Uniform Global Asymptotic Stability of Adaptive Cascaded Nonlinear Systems with Unknown High-Frequency Gains

Michael Malisoff, Louisiana State University Joint with Frédéric Mazenc and Marcio de Queiroz Sponsored by NSF/DMS Grant 0708084

Special Session: Control Systems \& Signal Processing 2011 AMS Spring Southeastern Section Meeting Statesboro, GA, March 12-13, 2011

Adaptive Tracking and Estimation Problem

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Psi, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector ψ of uncertain constant parameters.

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Psi, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector ψ of uncertain constant parameters. $\dot{\xi}_{R}=\mathcal{J}\left(t, \xi_{R}, \Psi, u_{R}\right)$.

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Psi, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector ψ of uncertain constant parameters. $\dot{\xi}_{R}=\mathcal{J}\left(t, \xi_{R}, \Psi, u_{R}\right)$.

- Problem:

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Psi, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector ψ of uncertain constant parameters. $\dot{\xi}_{R}=\mathcal{J}\left(t, \xi_{R}, \Psi, u_{R}\right)$.

- Problem: Design a dynamic feedback with estimator

$$
\begin{equation*}
u=u(t, \xi, \hat{\Psi}), \quad \hat{\Psi}=\tau(t, \xi, \hat{\Psi}) \tag{2}
\end{equation*}
$$

such that the error $Y=(\tilde{\Psi}, \tilde{\xi})=\left(\Psi-\hat{\Psi}, \xi-\xi_{R}\right) \rightarrow 0$.

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Psi, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector ψ of uncertain constant parameters. $\dot{\xi}_{R}=\mathcal{J}\left(t, \xi_{R}, \Psi, u_{R}\right)$.

- Problem: Design a dynamic feedback with estimator

$$
\begin{equation*}
u=u(t, \xi, \hat{\Psi}), \quad \hat{\Psi}=\tau(t, \xi, \hat{\Psi}) \tag{2}
\end{equation*}
$$

such that the error $Y=(\tilde{\Psi}, \tilde{\xi})=\left(\Psi-\hat{\Psi}, \xi-\xi_{R}\right) \rightarrow 0$.

- This is a central problem with numerous applications in flight control and electrical and mechanical engineering.

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Psi, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector ψ of uncertain constant parameters. $\dot{\xi}_{R}=\mathcal{J}\left(t, \xi_{R}, \Psi, u_{R}\right)$.

- Problem: Design a dynamic feedback with estimator

$$
\begin{equation*}
u=u(t, \xi, \hat{\Psi}), \quad \hat{\Psi}=\tau(t, \xi, \hat{\Psi}) \tag{2}
\end{equation*}
$$

such that the error $Y=(\tilde{\Psi}, \tilde{\xi})=\left(\Psi-\hat{\Psi}, \xi-\xi_{R}\right) \rightarrow 0$.

- This is a central problem with numerous applications in flight control and electrical and mechanical engineering. Persistent excitation.

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Psi, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector ψ of uncertain constant parameters. $\dot{\xi}_{R}=\mathcal{J}\left(t, \xi_{R}, \Psi, u_{R}\right)$.

- Problem: Design a dynamic feedback with estimator

$$
\begin{equation*}
u=u(t, \xi, \hat{\Psi}), \quad \hat{\Psi}=\tau(t, \xi, \hat{\Psi}) \tag{2}
\end{equation*}
$$

such that the error $Y=(\tilde{\Psi}, \tilde{\xi})=\left(\Psi-\hat{\Psi}, \xi-\xi_{R}\right) \rightarrow 0$.

- This is a central problem with numerous applications in flight control and electrical and mechanical engineering. Persistent excitation. Annaswamy, Astolfi, Narendra, Teel..

