(\cdot) =$ input nutrient concentration. $Y_i =$ yield. $\mu_i(S) = \frac{K_i S}{L_i + S} =$ (Monod) uptake function, with $K_i, L_i > 0$ constants.

Competitive Exclusion: When $S_0(\cdot)$ and D are constant and the μ_i’s are increasing, at most one species survives.
OVERVIEW of LITERATURE

Coexistence: In real ecological systems, \(n > 1 \) species can **coexist** on 1 substrate, so much of the literature aims at choosing \(S_0 \) and/or \(D \) to force coexistence.
Coexistence: In real ecological systems, $n > 1$ species can coexist on 1 substrate, so much of the literature aims at choosing S_0 and/or D to force coexistence.

Time-Varying Controls: Have competitive exclusion if $n = 2$ and one of the controls is fixed and the other is periodic. See Hal Smith (SIAP’81), Hale-Somolinos (JMB’83),...
OVERVIEW of LITERATURE

Coexistence: In real ecological systems, $n > 1$ species can coexist on 1 substrate, so much of the literature aims at choosing S_0 and/or D to force coexistence.

Time-Varying Controls: Have competitive exclusion if $n = 2$ and one of the controls is fixed and the other is periodic. See Hal Smith (SIAP’81), Hale-Somolinos (JMB’83),..

Feedback Controls: De Leenheer-Smith (JMB’03) generated a coexistence equilibrium for $n = 2, 3$. See Mazenc-M-Harmand (ACC’07, TCAS’08) for $n = 2$ with explicit Lyapunov functions and tracking of oscillations.
Feedback Linearization: Ballyk-Barany (ACC’07, CDC’07, ECOMOD’08), $n = 2$.
Feedback Linearization: Ballyk-Barany (ACC’07, CDC’07, ECOMOD’08), $n = 2$.

Input-to-State Stability: Mazenc-M-De Leenheer (CDC’06, MBE’07) – explicit strict Lyapunov functions, one species case, (i)ISS tracking to actuator errors.
Feedback Linearization: Ballyk-Barany (ACC’07, CDC’07, ECOMOD’08), $n = 2$.

Input-to-State Stability: Mazenc-M-De Leenheer (CDC’06, MBE’07) – explicit strict Lyapunov functions, one species case, (i)ISS tracking to actuator errors.

Outputs: De Leenheer-Smith and Gouzé-Robledo (IJRNC’06..) stabilized chemostats where only $X_1 + X_2$ or S is known. Did not use ISS.
OUTLINE

- Background and Objectives
- **Main Stability Theorem**
- Proof Ideas: Explicit Lyapunov Function
- Robustness to Disturbances
- Numerical Validation
- Conclusions and Further Research
STANDING ASSUMPTION

$\exists S_* > 0$ such that (i) $\mu_1(S_*) = \mu_2(S_*)$, (ii) $\mu_2(S) < \mu_1(S')$ if $0 < S < S_*$, and (iii) $\mu_2(S) > \mu_1(S)$ if $S > S_*$.
\[\exists S_* > 0 \text{ such that (i) } \mu_1(S_*) = \mu_2(S_*) \text{, (ii) } \mu_2(S) < \mu_1(S') \text{ if } 0 < S < S_* \text{, and (iii) } \mu_2(S) > \mu_1(S) \text{ if } S > S_* . \]

I.e., \(\mu_2 \) crosses over \(\mu_1 \) exactly once and then stays higher.
STANDING ASSUMPTION

\[\exists S_* > 0 \text{ such that } (i) \; \mu_1(S_*) = \mu_2(S_*) , \; (ii) \; \mu_2(S) < \mu_1(S') \text{ if } 0 < S < S_*, \text{ and } (iii) \; \mu_2(S) > \mu_1(S) \text{ if } S > S_* . \]

Example: Take \(\mu_1(S') = \frac{0.5S}{0.05+S} \) and \(\mu_2(S) = \frac{S}{1+S} \).
STANDING ASSUMPTION

\[\exists S_* > 0 \text{ such that } (i) \mu_1(S_*) = \mu_2(S_*), \text{ (ii) } \mu_2(S) < \mu_1(S) \text{ if } 0 < S < S_*, \text{ and (iii) } \mu_2(S) > \mu_1(S) \text{ if } S > S_* . \]

