Uniform Global Asymptotic Stability of Adaptive Cascaded Nonlinear Systems with Unknown High-Frequency Gains

Michael Malisoff, Louisiana State University Joint with Frédéric Mazenc and Marcio de Queiroz Sponsored by NSF/DMS Grant 0708084

Special Session: Control Systems & Signal Processing 2011 AMS Spring Southeastern Section Meeting Statesboro, GA, March 12-13, 2011

Consider a suitably regular nonlinear system

$$\dot{\xi} = \mathcal{J}(t,\xi,\Psi,u)$$
 (1)

with a smooth reference trajectory ξ_R and a vector Ψ of uncertain constant parameters.

Consider a suitably regular nonlinear system

$$\dot{\xi} = \mathcal{J}(t,\xi,\Psi,u)$$
 (1)

with a smooth reference trajectory ξ_R and a vector Ψ of uncertain constant parameters. $\dot{\xi}_R = \mathcal{J}(t, \xi_R, \Psi, u_R)$.

Consider a suitably regular nonlinear system

$$\dot{\xi} = \mathcal{J}(t,\xi,\Psi,u)$$
 (1)

with a smooth reference trajectory ξ_R and a vector Ψ of uncertain constant parameters. $\dot{\xi}_R = \mathcal{J}(t, \xi_R, \Psi, u_R)$.

Problem:

Consider a suitably regular nonlinear system

$$\dot{\xi} = \mathcal{J}(t,\xi,\Psi,u)$$
 (1)

with a smooth reference trajectory ξ_R and a vector Ψ of uncertain constant parameters. $\dot{\xi}_R = \mathcal{J}(t, \xi_R, \Psi, u_R)$.

Problem: Design a dynamic feedback with estimator

$$u = u(t,\xi,\hat{\Psi}), \quad \hat{\Psi} = \tau(t,\xi,\hat{\Psi})$$
 (2)

such that the error $Y = (\tilde{\Psi}, \tilde{\xi}) = (\Psi - \hat{\Psi}, \xi - \xi_R) \rightarrow 0.$

Consider a suitably regular nonlinear system

$$\dot{\xi} = \mathcal{J}(t,\xi,\Psi,u)$$
 (1)

with a smooth reference trajectory ξ_R and a vector Ψ of uncertain constant parameters. $\dot{\xi}_R = \mathcal{J}(t, \xi_R, \Psi, u_R)$.

Problem: Design a dynamic feedback with estimator

$$u = u(t,\xi,\hat{\Psi}), \quad \hat{\Psi} = \tau(t,\xi,\hat{\Psi})$$
 (2)

such that the error $Y = (\tilde{\Psi}, \tilde{\xi}) = (\Psi - \hat{\Psi}, \xi - \xi_R) \rightarrow 0.$

This is a central problem with numerous applications in flight control and electrical and mechanical engineering.

Consider a suitably regular nonlinear system

$$\dot{\xi} = \mathcal{J}(t,\xi,\Psi,u)$$
 (1)

with a smooth reference trajectory ξ_R and a vector Ψ of uncertain constant parameters. $\dot{\xi}_R = \mathcal{J}(t, \xi_R, \Psi, u_R)$.

Problem: Design a dynamic feedback with estimator

$$u = u(t,\xi,\hat{\Psi}), \quad \hat{\Psi} = \tau(t,\xi,\hat{\Psi})$$
 (2)

such that the error $Y = (\tilde{\Psi}, \tilde{\xi}) = (\Psi - \hat{\Psi}, \xi - \xi_R) \rightarrow 0.$

 This is a central problem with numerous applications in flight control and electrical and mechanical engineering.
 Persistent excitation.

Consider a suitably regular nonlinear system

$$\dot{\xi} = \mathcal{J}(t,\xi,\Psi,u)$$
 (1)

with a smooth reference trajectory ξ_R and a vector Ψ of uncertain constant parameters. $\dot{\xi}_R = \mathcal{J}(t, \xi_R, \Psi, u_R)$.