First-Order Case (FM-MdQ-MM-TAC'09)

First-Order Case (FM-MdQ-MM-TAC'09)

- In 2009, we gave a solution for the special case

$$
\begin{equation*}
\dot{x}=\omega(x) \Psi+u \tag{3}
\end{equation*}
$$

First-Order Case (FM-MdQ-MM-TAC'09)

- In 2009, we gave a solution for the special case

$$
\begin{equation*}
\dot{x}=\omega(x) \Psi+u \tag{3}
\end{equation*}
$$

We used adaptive controllers of the form

$$
u_{s}=\dot{x}_{R}(t)-\omega(x) \hat{\Psi}+K\left(x_{R}(t)-x\right), \quad \dot{\hat{\psi}}=-\omega(x)^{\top}\left(x_{R}(t)-x\right)
$$

First-Order Case (FM-MdQ-MM-TAC'09)

- In 2009, we gave a solution for the special case

$$
\begin{equation*}
\dot{x}=\omega(x) \Psi+u \tag{3}
\end{equation*}
$$

We used adaptive controllers of the form

$$
u_{s}=\dot{x}_{R}(t)-\omega(x) \hat{\psi}+K\left(x_{R}(t)-x\right), \quad \dot{\hat{\psi}}=-\omega(x)^{\top}\left(x_{R}(t)-x\right)
$$

- We used the classical PE assumption: \exists constant $\mu>0$ s.t.

$$
\begin{equation*}
\mu I_{p} \leq \int_{t-T}^{t} \omega\left(x_{R}(I)\right)^{\top} \omega\left(x_{R}(I)\right) \mathrm{d} / \quad \text { for all } t \in \mathbb{R} \tag{4}
\end{equation*}
$$

First-Order Case (FM-MdQ-MM-TAC'09)

- In 2009, we gave a solution for the special case

$$
\begin{equation*}
\dot{x}=\omega(x) \Psi+u \tag{3}
\end{equation*}
$$

We used adaptive controllers of the form

$$
u_{s}=\dot{x}_{R}(t)-\omega(x) \hat{\psi}+K\left(x_{R}(t)-x\right), \quad \dot{\hat{\psi}}=-\omega(x)^{\top}\left(x_{R}(t)-x\right) .
$$

- We used the classical PE assumption: \exists constant $\mu>0$ s.t.

$$
\begin{equation*}
\mu I_{p} \leq \int_{t-T}^{t} \omega\left(x_{R}(I)\right)^{\top} \omega\left(x_{R}(I)\right) \mathrm{d} / \quad \text { for all } t \in \mathbb{R} \tag{4}
\end{equation*}
$$

- Novelty:

First-Order Case (FM-MdQ-MM-TAC'09)

- In 2009, we gave a solution for the special case

$$
\begin{equation*}
\dot{x}=\omega(x) \Psi+u \tag{3}
\end{equation*}
$$

We used adaptive controllers of the form

$$
u_{s}=\dot{x}_{R}(t)-\omega(x) \hat{\psi}+K\left(x_{R}(t)-x\right), \quad \dot{\hat{\psi}}=-\omega(x)^{\top}\left(x_{R}(t)-x\right) .
$$

- We used the classical PE assumption: \exists constant $\mu>0$ s.t.

$$
\begin{equation*}
\mu I_{p} \leq \int_{t-T}^{t} \omega\left(x_{R}(I)\right)^{\top} \omega\left(x_{R}(I)\right) \mathrm{d} / \quad \text { for all } t \in \mathbb{R} \tag{4}
\end{equation*}
$$

- Novelty: Our explicit global strict Lyapunov function for the $Y=\left(\Psi-\hat{\Psi}, x-x_{R}\right)$ dynamics.

First-Order Case (FM-MdQ-MM-TAC'09)

- In 2009, we gave a solution for the special case

$$
\begin{equation*}
\dot{x}=\omega(x) \Psi+u \tag{3}
\end{equation*}
$$

We used adaptive controllers of the form

$$
u_{s}=\dot{x}_{R}(t)-\omega(x) \hat{\psi}+K\left(x_{R}(t)-x\right), \quad \dot{\hat{\psi}}=-\omega(x)^{\top}\left(x_{R}(t)-x\right) .
$$

- We used the classical PE assumption: \exists constant $\mu>0$ s.t.

$$
\begin{equation*}
\mu I_{p} \leq \int_{t-T}^{t} \omega\left(x_{R}(I)\right)^{\top} \omega\left(x_{R}(I)\right) \mathrm{d} / \quad \text { for all } t \in \mathbb{R} \tag{4}
\end{equation*}
$$

- Novelty: Our explicit global strict Lyapunov function for the $Y=\left(\Psi-\hat{\Psi}, x-x_{R}\right)$ dynamics. It gave input-to-state stability with respect to additive time-varying uncertainties δ on Ψ.