Example: Take \(\mu_1(S) = \frac{0.5S}{0.05+S} \) and \(\mu_2(S) = \frac{S}{1+S} \). \(S_* = 0.9 \).
STANDING ASSUMPTION

\[\exists S^* > 0 \text{ such that (i) } \mu_1(S^*) = \mu_2(S^*), \text{ (ii) } \mu_2(S) < \mu_1(S) \text{ if } 0 < S < S^*, \text{ and (iii) } \mu_2(S) > \mu_1(S) \text{ if } S > S^*. \]

Example: Take \(\mu_1(S) = \frac{0.5S}{0.05+S} \) and \(\mu_2(S) = \frac{S}{1+S} \). \(S^* = 0.9 \).
Set $\sigma(r) = \frac{r}{\sqrt{1+r^2}}$, $x_i = X_i/Y_i$, $y = x_1 + ax_2$, $a = AY_2/Y_1$.
Set \(\sigma(r) = \frac{r}{\sqrt{1+r^2}} \), \(x_i = X_i/Y_i \), \(y = x_1 + ax_2 \), \(a = AY_2/Y_1 \).

Fix any \(x_{i*} > 0 \). Errors: \(\xi_i = \ln(x_i/x_{i*}) \) and \(\Sigma = \ln(S/S_*) \).
Set $\sigma(r) = \frac{r}{\sqrt{1+r^2}}$, $x_i = \frac{X_i}{Y_i}$, $y = x_1 + ax_2$, $a = A\frac{Y_2}{Y_1}$.

Fix any $x_{i*} > 0$. Errors: $\xi_i = \ln\left(\frac{x_i}{x_{i*}}\right)$ and $\Sigma = \ln\left(\frac{S}{S_*}\right)$.

Theorem 1: Assume $\varepsilon \in (0, \bar{\varepsilon}]$ and $a \neq 1$. Then (S_*, x_{1*}, x_{2*}) is a GAS equilibrium for the (S, x_1, x_2) dynamics when

$$S_0 = S_* + x_{1*} + x_{2*}$$

$$D(y) = \mu_1(S_*) - \varepsilon(a - 1)\sigma(y - x_{1*} - ax_{2*}).$$
Set \(\sigma(r) = \frac{r}{\sqrt{1+r^2}} \), \(x_i = \frac{X_i}{Y_i}, y = x_1 + ax_2, a = A\frac{Y_2}{Y_1} \).

Fix any \(x_{i*} > 0 \). Errors: \(\xi_i = \ln\left(\frac{x_i}{x_{i*}}\right) \) and \(\Sigma = \ln\left(\frac{S}{S_*}\right) \).

Theorem 1: Assume \(\varepsilon \in (0, \bar{\varepsilon}] \) and \(a \neq 1 \). Then \((S_*, x_{1*}, x_{2*}) \) is a GAS equilibrium for the \((S, x_1, x_2)\) dynamics when

\[
S_0 = S_* + x_{1*} + x_{2*} \\
D(y) = \mu_1(S_*) - \varepsilon(a - 1)\sigma (y - x_{1*} - ax_{2*}) .
\]

More precisely, we can construct a function \(\beta \in \mathcal{KL} \) such that \(|(\Sigma, \xi_1, \xi_2)(t)| \leq \beta(\|(\Sigma, \xi_1, \xi_2)(0)\|, t) \) for all \(t \geq 0 \) along all trajectories \((S, x_1, x_2)(t)\) of the closed loop dynamics.
Set $\sigma(r) = \frac{r}{\sqrt{1+r^2}}$, $x_i = X_i / Y_i$, $y = x_1 + ax_2$, $a = AY_2 / Y_1$. Fix any $x_{i*} > 0$. Errors: $\xi_i = \ln(x_i / x_{i*})$ and $\Sigma = \ln(S / S_*)$.

Theorem 1: Assume $\varepsilon \in (0, \bar{\varepsilon}]$ and $a \neq 1$. Then (S_*, x_{1*}, x_{2*}) is a GAS equilibrium for the (S, x_1, x_2) dynamics when

$$S_0 = S_* + x_{1*} + x_{2*}$$

$$D(y) = \mu_1(S_*) - \varepsilon(a - 1)\sigma(y - x_{1*} - ax_{2*}).$$

More precisely, we can construct a function $\beta \in KL$ such that $|(\Sigma, \xi_1, \xi_2)(t)| \leq \beta(||(\Sigma, \xi_1, \xi_2)(0)||, t)$ for all $t \geq 0$ along all trajectories $(S, x_1, x_2)(t)$ of the closed loop dynamics.