Problem: Design a dynamic feedback with estimator

$$u = u(t,\xi,\hat{\Psi}), \quad \hat{\Psi} = \tau(t,\xi,\hat{\Psi})$$
 (2)

such that the error $Y = (\tilde{\Psi}, \tilde{\xi}) = (\Psi - \hat{\Psi}, \xi - \xi_R) \rightarrow 0.$

 This is a central problem with numerous applications in flight control and electrical and mechanical engineering.
 Persistent excitation. Annaswamy, Astolfi, Narendra, Teel..

In 2009, we gave a solution for the special case

$$\dot{x} = \omega(x)\Psi + u . \tag{3}$$

In 2009, we gave a solution for the special case

$$\dot{x} = \omega(x)\Psi + u . \tag{3}$$

We used adaptive controllers of the form

$$u_{s} = \dot{x}_{R}(t) - \omega(x)\hat{\Psi} + \mathcal{K}(x_{R}(t) - x), \quad \dot{\Psi} = -\omega(x)^{\top}(x_{R}(t) - x).$$

In 2009, we gave a solution for the special case

$$\dot{x} = \omega(x)\Psi + u. \qquad (3)$$

We used adaptive controllers of the form

$$u_s = \dot{x}_R(t) - \omega(x)\hat{\Psi} + \mathcal{K}(x_R(t) - x), \quad \hat{\Psi} = -\omega(x)^\top (x_R(t) - x).$$

• We used the classical PE assumption: \exists constant $\mu > 0$ s.t.

$$\mu I_{\rho} \leq \int_{t-T}^{t} \omega(x_{R}(I))^{\top} \omega(x_{R}(I)) \, \mathrm{d}I \quad \text{for all } t \in \mathbb{R}.$$
 (4)

In 2009, we gave a solution for the special case

$$\dot{x} = \omega(x)\Psi + u. \qquad (3)$$

We used adaptive controllers of the form

$$u_s = \dot{x}_R(t) - \omega(x)\hat{\Psi} + \mathcal{K}(x_R(t) - x), \quad \hat{\Psi} = -\omega(x)^\top (x_R(t) - x).$$

▶ We used the classical PE assumption: \exists constant $\mu > 0$ s.t.

$$\mu I_{p} \leq \int_{t-T}^{t} \omega(x_{R}(I))^{\top} \omega(x_{R}(I)) \, \mathrm{d}I \quad \text{for all } t \in \mathbb{R}.$$
 (4)

Novelty:

In 2009, we gave a solution for the special case

$$\dot{x} = \omega(x)\Psi + u. \qquad (3)$$

We used adaptive controllers of the form

$$u_s = \dot{x}_R(t) - \omega(x)\hat{\Psi} + \mathcal{K}(x_R(t) - x), \quad \hat{\Psi} = -\omega(x)^\top (x_R(t) - x).$$

• We used the classical PE assumption: \exists constant $\mu > 0$ s.t.

$$\mu I_{\rho} \leq \int_{t-T}^{t} \omega(x_{R}(I))^{\top} \omega(x_{R}(I)) \, \mathrm{d}I \quad \text{for all } t \in \mathbb{R}.$$
 (4)

Novelty: Our explicit global strict Lyapunov function for the $Y = (\Psi - \hat{\Psi}, x - x_R)$ dynamics.

In 2009, we gave a solution for the special case

$$\dot{x} = \omega(x)\Psi + u. \qquad (3)$$

We used adaptive controllers of the form

$$u_s = \dot{x}_R(t) - \omega(x)\hat{\Psi} + \mathcal{K}(x_R(t) - x), \quad \hat{\Psi} = -\omega(x)^\top (x_R(t) - x).$$

• We used the classical PE assumption: \exists constant $\mu > 0$ s.t.

$$\mu I_{p} \leq \int_{t-T}^{t} \omega(x_{R}(I))^{\top} \omega(x_{R}(I)) \, \mathrm{d}I \quad \text{for all } t \in \mathbb{R}.$$
 (4)

▶ Novelty: Our explicit global strict Lyapunov function for the $Y = (\Psi - \hat{\Psi}, x - x_R)$ dynamics. It gave input-to-state stability with respect to additive time-varying uncertainties δ on Ψ .