Input-to-State Stability (Sontag, TAC'89)

Input-to-State Stability (Sontag, TAC'89)

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ, having the form

$$
\begin{equation*}
\dot{Y}=\mathcal{G}(t, Y, \delta(t)) \tag{5}
\end{equation*}
$$

Input-to-State Stability (Sontag, TAC'89)

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ, having the form

$$
\begin{equation*}
\dot{Y}=\mathcal{G}(t, Y, \delta(t)) \tag{5}
\end{equation*}
$$

It is the requirement that there exist functions $\gamma_{i} \in \mathcal{K}_{\infty}$ such that the corresponding solutions of (5) all satisfy

$$
\begin{equation*}
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\gamma_{3}\left(|\delta|_{[0, t]}\right) \tag{6}
\end{equation*}
$$

for all $t \geq t_{0} \geq 0$.

Input-to-State Stability (Sontag, TAC'89)

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ, having the form

$$
\begin{equation*}
\dot{Y}=\mathcal{G}(t, Y, \delta(t)) \tag{5}
\end{equation*}
$$

It is the requirement that there exist functions $\gamma_{i} \in \mathcal{K}_{\infty}$ such that the corresponding solutions of (5) all satisfy

$$
\begin{equation*}
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\gamma_{3}\left(|\delta|_{[0, t]}\right) \tag{6}
\end{equation*}
$$

for all $t \geq t_{0} \geq 0$. UGAS is the special case where $\delta \equiv 0$.

Input-to-State Stability (Sontag, TAC'89)

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ, having the form

$$
\begin{equation*}
\dot{Y}=\mathcal{G}(t, Y, \delta(t)) \tag{5}
\end{equation*}
$$

It is the requirement that there exist functions $\gamma_{i} \in \mathcal{K}_{\infty}$ such that the corresponding solutions of (5) all satisfy

$$
\begin{equation*}
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\gamma_{3}\left(|\delta|_{[0, t]}\right) \tag{6}
\end{equation*}
$$

for all $t \geq t_{0} \geq 0$. UGAS is the special case where $\delta \equiv 0$.
Integral ISS is the same except with the decay condition

$$
\begin{equation*}
\gamma_{0}(|Y(t)|) \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\int_{0}^{t} \gamma_{3}(|\delta(r)|) \mathrm{d} r . \tag{7}
\end{equation*}
$$

Input-to-State Stability (Sontag, TAC'89)

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ, having the form

$$
\begin{equation*}
\dot{Y}=\mathcal{G}(t, Y, \delta(t)) . \tag{5}
\end{equation*}
$$

It is the requirement that there exist functions $\gamma_{i} \in \mathcal{K}_{\infty}$ such that the corresponding solutions of (5) all satisfy

$$
\begin{equation*}
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\gamma_{3}\left(|\delta|_{[0, t]}\right) \tag{6}
\end{equation*}
$$

for all $t \geq t_{0} \geq 0$. UGAS is the special case where $\delta \equiv 0$.
Integral ISS is the same except with the decay condition

$$
\begin{equation*}
\gamma_{0}(|Y(t)|) \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\int_{0}^{t} \gamma_{3}(|\delta(r)|) \mathrm{d} r . \tag{7}
\end{equation*}
$$

Both are shown by constructing specific kinds of strict Lyapunov functions for $\dot{Y}=\mathcal{G}(t, Y, 0)$.

Higher-Order Case (FM-MM-MdQ, NATMA'11)

Higher-Order Case (FM-MM-MdQ, NATMA'11)

- We solved the adaptive tracking and estimation problem for

$$
\left\{\begin{align*}
\dot{x} & =f(\xi) \tag{8}\\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s
\end{align*}\right.
$$

Higher-Order Case (FM-MM-MdQ, NATMA'11)

- We solved the adaptive tracking and estimation problem for

$$
\left\{\begin{align*}
\dot{x} & =f(\xi) \tag{8}\\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s
\end{align*}\right.
$$

Unknown constants $\psi=\left(\psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{s}$

Higher-Order Case (FM-MM-MdQ, NATMA'11)

- We solved the adaptive tracking and estimation problem for

$$
\left\{\begin{align*}
\dot{x} & =f(\xi) \tag{8}\\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s
\end{align*}\right.
$$

Unknown constants $\psi=\left(\psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{s}$ and constants $\theta=\left(\theta_{1}, \ldots, \theta_{s}\right) \in \mathbb{R}^{p_{1}+\ldots+p_{s}}$.