See proceedings for the explicit construction of $\bar{\varepsilon} > 0$ and β.
Set $\sigma(r) = \frac{r}{\sqrt{1+r^2}}$, $x_i = X_i/Y_i$, $y = x_1 + ax_2$, $a = AY_2/Y_1$. Fix any $x_{i*} > 0$. Errors: $\xi_i = \ln(x_i/x_{i*})$ and $\Sigma = \ln(S/S_*)$.

Theorem 1: Assume $\varepsilon \in (0, \bar{\varepsilon}]$ and $a \neq 1$. Then (S_*, x_{1*}, x_{2*}) is a GAS equilibrium for the (S, x_1, x_2) dynamics when

$$S_0 = S_* + x_{1*} + x_{2*}$$
$$D(y) = \mu_1(S_*) - \varepsilon(a - 1)\sigma(y - x_{1*} - ax_{2*}).$$

More precisely, we can construct a function $\beta \in KL$ such that $|(\Sigma, \xi_1, \xi_2)(t)| \leq \beta(\vert(\Sigma, \xi_1, \xi_2)(0)\vert, t)$ for all $t \geq 0$ along all trajectories $(S, x_1, x_2)(t)$ of the closed loop dynamics.

Remark: KL: Means (1) $\beta(\cdot, t) \in K_\infty \forall t \geq 0$ and (2) $\forall r \geq 0$, $\beta(r, \cdot)$ is non-increasing and $\beta(r, t) \to 0$ as $t \to +\infty$.
Set $\sigma(r) = \frac{r}{\sqrt{1+r^2}}$, $x_i = X_i/Y_i$, $y = x_1 + ax_2$, $a = AY_2/Y_1$.

Fix any $x_i^* > 0$. Errors: $\xi_i = \ln(x_i/x_i^*)$ and $\Sigma = \ln(S/S^*)$.

Theorem 1: Assume $\varepsilon \in (0, \bar{\varepsilon}]$ and $a \neq 1$. Then (S^*, x_1^*, x_2^*) is a GAS equilibrium for the (S, x_1, x_2) dynamics when

$$
S_0 = S^* + x_1^* + x_2^*
$$
$$
D(y) = \mu_1(S^*) - \varepsilon(a - 1)\sigma(y - x_1^* - ax_2^*).
$$

More precisely, we can construct a function $\beta \in KL$ such that $|{(\Sigma, \xi_1, \xi_2)}(t)| \leq \beta(|{(\Sigma, \xi_1, \xi_2)}(0)|, t)$ for all $t \geq 0$ along all trajectories $(S, x_1, x_2)(t)$ of the closed loop dynamics.

Remark: Cannot pick $\varepsilon = 0$.
Set $\sigma(r) = \frac{r}{\sqrt{1+r^2}}$, $x_i = X_i/Y_i$, $y = x_1 + ax_2$, $a = AY_2/Y_1$.

Fix any $x_{i*} > 0$. Errors: $\xi_i = \ln(x_i/x_{i*})$ and $\Sigma = \ln(S/S_*)$.

Theorem 1: Assume $\varepsilon \in (0, \bar{\varepsilon}]$ and $a \neq 1$. Then (S_*, x_{1*}, x_{2*}) is a GAS equilibrium for the (S, x_1, x_2) dynamics when

$$
\begin{align*}
S_0 &= S_* + x_{1*} + x_{2*} \\
D(y) &= \mu_1(S_*) - \varepsilon(a - 1)\sigma(y - x_{1*} - ax_{2*}).
\end{align*}
$$

More precisely, we can construct a function $\beta \in KL$ such that $|(\Sigma, \xi_1, \xi_2)(t)| \leq \beta(|(\Sigma, \xi_1, \xi_2)(0)|, t)$ for all $t \geq 0$ along all trajectories $(S, x_1, x_2)(t)$ of the closed loop dynamics.