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ , having the form

$$\dot{\mathbf{Y}} = \mathcal{G}(t, \mathbf{Y}, \delta(t))$$
 (5)

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ , having the form

$$\dot{\mathbf{Y}} = \mathcal{G}(t, \mathbf{Y}, \delta(t)) .$$
 (5)

It is the requirement that there exist functions $\gamma_i \in \mathcal{K}_{\infty}$ such that the corresponding solutions of (5) all satisfy

$$|Y(t)| \le \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y(t_0)|) \right) + \gamma_3(|\delta|_{[0,t]})$$
(6)
for all $t \ge t_0 \ge 0$.

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ , having the form

$$\dot{\mathbf{Y}} = \mathcal{G}(t, \mathbf{Y}, \delta(t))$$
 (5)

It is the requirement that there exist functions $\gamma_i \in \mathcal{K}_{\infty}$ such that the corresponding solutions of (5) all satisfy

$$|Y(t)| \le \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y(t_0)|) \right) + \gamma_3(|\delta|_{[0,t]})$$
(6)

for all $t \ge t_0 \ge 0$. UGAS is the special case where $\delta \equiv 0$.

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ , having the form

$$\dot{\mathbf{Y}} = \mathcal{G}(t, \mathbf{Y}, \delta(t)) .$$
 (5)

It is the requirement that there exist functions $\gamma_i \in \mathcal{K}_{\infty}$ such that the corresponding solutions of (5) all satisfy

$$|Y(t)| \le \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y(t_0)|) \right) + \gamma_3(|\delta|_{[0,t]})$$
(6)

for all $t \ge t_0 \ge 0$. UGAS is the special case where $\delta \equiv 0$.

Integral ISS is the same except with the decay condition

 $\gamma_0(|Y(t)|) \le \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y(t_0)|) \right) + \int_0^t \gamma_3(|\delta(r)|) dr .$ (7)

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ , having the form

$$\dot{\mathbf{Y}} = \mathcal{G}(t, \mathbf{Y}, \delta(t))$$
 (5)

It is the requirement that there exist functions $\gamma_i \in \mathcal{K}_{\infty}$ such that the corresponding solutions of (5) all satisfy

$$|Y(t)| \le \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y(t_0)|) \right) + \gamma_3(|\delta|_{[0,t]})$$
(6)

for all $t \ge t_0 \ge 0$. UGAS is the special case where $\delta \equiv 0$.

Integral ISS is the same except with the decay condition

 $\gamma_0(|Y(t)|) \le \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y(t_0)|) \right) + \int_0^t \gamma_3(|\delta(r)|) dr .$ (7)

Both are shown by constructing specific kinds of strict Lyapunov functions for $\dot{Y} = \mathcal{G}(t, Y, 0)$.

We solved the adaptive tracking and estimation problem for

$$\begin{cases} \dot{x} = f(\xi) \\ \dot{z}_i = g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \dots, s. \end{cases}$$
(8)

We solved the adaptive tracking and estimation problem for

$$\begin{cases} \dot{x} = f(\xi) \\ \dot{z}_i = g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \dots, s. \end{cases}$$
(8)

Unknown constants $\psi = (\psi_1, \dots, \psi_s) \in \mathbb{R}^s$

We solved the adaptive tracking and estimation problem for

$$\begin{cases} \dot{x} = f(\xi) \\ \dot{z}_i = g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \dots, s. \end{cases}$$
(8)

Unknown constants $\psi = (\psi_1, \dots, \psi_s) \in \mathbb{R}^s$ and constants $\theta = (\theta_1, \dots, \theta_s) \in \mathbb{R}^{\rho_1 + \dots + \rho_s}$.

