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Motivation

Systems with feedback controls are common in engineering.

The controls are state dependent parameters we must choose.

They must often be functions of time-lagged values of states.

Discontinuous delays arise, e.g., in networked control systems.

Frequency domain and Lyapunov-Krasovskii ideas do not apply.

Time-varying systems arise from linearizing around solutions.

Emulation methods typically require small feedback delays.

Reduction model and prediction lead to distributed terms.

Z. Artstein, I. Karafyllis, M. Krstic, S. Niculescu, P. Pepe, ...
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Our Contractiveness Lemma

Lemma: Let T ∗ > 0 be a constant, w : [−T ∗,∞)→ [0,∞) admit
a sequence {vi} and positive constants va and vb such that
v0 = 0, vi+i − vi ∈ [va, vb] for all i ≥ 0, w be continuous on
[vi , vi+1) for all i ≥ 0 with finite left limits at each vi , and
d : [0,∞)→ [0,∞) be piecewise continuous.

Assume there is a constant ρ ∈ (0,1) such that

w(t) ≤ ρ|w |[t−T∗,t] + d(t) for all t ≥ 0. (1)

Then

w(t) ≤ |w |[−T∗,0]e
ln(ρ)
T∗ t + 1

(1−ρ)2 |d |[0,t] for all t ≥ 0. (2)
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Our Contractiveness Lemma

Corollary: Let X : [0,∞)→ [0,∞) be piecewise C1 and admit
constants g ≥ 0, as ≥ 0, T > 0, and δ ∈ (0,1) and piecewise
continuous functions a : [0,∞)→ [−as,∞), b : [0,∞)→ [0,∞),
and λ : [0,∞)→ [0,∞) such that

Ẋ (t) ≤ −a(t)X (t) + b(t) sup
s∈[t−g,t]

X (s) + λ(t) ∀t ≥ g (3)

and

e−
∫ t

t−T a(m)dm +

∫ t

t−T
b(m)e−

∫ t
m a(`)d`dm ≤ δ ∀t ≥ T + g. (4)

Assume that limt→p− X (t) ∈ R at each p ≥ 0. Then

X (t) ≤ |X |[0,T+g]e
ln(δ)
T+g (t−T−g)

+
TeTas |λ|[g,t]
(1−δ)2 ∀t ≥ T + g. (5)
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Assumptions and Theorem

ẋ(t) = A(t)x(t) + B(t)x(t − h(t)) (6)

Assumption 1: The functions A, B, and h are bounded and
piecewise continuous. Also, there exist a bounded piecewise
continuous p1 : [0,∞)→ R, constants p2 > 0 and p3 > 0, and a
C1 function P : [0,∞)→ Rn×n such that P(t) is symmetric and
positive definite for all t , such that V (t , z) = z>P(t)z satisfies

p2|z|2 ≤ V (t , z) ≤ p3|z|2 (7a)
Vt(t , z) + Vz(t , z)[A(t) + B(t)]z ≤ −p1(t)V (t , z) (7b)

for all t ≥ 0 and z ∈ Rn.
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Assumptions and Theorem

ẋ(t) = A(t)x(t) + B(t)x(t − h(t)) (3)

Assumption 2: There exist T > 0 and δ ∈ (0,1) such that

r(t) =
2|P(t)B(t)|

p2

∫ t

t−h(t)
[|A(m)|+ |B(m)|] dm, (8)

is such that we have

e−
∫ t

t−T p1(m)dm +

∫ t

t−T
r(m)e−

∫ t
m p1(`)d`dm ≤ δ (GA)

for all t ≥ 2(T + |h|∞).
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Assumptions and Theorem

ẋ(t) = A(t)x(t) + B(t)x(t − h(t)) (3)

Theorem: If (3) satisfies Assumptions 1-2, then it is uniformly
globally exponentially stable to 0.

I Decay rates p1(t) can take positive and negative values.
I Takes into account the case where B(t)x(t − h(t)) has a

stabilizing effect.
I If p1 is a nonnegative constant and P, A and B are

constant, then (GA) simplifies to this averaging condition:

sup
t≥2(T+|h|∞)

1
T

∫ t

t−T
h(m)dm ≤ p2

2|PB| (|A|+ |B|)
δ − e−Tp1

T
(9)
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Conclusions

We covered a large class of systems that arises in engineering.

We incorporated delays h(t) without requiring ḣ(t) < 1.

Contractiveness circumvents Lyapunov-Krasovskii methods.

Our analogs cover uncertain coefficient matrices A and B.

Interesting examples are amenable to our new techniques.

Mazenc, F., M. Malisoff, and S.-I. Niculescu, “Stability and
control design for time-varying systems with time-varying delays
using a trajectory based approach,” SIAM Journal on Control
and Optimization, 55(1):533-556, 2017.

Thank you for your attention!
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Example 1

ẋ(t) = −x(t) + b(t)x(t − 1), (10)

with x ∈ R, and b periodic of period 1 defined by
(i) b(t) = 0 when t ∈ [0, c) and
(ii) b(t) = d when t ∈ [c,1].

Let d > 1 and c ∈ (0,1) be any constants such that

(1− c)d <
1− e−1

2
. (11)

This example does not seem to be covered by Razumikhin or
Lyapunov-Krasovkii functions.

Our theorem applies with V (x) = 1
2x2 and u = 0.
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Example 2

Let ` > 0 be arbitrary and k ∈ N be an odd integer and consider

ẋ(t) = −x(t − h(t)) , (12)

where x is valued in R, and

h(t) = max
{

0, ` sink (t)
}
. (13)

This example does not seem to be covered by Razumikhin or
Lyapunov-Krasovkii functions.

Our theorem applies, without any restriction on ` > 0.

For each T > 0, there is a k such that Assumption 2 is satisfied.
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