Simpler than Mazenc-M-Harmand *(ACC’07, TCAS’08)*, outputs, robust stability, explicit strict Lyapunov function.
Background and Objectives

Main Stability Theorem

Proof Ideas: Explicit Lyapunov Function

Robustness to Disturbances

Numerical Validation

Conclusions and Further Research
• Background and Objectives
• Main Stability Theorem
• Proof Ideas: Explicit Lyapunov Function
• Robustness to Disturbances
• Numerical Validation
• Conclusions and Further Research
ROBUSTNESS

Using a suitable bound $\bar{\Delta}$ on $d = (d_1, d_2)$, we can design $\beta \in \mathcal{KL}$, $\alpha \in \mathcal{K}_\infty$ so that along the trajectories of

$$\dot{S} = [D(y)+d_2](S_0+d_1-S) - \mu_1(S)x_1 - \mu_2(S)x_2$$
$$\dot{x}_i = [\mu_i(S) - D(y) - d_2]x_i, \quad i = 1, 2$$

the errors satisfy an iISS [Sontag, 1998] estimate of the form

$$\alpha(||(\Sigma, \xi_1, \xi_2)(t)||) \leq \beta(||(\Sigma, \xi_1, \xi_2)(0)||, t) + \int_0^t |d(r)| dr.$$
ROBUSTNESS

Using a suitable bound $\bar{\Delta}$ on $d = (d_1, d_2)$, we can design $\beta \in \mathcal{KL}$, $\alpha \in \mathcal{K}_\infty$ so that along the trajectories of

\[
\begin{align*}
\dot{S} &= [D(y) + d_2](S_0 + d_1 - S) - \mu_1(S)x_1 - \mu_2(S)x_2 \\
\dot{x}_i &= [\mu_i(S) - D(y) - d_2]x_i, \quad i = 1, 2
\end{align*}
\]

the errors satisfy an iISS [Sontag, 1998] estimate of the form

\[
\alpha(||(\Sigma, \xi_1, \xi_2)(t)||) \leq \beta(||(\Sigma, \xi_1, \xi_2)(0)|, t) + \int_0^t |d(r)| dr.
\]

In the special case where $d_2 \equiv 0$, we get iISS if

\[
\bar{\Delta} = \frac{0.16\mu_1(S_*)S_*}{\mu_1(S_*) + \varepsilon|a - 1|}.
\]
Using a suitable bound \(\tilde{\Delta} \) on \(d = (d_1, d_2) \), we can design \(\beta \in K_L, \alpha \in K_\infty \) so that along the trajectories of

\[
\begin{align*}
\dot{S} &= \left[D(y) + d_2\right](S_0 + d_1 - S) - \mu_1(S)x_1 - \mu_2(S)x_2 \\
\dot{x}_i &= [\mu_i(S) - D(y) - d_2]x_i, \quad i = 1, 2
\end{align*}
\]

the errors satisfy an iISS [Sontag, 1998] estimate of the form

\[
\alpha(\| (\Sigma, \xi_1, \xi_2)(t) \|) \leq \beta(\| (\Sigma, \xi_1, \xi_2)(0) \|, t) + \int_0^t |d(r)| \, dr.
\]

Further reducing \(\tilde{\Delta} \) gives usual ISS [Sontag, 1989] estimate

\[
| (\Sigma, \xi_1, \xi_2)(t) | \leq \beta(\| (\Sigma, \xi_1, \xi_2)(0) \|, t) + \gamma(\| d \|_\infty).
\]
REMARKS on ROBUSTNESS ESTIMATES

\[\alpha(\|(\Sigma, \xi_1, \xi_2)(t)\|) \leq \beta(\|(\Sigma, \xi_1, \xi_2)(0)\|, t) + \int_0^t |d(r)| dr. \]

\[|(\Sigma, \xi_1, \xi_2)(t)| \leq \beta(\|(\Sigma, \xi_1, \xi_2)(0)\|, t) + \gamma(|d|_\infty). \]

\cdot

\cdot
REMARKS on ROBUSTNESS ESTIMATES

\[
\alpha((\Sigma, \xi_1, \xi_2)(t)) \leq \beta((\Sigma, \xi_1, \xi_2)(0), t) + \int_0^t |d(r)|dr.
\]

\[
|\Sigma, \xi_1, \xi_2)(t)| \leq \beta((\Sigma, \xi_1, \xi_2)(0), t) + \gamma(\|d\|_\infty).
\]

- The dilution rate \(D\) is proportional to the speed of the pump that supplies the fresh nutrient and so is prone to variability that can be modeled by \(D(y) + d_2\).
\[\alpha(||(\Sigma, \xi_1, \xi_2)(t)||) \leq \beta(||(\Sigma, \xi_1, \xi_2)(0)||, t) + \int_0^t |d(r)|dr. \]

\[||(\Sigma, \xi_1, \xi_2)(t)|| \leq \beta(||(\Sigma, \xi_1, \xi_2)(0)||, t) + \gamma(|d|_\infty). \]

- The dilution rate \(D \) is proportional to the speed of the pump that supplies the fresh nutrient and so is prone to variability that can be modeled by \(D(y) + d_2 \).