We solved the adaptive tracking and estimation problem for

$$\begin{cases} \dot{x} = f(\xi) \\ \dot{z}_i = g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \dots, s. \end{cases}$$
(8)

Unknown constants $\psi = (\psi_1, \dots, \psi_s) \in \mathbb{R}^s$ and constants $\theta = (\theta_1, \dots, \theta_s) \in \mathbb{R}^{\rho_1 + \dots + \rho_s}$. $\xi = (x, z)$.

We solved the adaptive tracking and estimation problem for

$$\begin{cases} \dot{x} = f(\xi) \\ \dot{z}_i = g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \dots, s. \end{cases}$$
(8)

Unknown constants $\psi = (\psi_1, \dots, \psi_s) \in \mathbb{R}^s$ and constants $\theta = (\theta_1, \dots, \theta_s) \in \mathbb{R}^{\rho_1 + \dots + \rho_s}$. $\xi = (x, z)$. Now $\Psi = (\theta, \psi)$.

We solved the adaptive tracking and estimation problem for

$$\begin{cases} \dot{x} = f(\xi) \\ \dot{z}_i = g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \dots, s. \end{cases}$$
(8)

Unknown constants $\psi = (\psi_1, ..., \psi_s) \in \mathbb{R}^s$ and constants $\theta = (\theta_1, ..., \theta_s) \in \mathbb{R}^{p_1 + ... + p_s}$. $\xi = (x, z)$. Now $\Psi = (\theta, \psi)$.

► The C^2 *T*-periodic reference trajectory $\xi_R = (x_R, z_R)$ to be tracked must satisfy $\dot{x}_R(t) = f(\xi_R(t))$ everywhere.

We solved the adaptive tracking and estimation problem for

$$\begin{cases} \dot{x} = f(\xi) \\ \dot{z}_i = g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \dots, s. \end{cases}$$
(8)

Unknown constants $\psi = (\psi_1, ..., \psi_s) \in \mathbb{R}^s$ and constants $\theta = (\theta_1, ..., \theta_s) \in \mathbb{R}^{p_1 + ... + p_s}$. $\xi = (x, z)$. Now $\Psi = (\theta, \psi)$.

- ► The C^2 *T*-periodic reference trajectory $\xi_R = (x_R, z_R)$ to be tracked must satisfy $\dot{x}_R(t) = f(\xi_R(t))$ everywhere.
- New PE condition:

We solved the adaptive tracking and estimation problem for

$$\begin{cases} \dot{x} = f(\xi) \\ \dot{z}_i = g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \dots, s. \end{cases}$$
(8)

Unknown constants $\psi = (\psi_1, ..., \psi_s) \in \mathbb{R}^s$ and constants $\theta = (\theta_1, ..., \theta_s) \in \mathbb{R}^{\rho_1 + ... + \rho_s}$. $\xi = (x, z)$. Now $\Psi = (\theta, \psi)$.

- The C² T-periodic reference trajectory ξ_R = (x_R, z_R) to be tracked must satisfy x_R(t) = f(ξ_R(t)) everywhere.
- New PE condition: positive definiteness of the matrices

$$\mathcal{P}_{i} \stackrel{\text{def}}{=} \int_{0}^{T} \lambda_{i}^{\top}(t) \lambda_{i}(t) \, \mathrm{d}t \in \mathbb{R}^{(\rho_{i}+1) \times (\rho_{i}+1)}, \tag{9}$$

where $\lambda_i(t) = (k_i(\xi_R(t)), \dot{z}_{R,i}(t) - g_i(\xi_R(t)))$ for each *i*.

• Set $\mathcal{F}(t,\chi) = f(\chi + \xi_R(t)) - f(\xi_R(t))$.