Higher-Order Case (FM-MM-MdQ, NATMA'11)

- We solved the adaptive tracking and estimation problem for

$$
\left\{\begin{align*}
\dot{x} & =f(\xi) \tag{8}\\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s
\end{align*}\right.
$$

Unknown constants $\psi=\left(\psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{s}$ and constants $\theta=\left(\theta_{1}, \ldots, \theta_{s}\right) \in \mathbb{R}^{p_{1}+\ldots+p_{s}} . \xi=(x, z)$.

Higher-Order Case (FM-MM-MdQ, NATMA'11)

- We solved the adaptive tracking and estimation problem for

$$
\left\{\begin{align*}
\dot{x} & =f(\xi) \tag{8}\\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s
\end{align*}\right.
$$

Unknown constants $\psi=\left(\psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{s}$ and constants $\theta=\left(\theta_{1}, \ldots, \theta_{s}\right) \in \mathbb{R}^{p_{1}+\ldots+p_{s}} . \xi=(x, z)$. Now $\psi=(\theta, \psi)$.

Higher-Order Case (FM-MM-MdQ, NATMA'11)

- We solved the adaptive tracking and estimation problem for

$$
\left\{\begin{align*}
\dot{x} & =f(\xi) \tag{8}\\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s
\end{align*}\right.
$$

Unknown constants $\psi=\left(\psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{s}$ and constants $\theta=\left(\theta_{1}, \ldots, \theta_{s}\right) \in \mathbb{R}^{p_{1}+\ldots+p_{s}} . \xi=(x, z)$. Now $\psi=(\theta, \psi)$.

- The $C^{2} T$-periodic reference trajectory $\xi_{R}=\left(x_{R}, z_{R}\right)$ to be tracked must satisfy $\dot{x}_{R}(t)=f\left(\xi_{R}(t)\right)$ everywhere.

Higher-Order Case (FM-MM-MdQ, NATMA'11)

- We solved the adaptive tracking and estimation problem for

$$
\left\{\begin{align*}
\dot{x} & =f(\xi) \tag{8}\\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s
\end{align*}\right.
$$

Unknown constants $\psi=\left(\psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{s}$ and constants $\theta=\left(\theta_{1}, \ldots, \theta_{s}\right) \in \mathbb{R}^{p_{1}+\ldots+p_{s}} . \xi=(x, z)$. Now $\psi=(\theta, \psi)$.

- The $C^{2} T$-periodic reference trajectory $\xi_{R}=\left(x_{R}, z_{R}\right)$ to be tracked must satisfy $\dot{x}_{R}(t)=f\left(\xi_{R}(t)\right)$ everywhere.
- New PE condition:

Higher-Order Case (FM-MM-MdQ, NATMA'11)

- We solved the adaptive tracking and estimation problem for

$$
\left\{\begin{align*}
\dot{x} & =f(\xi) \tag{8}\\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s
\end{align*}\right.
$$

Unknown constants $\psi=\left(\psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{s}$ and constants $\theta=\left(\theta_{1}, \ldots, \theta_{s}\right) \in \mathbb{R}^{p_{1}+\ldots+p_{s}} . \xi=(x, z)$. Now $\psi=(\theta, \psi)$.

- The $C^{2} T$-periodic reference trajectory $\xi_{R}=\left(x_{R}, z_{R}\right)$ to be tracked must satisfy $\dot{x}_{R}(t)=f\left(\xi_{R}(t)\right)$ everywhere.
- New PE condition: positive definiteness of the matrices

$$
\begin{equation*}
\mathcal{P}_{i} \stackrel{\text { def }}{=} \int_{0}^{T} \lambda_{i}^{\top}(t) \lambda_{i}(t) \mathrm{d} t \in \mathbb{R}^{\left(p_{i}+1\right) \times\left(p_{i}+1\right)}, \tag{9}
\end{equation*}
$$

where $\lambda_{i}(t)=\left(k_{i}\left(\xi_{R}(t)\right), \dot{z}_{R, i}(t)-g_{i}\left(\xi_{R}(t)\right)\right)$ for each i.