- Our (i)ISS proof uses the Lyapunov function \(\mathcal{V} \) to explicitly construct \(\beta, \gamma, \) and \(\alpha \) from the (i)ISS estimates. Hence, we can precisely quantify the overshoot from \(d \).

\textbf{New}: (i)ISS for 2 species chemostat.
\[\alpha((\Sigma, \xi_1, \xi_2)(t))) \leq \beta(||(\Sigma, \xi_1, \xi_2)(0)||, t) + \int_0^t |d(r)|dr. \]

\[||(\Sigma, \xi_1, \xi_2)(t)|| \leq \beta(||(\Sigma, \xi_1, \xi_2)(0)||, t) + \gamma(|d|_\infty). \]

- ISS implies **persistence**, since if e.g. \(x_2(t) \to 0 \) as \(t \to t^- \), then \(\xi_2(t) = \ln(x_2(t)) - \ln(x_{2*}) \to -\infty \), contrary to the ISS bound on \(||(\Sigma, \xi_1, \xi_2)(t)|| \).
REMARKS on ROBUSTNESS ESTIMATES

\[\alpha(\|\Sigma, \xi_1, \xi_2\|(t)) \leq \beta(\|\Sigma, \xi_1, \xi_2\|(0), t) + \int_0^t |d(r)|dr. \]

\[|\Sigma, \xi_1, \xi_2\|(t) \leq \beta(\|\Sigma, \xi_1, \xi_2\|(0), t) + \gamma(|d|_\infty). \]

- ISS implies persistence, since if e.g. \(x_2(t) \to 0 \) as \(t \to t^- \), then \(\xi_2(t) = \ln(x_2(t)) - \ln(x_{2*}) \to -\infty \), contrary to the ISS bound on \(|\Sigma, \xi_1, \xi_2\|(t) | \).

- Similarly, iISS implies persistence when \(d \) is integrable.
OUTLINE

- Background and Objectives
- Main Stability Theorem
- Proof Ideas: Explicit Lyapunov Function
- Robustness to Disturbances
- Numerical Validation
- Conclusions and Further Research
EXAMPLE

\[
\begin{align*}
\dot{S} &= (D(y) + d_2)(S_0 + d_1 - S) - \frac{0.05Sx_1}{20+S} - \frac{.052Sx_2}{25+S} \\
\dot{x}_1 &= \left[\frac{0.05S}{20+S} - D(y) - d_2\right] x_1 \\
\dot{x}_2 &= \left[\frac{.052S}{25+S} - D(y) - d_2\right] x_2
\end{align*}
\]

Choose \(y = x_1 + 0.8x_2 \), and \(x_{1*} = 0.05 \) and \(x_{2*} = 0.02 \).
\[
\begin{aligned}
\dot{S} &= (D(y) + d_2)(S_0 + d_1 - S) - \frac{0.05Sx_1}{20+S} - \frac{0.052Sx_2}{25+S} \\
\dot{x}_1 &= \left[\frac{0.05S}{20+S} - D(y) - d_2\right] x_1 \\
\dot{x}_2 &= \left[\frac{0.052S}{25+S} - D(y) - d_2\right] x_2
\end{aligned}
\]

Choose \(y = x_1 + 0.8x_2 \), and \(x_{1*} = 0.05 \) and \(x_{2*} = 0.02 \).

- Our assumptions hold with \(S_* = 105 \), \(\varepsilon \in (0, 0.00753] \), \(S_0 = 105.07 \), and \(D(y) = 0.042 + 0.001506\sigma(y - 0.066) \).

Hence, all closed loop trajectories converge to \((105, 0.05, 0.02)\) when \(d = 0 \).
\[
\begin{aligned}
\dot{S} &= (D(y) + \mathbf{d}_2)(S_0 + \mathbf{d}_1 - S) - \frac{0.05Sx_1}{20+S} - \frac{0.052Sx_2}{25+S} \\
\dot{x}_1 &= \left[\frac{0.05S}{20+S} - D(y) - \mathbf{d}_2\right] x_1 \\
\dot{x}_2 &= \left[\frac{0.052S}{25+S} - D(y) - \mathbf{d}_2\right] x_2
\end{aligned}
\]

Choose \(y = x_1 + 0.8x_2 \), and \(x_{1*} = 0.05 \) and \(x_{2*} = 0.02 \).