Set F(t, χ) = f(χ + ξ_R(t)) − f(ξ_R(t)). There is a feedback v_f and a global strict Lyapunov function V for

$$\begin{cases} \dot{X} = \mathcal{F}(t, X, Z) \\ \dot{Z} = v_f(t, X, Z) \end{cases}$$
(10)

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0

Set F(t, χ) = f(χ + ξ_R(t)) − f(ξ_R(t)). There is a feedback v_f and a global strict Lyapunov function V for

$$\begin{cases} \dot{X} = \mathcal{F}(t, X, Z) \\ \dot{Z} = v_f(t, X, Z) \end{cases}$$
(10)

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and v_f are T-periodic.

Set F(t, χ) = f(χ + ξ_R(t)) − f(ξ_R(t)). There is a feedback v_f and a global strict Lyapunov function V for

$$\begin{cases} \dot{X} = \mathcal{F}(t, X, Z) \\ \dot{Z} = v_f(t, X, Z) \end{cases}$$
(10)

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and v_f are T-periodic.

Backstepping..
Two Other Key Assumptions

Set F(t, χ) = f(χ + ξ_R(t)) − f(ξ_R(t)). There is a feedback v_f and a global strict Lyapunov function V for

$$\begin{cases} \dot{X} = \mathcal{F}(t, X, Z) \\ \dot{Z} = v_f(t, X, Z) \end{cases}$$
(10)

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and v_f are T-periodic.

Backstepping.. See Sontag text, Chap. 5.

Two Other Key Assumptions

Set F(t, χ) = f(χ + ξ_R(t)) − f(ξ_R(t)). There is a feedback v_f and a global strict Lyapunov function V for

$$\begin{cases} \dot{X} = \mathcal{F}(t, X, Z) \\ \dot{Z} = v_f(t, X, Z) \end{cases}$$
(10)

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and v_f are T-periodic.

Backstepping.. See Sontag text, Chap. 5.

▶ There are known positive constants θ_M , ψ and $\overline{\psi}$ such that

$$\underline{\psi} < \psi_i < \overline{\psi}$$
 and $|\theta_i| < \theta_M$ (11)

for each $i \in \{1, 2, ..., s\}$.

Two Other Key Assumptions

Set F(t, χ) = f(χ + ξ_R(t)) − f(ξ_R(t)). There is a feedback v_f and a global strict Lyapunov function V for

$$\begin{cases} \dot{X} = \mathcal{F}(t, X, Z) \\ \dot{Z} = v_f(t, X, Z) \end{cases}$$
(10)

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and v_f are T-periodic.

Backstepping.. See Sontag text, Chap. 5.

▶ There are known positive constants θ_M , ψ and $\overline{\psi}$ such that

$$\underline{\psi} < \psi_i < \overline{\psi}$$
 and $|\theta_i| < \theta_M$ (11)

for each $i \in \{1, 2, ..., s\}$. Known directions for the ψ_i 's.

$$\begin{cases} \dot{\hat{\theta}}_{i,j} = (\hat{\theta}_{i,j}^2 - \theta_M^2) \varpi_{i,j}, \ 1 \le i \le s, 1 \le j \le p_i \\ \dot{\hat{\psi}}_i = (\hat{\psi}_i - \underline{\psi}) (\hat{\psi}_i - \overline{\psi}) \mho_i, \ 1 \le i \le s \end{cases}$$
(12)

$$\begin{cases} \dot{\hat{\theta}}_{i,j} = (\hat{\theta}_{i,j}^2 - \theta_M^2) \varpi_{i,j}, \ 1 \le i \le s, 1 \le j \le p_i \\ \dot{\hat{\psi}}_i = (\hat{\psi}_i - \underline{\psi}) (\hat{\psi}_i - \overline{\psi}) \mho_i, \ 1 \le i \le s \end{cases}$$
(12)
Here $\hat{\theta}_i = (\hat{\theta}_{i,1}, \dots, \hat{\theta}_{i,p_i})$ for $i = 1, 2, \dots, s$