Two Other Key Assumptions

Two Other Key Assumptions

- Set $\mathcal{F}(t, \chi)=f\left(\chi+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right)$.

Two Other Key Assumptions

- Set $\mathcal{F}(t, \chi)=f\left(\chi+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right)$. There is a feedback v_{f} and a global strict Lyapunov function V for

$$
\left\{\begin{array}{l}
\dot{X}=\mathcal{F}(t, X, Z) \tag{10}\\
\dot{Z}=v_{f}(t, X, Z)
\end{array}\right.
$$

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0

Two Other Key Assumptions

- Set $\mathcal{F}(t, \chi)=f\left(\chi+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right)$. There is a feedback v_{f} and a global strict Lyapunov function V for

$$
\left\{\begin{array}{l}
\dot{X}=\mathcal{F}(t, X, Z) \tag{10}\\
\dot{Z}=v_{f}(t, X, Z)
\end{array}\right.
$$

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and v_{f} are T-periodic.

Two Other Key Assumptions

- Set $\mathcal{F}(t, \chi)=f\left(\chi+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right)$. There is a feedback v_{f} and a global strict Lyapunov function V for

$$
\left\{\begin{array}{l}
\dot{X}=\mathcal{F}(t, X, Z) \tag{10}\\
\dot{Z}=v_{f}(t, X, Z)
\end{array}\right.
$$

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and v_{f} are T-periodic.

Backstepping..

Two Other Key Assumptions

- Set $\mathcal{F}(t, \chi)=f\left(\chi+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right)$. There is a feedback v_{f} and a global strict Lyapunov function V for

$$
\left\{\begin{array}{l}
\dot{X}=\mathcal{F}(t, X, Z) \tag{10}\\
\dot{Z}=v_{f}(t, X, Z)
\end{array}\right.
$$

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and v_{f} are T-periodic.

Backstepping.. See Sontag text, Chap. 5.

Two Other Key Assumptions

- Set $\mathcal{F}(t, \chi)=f\left(\chi+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right)$. There is a feedback v_{f} and a global strict Lyapunov function V for

$$
\left\{\begin{align*}
\dot{X} & =\mathcal{F}(t, X, Z) \tag{10}\\
\dot{Z} & =v_{f}(t, X, Z)
\end{align*}\right.
$$

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and v_{f} are T-periodic.

Backstepping.. See Sontag text, Chap. 5.

- There are known positive constants $\theta_{M}, \underline{\psi}$ and $\bar{\psi}$ such that

$$
\begin{equation*}
\underline{\psi}<\psi_{i}<\bar{\psi} \text { and }\left|\theta_{i}\right|<\theta_{M} \tag{11}
\end{equation*}
$$

for each $i \in\{1,2, \ldots, s\}$.

Two Other Key Assumptions

- Set $\mathcal{F}(t, \chi)=f\left(\chi+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right)$. There is a feedback v_{f} and a global strict Lyapunov function V for

$$
\left\{\begin{align*}
\dot{X} & =\mathcal{F}(t, X, Z) \tag{10}\\
\dot{Z} & =v_{f}(t, X, Z)
\end{align*}\right.
$$

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and v_{f} are T-periodic.

Backstepping.. See Sontag text, Chap. 5.

- There are known positive constants $\theta_{M}, \underline{\psi}$ and $\bar{\psi}$ such that

$$
\begin{equation*}
\underline{\psi}<\psi_{i}<\bar{\psi} \text { and }\left|\theta_{i}\right|<\theta_{M} \tag{11}
\end{equation*}
$$

for each $i \in\{1,2, \ldots, s\}$. Known directions for the ψ_{i} 's.

