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Adaptive Tracking and Estimation Problem

I Consider a suitably regular nonlinear system

ξ̇ = J (t , ξ,Ψ,u) (1)

with a smooth reference trajectory ξR and a vector Ψ of
uncertain constant parameters. ξ̇R = J (t , ξR,Ψ,uR).

I Problem: Design a dynamic feedback with estimator

u = u(t , ξ, Ψ̂),
·

Ψ̂ = τ(t , ξ, Ψ̂) (2)

such that the error Y = (Ψ̃, ξ̃) = (Ψ− Ψ̂, ξ − ξR)→ 0.

I This is a central problem with numerous applications in
flight control and electrical and mechanical engineering.
Persistent excitation. Annaswamy, Astolfi, Narendra, Teel..
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First-Order Case (FM-MdQ-MM-TAC’09)

I In 2009, we gave a solution for the special case

ẋ = ω(x)Ψ + u . (3)

We used adaptive controllers of the form

us = ẋR(t)−ω(x)Ψ̂+K (xR(t)−x), ˙̂Ψ = −ω(x)>(xR(t)−x) .

I We used the classical PE assumption: ∃ constant µ > 0 s.t.

µIp ≤
∫ t

t−T ω(xR(l))>ω(xR(l)) dl for all t ∈ R. (4)

I Novelty: Our explicit global strict Lyapunov function for the
Y = (Ψ− Ψ̂, x −xR) dynamics. It gave input-to-state stability
with respect to additive time-varying uncertainties δ on Ψ.
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Input-to-State Stability (Sontag, TAC’89)

This generalization of uniform global asymptotic stability (UGAS)
applies to systems with disturbances δ, having the form

Ẏ = G(t ,Y , δ(t)) . (5)

It is the requirement that there exist functions γi ∈ K∞ such that
the corresponding solutions of (5) all satisfy

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[0,t]) (6)

for all t ≥ t0 ≥ 0. UGAS is the special case where δ ≡ 0.

Integral ISS is the same except with the decay condition

γ0(|Y (t)|) ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+
∫ t

0 γ3(|δ(r)|)dr . (7)

Both are shown by constructing specific kinds of strict Lyapunov
functions for Ẏ = G(t ,Y ,0).
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Higher-Order Case (FM-MM-MdQ, NATMA’11)

I We solved the adaptive tracking and estimation problem for{
ẋ = f (ξ)
żi = gi(ξ) + ki(ξ) · θi + ψiui , i = 1,2, . . . , s .

(8)

Unknown constants ψ = (ψ1, . . . , ψs) ∈ Rs and constants
θ = (θ1, ..., θs) ∈ Rp1+...+ps . ξ = (x , z). Now Ψ = (θ, ψ).

I The C2 T -periodic reference trajectory ξR = (xR, zR) to be
tracked must satisfy ẋR(t) = f (ξR(t)) everywhere.

I New PE condition: positive definiteness of the matrices

Pi
def
=
∫ T

0 λ>i (t)λi(t) dt ∈ R(pi+1)×(pi+1), (9)

where λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) for each i .
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Two Other Key Assumptions

I Set F(t , χ) = f (χ+ ξR(t))− f (ξR(t)). There is a feedback vf
and a global strict Lyapunov function V for{

Ẋ = F(t ,X ,Z )

Ż = vf (t ,X ,Z )
(10)

so that −V̇ and V have positive definite quadratic lower
bounds near 0 and V , and vf are T -periodic.

Backstepping.. See Sontag text, Chap. 5.

I There are known positive constants θM , ψ and ψ such that

ψ < ψi < ψ and |θi | < θM (11)

for each i ∈ {1,2, . . . , s}. Known directions for the ψi ’s.
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Dynamic Feedback

The estimator evolves on {
∏s

i=1(−θM , θM)pi} × (ψ,ψ)s.
˙̂
θi,j = (θ̂2

i,j − θ2
M)$i,j , 1 ≤ i ≤ s ,1 ≤ j ≤ pi

˙̂
ψi =

(
ψ̂i − ψ

)(
ψ̂i − ψ

)
fi , 1 ≤ i ≤ s

(12)

Here θ̂i = (θ̂i,1, . . . , θ̂i,pi ) for i = 1,2, . . . , s,

$i,j = −∂V
∂z̃i

(t , ξ̃)ki,j
(
ξ̃ + ξR(t)

)
and

fi = −∂V
∂z̃i

(t , ξ̃)ui(t , ξ̃, θ̂, ψ̂) .
(13)

ui(t , ξ̃, θ̂, ψ̂) =
vf ,i (t ,ξ̃)−gi (ξ)−ki (ξ)·θ̂i+żR,i (t)

ψ̂i
(14)

The estimator and feedback can only depend on things we know.
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Stabilization Analysis

I We build a global strict Lyapunov function for the
Y = (ξ̃, θ̃, ψ̃) = (ξ − ξR, θ − θ̂, ψ − ψ̂) dynamics to prove the
UGAS condition |Y (t)| ≤ γ1(et0−tγ2(|Y (t0)|)).

I We start with the nonstrict Lyapunov function

V1(t , ξ̃, θ̃, ψ̃) = V (t , ξ̃) +
s∑

i=1

pi∑
j=1

∫ θ̃i,j

0

m
θ2

M − (m − θi,j)2
dm

+
s∑

i=1

∫ ψ̃i

0

m
(ψi −m − ψ)(ψ − ψi + m)

dm .

I It gives V̇1 ≤ −W (ξ̃) for some positive definite function W .