- Our assumptions hold with \(S_* = 105, \varepsilon \in (0, .00753], S_0 = 105.07 \), and \(D(y) = .042 + 0.001506\sigma(y - 0.066) \). Hence, all closed loop trajectories converge to \((105, 0.05, 0.02)\) when \(\mathbf{d} = 0 \).

- When \(\mathbf{d}_1 \equiv 0 \), we get iISS to disturbances \(\mathbf{d}_2(t) \) bounded by \(\bar{\Delta} \approx 0.20\mu_1(S_*) \) i.e. about 20\% of \(D \).
\[
\begin{align*}
\dot{S} &= (D(y) + d_2)(S_0 + d_1 - S) - \frac{0.05Sx_1}{20+S} - \frac{0.052Sx_2}{25+S} \\
\dot{x}_1 &= \left[\frac{0.05S}{20+S} - D(y) - d_2\right]x_1 \\
\dot{x}_2 &= \left[\frac{0.052S}{25+S} - D(y) - d_2\right]x_2
\end{align*}
\]

Choose \(y = x_1 + 0.8x_2\), and \(x_{1*} = 0.05\) and \(x_{2*} = 0.02\).

- Our assumptions hold with \(S_* = 105\), \(\varepsilon \in (0, .00753]\), \(S_0 = 105.07\), and \(D(y) = .042 + 0.001506\sigma(y - 0.066)\). Hence, all closed loop trajectories converge to \((105, 0.05, 0.02)\) when \(d = 0\).

- If instead \(d_2 \equiv 0\), then we have iISS to disturbances \(d_1(t)\) bounded by \(\bar{\Delta} \approx 16\), or about \(15\%\) of \(S_0 = 105.07\).
SIMULATION of EXAMPLE

We used \(d(t) \equiv (1, 0) \) and \((S, x_1, x_2)(0) = (103, 2, 1)\).

![Graph showing substrate over time]
We used $d(t) \equiv (1, 0)$ and $(S, x_1, x_2)(0) = (103, 2, 1)$.

![Graph showing the decline of Species 1 over time, with time values from 1000 to 5000 on the x-axis and species values on the y-axis, starting at 2 and decreasing to below 0.5.]
We used $d(t) \equiv (1, 0)$ and $(S, x_1, x_2)(0) = (103, 2, 1)$.
We used $d(t) \equiv (1, 0)$ and $(S, x_1, x_2)(0) = (103, 2, 1)$.

Persistence. $(S(t), x_1(t), x_2(t)) \rightarrow (105, 0.05, 0.02)$, but with an overshoot determined by iISS and the magnitude of d_1.
• Background and Objectives
• Main Stability Theorem
• Proof Ideas: Explicit Lyapunov Function
• Robustness to Disturbances
• Numerical Validation
• Conclusions and Further Research
SUMMARY and SUGGESTIONS

- We provided output feedback for robustly stabilizing equilibria with arbitrary prescribed species concentrations in two species chemostats.
We provided output feedback for robustly stabilizing equilibria with arbitrary prescribed species concentrations in two species chemostats.

We can extend our Lyapunov function and robustness analysis to allow uncertain uptake functions and measurement noise in D.
SUMMARY and SUGGESTIONS

- We provided output feedback for robustly stabilizing equilibria with arbitrary prescribed species concentrations in two species chemostats.

- We can extend our Lyapunov function and robustness analysis to allow uncertain uptake functions and measurement noise in D.

- The novelty is in our explicit strict Lyapunov function, which made it possible to precisely quantify the effects of actuator errors using ISS.
SUMMARY and SUGGESTIONS

- It would be of interest to extend our work to tracking of prescribed oscillations. This would explain oscillatory behaviors observed in nature and suggest feedback mechanisms for achieving them.
SUMMARY and SUGGESTIONS

- It would be of interest to extend our work to tracking of prescribed oscillations. This would explain oscillatory behaviors observed in nature and suggest feedback mechanisms for achieving them.

- Another desirable extension would be to models with three or more competing species, or more than one limiting substrate.
SUMMARY and SUGGESTIONS

- It would be of interest to extend our work to tracking of prescribed oscillations. This would explain oscillatory behaviors observed in nature and suggest feedback mechanisms for achieving them.

- Another desirable extension would be to models with three or more competing species, or more than one limiting substrate.

- The authors thank Patrick De Leenheer for illuminating discussions and the NSF for support for this work under DMS grant 0424011.