Dynamic Feedback

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{align*}
\dot{\hat{\theta}}_{i, j} & =\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{12}\\
\hat{\psi}_{i} & =\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, \quad 1 \leq i \leq s
\end{align*}\right.
$$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{align*}
\dot{\hat{\theta}}_{i, j} & =\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{12}\\
\hat{\psi}_{i} & =\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, \quad 1 \leq i \leq s
\end{align*}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{align*}
\dot{\hat{\theta}}_{i, j} & =\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{12}\\
\dot{\hat{\psi}}_{i} & =\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, \quad 1 \leq i \leq s
\end{align*}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$,

$$
\varpi_{i, j}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) k_{i, j}\left(\tilde{\xi}+\xi_{R}(t)\right)
$$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{align*}
\dot{\hat{\theta}}_{i, j} & =\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{12}\\
\hat{\psi}_{i} & =\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, \quad 1 \leq i \leq s
\end{align*}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$,

$$
\begin{align*}
\varpi_{i, j} & =-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) k_{i, j}\left(\tilde{\xi}+\xi_{R}(t)\right) \text { and } \tag{13}\\
\mho_{i} & =-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi})
\end{align*}
$$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{align*}
\dot{\hat{\theta}}_{i, j} & =\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{12}\\
\hat{\psi}_{i} & =\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, \quad 1 \leq i \leq s
\end{align*}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$,

$$
\begin{gather*}
\varpi_{i, j}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) k_{i, j}\left(\tilde{\xi}+\xi_{R}(t)\right) \text { and } \tag{13}\\
\mho_{i}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) \\
u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi})=\frac{v_{f, i}(t, \tilde{\xi})-g_{i}(\xi)-k_{i}(\xi) \cdot \hat{\theta}_{i}+\dot{z}_{R, i}(t)}{\hat{\psi}_{i}} \tag{14}
\end{gather*}
$$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{align*}
\dot{\hat{\theta}}_{i, j} & =\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{12}\\
\dot{\hat{\psi}}_{i} & =\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, \quad 1 \leq i \leq s
\end{align*}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$,

$$
\begin{gather*}
\varpi_{i, j}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) k_{i, j}\left(\tilde{\xi}+\xi_{R}(t)\right) \text { and } \tag{13}\\
\mho_{i}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) \\
u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi})=\frac{v_{f, i}(t, \tilde{\xi})-g_{i}(\xi)-k_{i}(\xi) \cdot \hat{\theta}_{i}+\dot{z}_{R, i}(t)}{\hat{\psi}_{i}} \tag{14}
\end{gather*}
$$

The estimator and feedback can only depend on things we know.

Stabilization Analysis

Stabilization Analysis

- We build a global strict Lyapunov function for the $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})=\left(\xi-\xi_{R}, \theta-\hat{\theta}, \psi-\hat{\psi}\right)$ dynamics to prove the UGAS condition $|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)$.

Stabilization Analysis

- We build a global strict Lyapunov function for the $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})=\left(\xi-\xi_{R}, \theta-\hat{\theta}, \psi-\hat{\psi}\right)$ dynamics to prove the UGAS condition $|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)$.
- We start with the nonstrict Lyapunov function

$$
\begin{aligned}
V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})= & V(t, \tilde{\xi})+\sum_{i=1}^{s} \sum_{j=1}^{p_{i}} \int_{0}^{\tilde{\theta}_{i, j}} \frac{m}{\theta_{M}^{2}-\left(m-\theta_{i, j}\right)^{2}} \mathrm{~d} m \\
& +\sum_{i=1}^{s} \int_{0}^{\widetilde{\psi}_{i}} \frac{m}{\left(\psi_{i}-m-\underline{\psi}\right)\left(\bar{\psi}-\psi_{i}+m\right)} \mathrm{d} m .
\end{aligned}
$$

Stabilization Analysis

- We build a global strict Lyapunov function for the $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})=\left(\xi-\xi_{R}, \theta-\hat{\theta}, \psi-\hat{\psi}\right)$ dynamics to prove the UGAS condition $|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)$.
- We start with the nonstrict Lyapunov function

$$
\begin{aligned}
V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})= & V(t, \tilde{\xi})+\sum_{i=1}^{s} \sum_{j=1}^{p_{i}} \int_{0}^{\tilde{\theta}_{i, j}} \frac{m}{\theta_{M}^{2}-\left(m-\theta_{i, j}\right)^{2}} \mathrm{~d} m \\
& +\sum_{i=1}^{s} \int_{0}^{\widetilde{\psi}_{i}} \frac{m}{\left(\psi_{i}-m-\underline{\psi}\right)\left(\bar{\psi}-\psi_{i}+m\right)} \mathrm{d} m .
\end{aligned}
$$

- It gives $\dot{V}_{1} \leq-W(\tilde{\xi})$ for some positive definite function W.

