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£ = J(t¢v,u) (1)

with a smooth reference trajectory {g and a vector ¥ of
uncertain constant parameters. {g = J(t, &R, V, UR).

» Problem: Design a dynamic feedback with estimator
u=utel), Vo=t (2)
such that the error Y = (U, §) = (W — U, ¢ — ¢g) — 0.

» This is a central problem with numerous applications in
flight control and electrical and mechanical engineering.
Persistent excitation. Annaswamy, Astolfi, Narendra, Teel..
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First-Order Case (FM-MdQ-MM-TAC’09)

» In 2009, we gave a solution for the special case
X = wX)V+u. (3)
We used adaptive controllers of the form
Us = Xp(t) ~w ()T +K(xa(t)~x), ¥ = —w(x)" (xa(t)-x) .
» We used the classical PE assumption: 3 constant x> 0 s.t.
ply < [l rw(xa(D)Tw(xg())dl forallteR.  (4)
» Novelty: Our explicit global strict Lyapunov function for the

Y = (W — W, x — xg) dynamics. It gave input-to-state stability
with respect to additive time-varying uncertainties 6 on V.
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Input-to-State Stability (Sontag, TAC'89)

This generalization of uniform global asymptotic stability (UGAS)
applies to systems with disturbances §, having the form

It is the requirement that there exist functions +; € K, such that
the corresponding solutions of (5) all satisfy

Y1) < 71 (€5 2| Y()])) +23(10]0,1) (6)
forall t > fy > 0. UGAS is the special case where 6 = 0.
Integral ISS is the same except with the decay condition
(Y (B)]) < 7 (€002 Y () + Jgra(ls(rDdr . (7)

Both are shown by constructing specific kinds of strict Lyapunov
functions for Y = G(t, Y, 0).
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Higher-Order Case (FM-MM-MdQ, NATMA’11)

» We solved the adaptive tracking and estimation problem for

x = f(¢) (8)
zi = 9i€) + k(&) O+, 1=1,2,....s.

Unknown constants ¢ = (¢1,...,%s) € R® and constants
0= (01,...,05) € RPtH-tPs ¢ = (x, 7). Now ¥ = (0, 1)).

» The C? T-periodic reference trajectory ¢g = (Xg, Zg) to be
tracked must satisfy xg(t) = f({g(t)) everywhere.

» New PE condition: positive definiteness of the matrices
P &[T ()A(H) dt € ROADx (1) (9)

where Xi(t) = (ki(§r(1)), zr.i(t) — gi(¢R(1))) for each .
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» Set F(t,x) = f(x + &r(t)) — f(§r(E)). There is a feedback vy
and a global strict Lyapunov function V for

{X = F(t,X,2) 10)

Z = Vf(t,X,Z)

so that —V/ and V/ have positive definite quadratic lower
bounds near 0 and V/, and v; are T-periodic.

Backstepping.. See Sontag text, Chap. 5.

» There are known positive constants 6y, 1 and ¢ such that
P < P < W and 0] < Oy (11)

foreachie {1,2,...,s}. Known directions for the v;’s.
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The estimator evolves on {[]7_;(—6m, Om)P'} x (¢, )"

{ 9*,-:/- = (0% - 03wij, 1<i<s,1<j<p (12)
b = (1;/_@> (1/3/'—@)0/, 1<i<s
Here 0; = (0i1,...,0ip) fori=1,2,...,s,
wij = —92(tE)ki(€+¢r(t) and (13)
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Dynamic Feedback

The estimator evolves on {[]7_;(—6m, Om)P'} x (¢, )"

b = (0% -Gy, 1<i<sA<j<p
3 2 r = . (12)
Yi = (1#/—@) (ﬂ)i—lb)U/, 1<i<s
Here 6; = (0;1,...,0ip) fori=1,2,...,s
@ij = —9(t,k(E+¢n(t)) and 3
Ui = _87'\‘/(1‘ g)ul(t g? é,{[}) .
u(t,€,6,0) = Lltd=o (s)l—ﬁf/(s)ﬁ,-wﬁ,f(t) (14)

The estimator and feedback can only depend on things we know.
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Stabilization Analysis

> We build a global strict LyapAunov fLAmction for the
= (£,0,¢) = (£ — &R, 0 — 0,9 — 1)) dynamics to prove the
UGAS condition | Y (1)| < v1 (€ 1a(| Y(f)]))-
» We start with the nonstrict Lyapunov function

9,,

(t,E,8.4) = t£+ZZ/ e
,f

11/1

wl m
+ / — dm
,-z_; o (¥i—m—=1v)(Y—i+m)
» It gives Vy < —W/(£) for some positive definite function W.

» This is insufficient for robustness analysis because V; could
be zero outside 0. Therefore, we transform V;.
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Theorem: We can construct K € K., N C! such that
Vﬂ(né'aé?i):K( (tvévéa'&))—i_ZTl(t’g’ ﬂﬁ) ’

where Ti(t,g,é,"@) = —z\i(ta (Nla{/;/)

+T¢ i ( Iawl) i(t )Oéi(giﬂzi) )
Ai(t) = (Ki(€r(1)), zr,i(t) — 9i(&R(T)))
i@ ) = {Hﬂﬂiieﬂpi] . and
Qi(t)y = [, [EAT(s)Ni(s)dsdm |

is a global strict Lyapunov function for the Y = (5, g, w)
dynamics. Hence, the dynamics are UGAS to 0.
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Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
o=y
Vo = —Bys— msin(yr) + K Kot + 116 (19)
CI' = Hi(y7C)Bi+’7iui7 I:172
Hi(y,Q) = (=C1,y20). Ha(y,CQ) = (—C2, —y2(1, —Y2).
> V1, Yo = load position and velocity. {; = winding currents.

» B =viscous friction coefficient. M = mechanical inertia.
N =related to the load mass and gravitational constant.
K, Kp =torque transmission coefficients.

» The unknown vectors 1 € R? and 3> € R? and unknown
scalars 1 and ~» are the motor electric parameters.
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Conclusions

» Adaptive tracking and estimation is a central problem with
applications in many branches of engineering.

» Standard adaptive control treatments based on nonstrict
Lyapunov functions only give tracking and are not robust.

» Our strict Lyapunov functions gave robustness to additive
uncertainties on the parameters using the ISS paradigm.

» We covered systems with unknown control gains including
brushless DC motors turning mechanical loads.

» It would be useful to extend to cover models that are not
affine in 4, feedback delays, and output feedbacks.