I This is insufficient for robustness analysis because V̇1 could
be zero outside 0. Therefore, we transform V1.
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Transformation (FM-MM-MdQ, NATMA’11)

Theorem: We can construct K ∈ K∞ ∩ C1 such that

V ](t , ξ̃, θ̃, ψ̃)
.

= K
(
V1(t , ξ̃, θ̃, ψ̃)

)
+

s∑
i=1

Υi(t , ξ̃, θ̃, ψ̃) , (15)

where Υi(t , ξ̃, θ̃, ψ̃) = −z̃iλi(t)αi(θ̃i , ψ̃i)

+ 1
Tψ
α>i (θ̃i , ψ̃i)Ωi(t)αi(θ̃i , ψ̃i) ,

(16)

λi(t) = (ki(ξR(t)), żR,i(t)− gi(ξR(t))) , (17)

αi(θ̃i , ψ̃i) =

[
θ̃iψi − θi ψ̃i

ψ̃i

]
, and

Ωi(t) =
∫ t

t−T

∫ t
m λ
>
i (s)λi(s)ds dm ,

(18)

is a global strict Lyapunov function for the Y = (ξ̃, θ̃, ψ̃)
dynamics. Hence, the dynamics are UGAS to 0.



Transformation (FM-MM-MdQ, NATMA’11)
Theorem: We can construct K ∈ K∞ ∩ C1 such that

V ](t , ξ̃, θ̃, ψ̃)
.

= K
(
V1(t , ξ̃, θ̃, ψ̃)

)
+

s∑
i=1

Υi(t , ξ̃, θ̃, ψ̃) , (15)

where Υi(t , ξ̃, θ̃, ψ̃) = −z̃iλi(t)αi(θ̃i , ψ̃i)

+ 1
Tψ
α>i (θ̃i , ψ̃i)Ωi(t)αi(θ̃i , ψ̃i) ,

(16)
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Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
ẏ1 = y2

ẏ2 = − B
M y2 − N

M sin(y1) + Kτ [Kbζ1 + 1]ζ2

ζ̇i = Hi(y , ζ)βi + γiui , i = 1,2

(19)

H1(y , ζ) = (−ζ1, y2ζ2). H2(y , ζ) = (−ζ2,−y2ζ1,−y2).

I y1, y2 = load position and velocity. ζi = winding currents.

I B = viscous friction coefficient. M = mechanical inertia.
N = related to the load mass and gravitational constant.
Kτ ,Kb = torque transmission coefficients.

I The unknown vectors β1 ∈ R2 and β2 ∈ R3 and unknown
scalars γ1 and γ2 are the motor electric parameters.
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ẏ1 = y2
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ẏ1 = y2
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Conclusions

I Adaptive tracking and estimation is a central problem with
applications in many branches of engineering.

I Standard adaptive control treatments based on nonstrict
Lyapunov functions only give tracking and are not robust.

I Our strict Lyapunov functions gave robustness to additive
uncertainties on the parameters using the ISS paradigm.

I We covered systems with unknown control gains including
brushless DC motors turning mechanical loads.

I It would be useful to extend to cover models that are not
affine in θ, feedback delays, and output feedbacks.



Conclusions

I Adaptive tracking and estimation is a central problem with
applications in many branches of engineering.

I Standard adaptive control treatments based on nonstrict
Lyapunov functions only give tracking and are not robust.

I Our strict Lyapunov functions gave robustness to additive
uncertainties on the parameters using the ISS paradigm.

I We covered systems with unknown control gains including
brushless DC motors turning mechanical loads.

I It would be useful to extend to cover models that are not
affine in θ, feedback delays, and output feedbacks.



Conclusions

I Adaptive tracking and estimation is a central problem with
applications in many branches of engineering.

I Standard adaptive control treatments based on nonstrict
Lyapunov functions only give tracking and are not robust.

I Our strict Lyapunov functions gave robustness to additive
uncertainties on the parameters using the ISS paradigm.

I We covered systems with unknown control gains including
brushless DC motors turning mechanical loads.

I It would be useful to extend to cover models that are not
affine in θ, feedback delays, and output feedbacks.



Conclusions

I Adaptive tracking and estimation is a central problem with
applications in many branches of engineering.

I Standard adaptive control treatments based on nonstrict
Lyapunov functions only give tracking and are not robust.

I Our strict Lyapunov functions gave robustness to additive
uncertainties on the parameters using the ISS paradigm.

I We covered systems with unknown control gains including
brushless DC motors turning mechanical loads.

I It would be useful to extend to cover models that are not
affine in θ, feedback delays, and output feedbacks.



Conclusions

I Adaptive tracking and estimation is a central problem with
applications in many branches of engineering.

I Standard adaptive control treatments based on nonstrict
Lyapunov functions only give tracking and are not robust.

I Our strict Lyapunov functions gave robustness to additive
uncertainties on the parameters using the ISS paradigm.

I We covered systems with unknown control gains including
brushless DC motors turning mechanical loads.

I It would be useful to extend to cover models that are not
affine in θ, feedback delays, and output feedbacks.



Conclusions

I Adaptive tracking and estimation is a central problem with
applications in many branches of engineering.

I Standard adaptive control treatments based on nonstrict
Lyapunov functions only give tracking and are not robust.

I Our strict Lyapunov functions gave robustness to additive
uncertainties on the parameters using the ISS paradigm.

I We covered systems with unknown control gains including
brushless DC motors turning mechanical loads.

I It would be useful to extend to cover models that are not
affine in θ, feedback delays, and output feedbacks.