Stabilization Analysis

- We build a global strict Lyapunov function for the $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})=\left(\xi-\xi_{R}, \theta-\hat{\theta}, \psi-\hat{\psi}\right)$ dynamics to prove the UGAS condition $|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)$.
- We start with the nonstrict Lyapunov function

$$
\begin{aligned}
V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})= & V(t, \tilde{\xi})+\sum_{i=1}^{s} \sum_{j=1}^{p_{i}} \int_{0}^{\tilde{\theta}_{i, j}} \frac{m}{\theta_{M}^{2}-\left(m-\theta_{i, j}\right)^{2}} \mathrm{~d} m \\
& +\sum_{i=1}^{s} \int_{0}^{\widetilde{\psi}_{i}} \frac{m}{\left(\psi_{i}-m-\underline{\psi}\right)\left(\bar{\psi}-\psi_{i}+m\right)} \mathrm{d} m .
\end{aligned}
$$

- It gives $\dot{V}_{1} \leq-W(\tilde{\xi})$ for some positive definite function W.
- This is insufficient for robustness analysis because \dot{V}_{1} could be zero outside 0 .

Stabilization Analysis

- We build a global strict Lyapunov function for the $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})=\left(\xi-\xi_{R}, \theta-\hat{\theta}, \psi-\hat{\psi}\right)$ dynamics to prove the UGAS condition $|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)$.
- We start with the nonstrict Lyapunov function

$$
\begin{aligned}
V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})= & V(t, \tilde{\xi})+\sum_{i=1}^{s} \sum_{j=1}^{p_{i}} \int_{0}^{\tilde{\theta}_{i, j}} \frac{m}{\theta_{M}^{2}-\left(m-\theta_{i, j}\right)^{2}} \mathrm{~d} m \\
& +\sum_{i=1}^{s} \int_{0}^{\widetilde{\psi}_{i}} \frac{m}{\left(\psi_{i}-m-\underline{\psi}\right)\left(\bar{\psi}-\psi_{i}+m\right)} \mathrm{d} m .
\end{aligned}
$$

- It gives $\dot{V}_{1} \leq-W(\tilde{\xi})$ for some positive definite function W.
- This is insufficient for robustness analysis because \dot{V}_{1} could be zero outside 0 . Therefore, we transform V_{1}.

Transformation (FM-MM-MdQ, NATMA'11)

Transformation (FM-MM-MdQ, NATMA'11)

Theorem: We can construct $K \in \mathcal{K}_{\infty} \cap C^{1}$ such that

$$
\begin{gather*}
V^{\sharp}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) \doteq K\left(V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})\right)+\sum_{i=1}^{s} \bar{\Upsilon}_{i}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}), \tag{15}\\
\text { where } \begin{aligned}
\bar{\Upsilon}_{i}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})= & -\tilde{z}_{i} \lambda_{i}(t) \alpha_{i}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right) \\
& +\frac{1}{T \bar{\psi}} \alpha_{i}^{\top}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right) \Omega_{i}(t) \alpha_{i}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right), \\
\lambda_{i}(t)= & \left(k_{i}\left(\xi_{R}(t)\right), \dot{z}_{R, i}(t)-g_{i}\left(\xi_{R}(t)\right)\right), \\
\alpha_{i}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right)= & =\left[\begin{array}{c}
\tilde{\theta}_{i} \psi_{i}-\theta_{i} \tilde{\psi}_{i} \\
\widetilde{\psi}_{i}
\end{array}\right], \text { and } \\
\Omega_{i}(t)= & \int_{t-T}^{t} \int_{m}^{t} \lambda_{i}^{\top}(s) \lambda_{i}(s) \mathrm{d} s \mathrm{~d} m,
\end{aligned}
\end{gather*}
$$

is a global strict Lyapunov function for the $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})$ dynamics.

Transformation (FM-MM-MdQ, NATMA'11)

Theorem: We can construct $K \in \mathcal{K}_{\infty} \cap C^{1}$ such that

$$
\begin{align*}
& V^{\sharp}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) \doteq K\left(V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})\right)+\sum_{i=1}^{s} \bar{\Upsilon}_{i}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}), \tag{15}\\
& \text { where } \bar{\Upsilon}_{i}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})=-\tilde{z}_{i} \lambda_{i}(t) \alpha_{i}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right) \\
& +\frac{1}{T \bar{\psi}} \alpha_{i}^{\top}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right) \Omega_{i}(t) \alpha_{i}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right), \tag{16}\\
& \lambda_{i}(t)=\left(k_{i}\left(\xi_{R}(t)\right), \dot{z}_{R, i}(t)-g_{i}\left(\xi_{R}(t)\right)\right), \tag{17}\\
& \alpha_{i}\left(\widetilde{\theta}_{i}, \tilde{\psi}_{i}\right)=\left[\begin{array}{c}
\tilde{\theta}_{i} \psi_{i}-\tilde{\theta}_{i} \tilde{\psi}_{i} \\
\tilde{\psi}_{i}
\end{array}\right], \text { and } \tag{18}\\
& \Omega_{i}(t)=\int_{t-T}^{t} \int_{m}^{t} \lambda_{i}^{\top}(s) \lambda_{i}(s) \mathrm{d} s \mathrm{~d} m,
\end{align*}
$$

is a global strict Lyapunov function for the $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})$ dynamics. Hence, the dynamics are UGAS to 0.

Application: BLDC Motor (Dawson-Hu-Burg)

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\left\{\begin{align*}
\dot{y}_{1} & =y_{2} \tag{19}\\
\dot{y}_{2} & =-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i} & =H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{align*}\right.
$$

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{aligned}
\dot{y}_{1} & =y_{2} \\
\dot{y}_{2} & =-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i} & =H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{aligned}\right. \tag{19}\\
& H_{1}(y, \zeta)
\end{align*}=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) .
$$

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{aligned}
\dot{y}_{1} & =y_{2} \\
\dot{y}_{2} & =-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i} & =H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{aligned}\right. \tag{19}\\
& H_{1}(y, \zeta)
\end{align*}=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . \quad H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
$$

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{aligned}
\dot{y}_{1} & =y_{2} \\
\dot{y}_{2} & =-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i} & =H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{aligned}\right. \tag{19}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . \quad H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{19}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . \quad H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{19}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . \quad H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{19}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . \quad H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient. $M=$ mechanical inertia.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{19}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) \cdot H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient. $M=$ mechanical inertia. $N=$ related to the load mass and gravitational constant.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{aligned}
\dot{y}_{1} & =y_{2} \\
\dot{y}_{2} & =-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i} & =H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{aligned}\right. \tag{19}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) \cdot H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient. $M=$ mechanical inertia. $N=$ related to the load mass and gravitational constant. $K_{\tau}, K_{b}=$ torque transmission coefficients.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{aligned}
\dot{y}_{1} & =y_{2} \\
\dot{y}_{2} & =-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i} & =H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{aligned}\right. \tag{19}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . \quad H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient. $M=$ mechanical inertia. $N=$ related to the load mass and gravitational constant. $K_{\tau}, K_{b}=$ torque transmission coefficients.
- The unknown vectors $\beta_{1} \in \mathbb{R}^{2}$ and $\beta_{2} \in \mathbb{R}^{3}$ and unknown scalars γ_{1} and γ_{2} are the motor electric parameters.

Conclusions

Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.

Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.
- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.

Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.
- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.
- Our strict Lyapunov functions gave robustness to additive uncertainties on the parameters using the ISS paradigm.

Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.
- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.
- Our strict Lyapunov functions gave robustness to additive uncertainties on the parameters using the ISS paradigm.
- We covered systems with unknown control gains including brushless DC motors turning mechanical loads.

Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.
- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.
- Our strict Lyapunov functions gave robustness to additive uncertainties on the parameters using the ISS paradigm.
- We covered systems with unknown control gains including brushless DC motors turning mechanical loads.
- It would be useful to extend to cover models that are not affine in θ, feedback delays, and output feedbacks.