$$\begin{cases} \dot{\hat{\theta}}_{i,j} = (\hat{\theta}_{i,j}^2 - \theta_M^2) \varpi_{i,j}, \ 1 \le i \le s, 1 \le j \le p_i \\ \dot{\hat{\psi}}_i = (\hat{\psi}_i - \underline{\psi}) (\hat{\psi}_i - \overline{\psi}) \mho_i, \ 1 \le i \le s \end{cases}$$
(12)
Here $\hat{\theta}_i = (\hat{\theta}_{i,1}, \dots, \hat{\theta}_{i,p_i})$ for $i = 1, 2, \dots, s$,
 $\varpi_{i,j} = -\frac{\partial V}{\partial \tilde{z}_i} (t, \tilde{\xi}) k_{i,j} (\tilde{\xi} + \xi_R(t))$

$$\begin{cases} \dot{\hat{\theta}}_{i,j} = (\hat{\theta}_{i,j}^2 - \theta_M^2) \varpi_{i,j}, & 1 \le i \le s, 1 \le j \le p_i \\ \dot{\hat{\psi}}_i = (\hat{\psi}_i - \underline{\psi}) (\hat{\psi}_i - \overline{\psi}) \mho_i, & 1 \le i \le s \end{cases}$$
(12)
Here $\hat{\theta}_i = (\hat{\theta}_{i,1}, \dots, \hat{\theta}_{i,p_i})$ for $i = 1, 2, \dots, s$,
 $\varpi_{i,j} = -\frac{\partial V}{\partial \tilde{z}_i} (t, \tilde{\xi}) k_{i,j} (\tilde{\xi} + \xi_R(t))$ and
 $\mho_i = -\frac{\partial V}{\partial \tilde{z}_i} (t, \tilde{\xi}) \mathbf{u}_i (t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) .$ (13)

The estimator evolves on $\{\prod_{i=1}^{s} (-\theta_M, \theta_M)^{p_i}\} \times (\underline{\psi}, \overline{\psi})^s$.

$$\begin{cases} \dot{\hat{\theta}}_{i,j} = (\hat{\theta}_{i,j}^2 - \theta_M^2) \varpi_{i,j}, \ 1 \le i \le s, 1 \le j \le p_i \\ \dot{\hat{\psi}}_i = (\hat{\psi}_i - \underline{\psi}) (\hat{\psi}_i - \overline{\psi}) \mho_i, \ 1 \le i \le s \end{cases}$$
(12)

Here $\hat{\theta}_i = (\hat{\theta}_{i,1}, \dots, \hat{\theta}_{i,p_i})$ for $i = 1, 2, \dots, s$,

$$\varpi_{i,j} = -\frac{\partial V}{\partial \tilde{z}_{i}}(t,\tilde{\xi})k_{i,j}(\tilde{\xi}+\xi_{R}(t)) \text{ and}$$

$$\mho_{i} = -\frac{\partial V}{\partial \tilde{z}_{i}}(t,\tilde{\xi})u_{i}(t,\tilde{\xi},\hat{\theta},\hat{\psi}) .$$

$$u_{i}(t,\tilde{\xi},\hat{\theta},\hat{\psi}) = \frac{v_{t,i}(t,\tilde{\xi})-g_{i}(\xi)-k_{i}(\xi)\cdot\hat{\theta}_{i}+\dot{z}_{R,i}(t)}{\hat{\psi}_{i}}$$
(14)

The estimator evolves on $\{\prod_{i=1}^{s} (-\theta_M, \theta_M)^{p_i}\} \times (\underline{\psi}, \overline{\psi})^s$.

$$\begin{cases} \dot{\hat{\theta}}_{i,j} = (\hat{\theta}_{i,j}^2 - \theta_M^2) \varpi_{i,j}, \ 1 \le i \le s, 1 \le j \le p_i \\ \dot{\hat{\psi}}_i = (\hat{\psi}_i - \underline{\psi}) (\hat{\psi}_i - \overline{\psi}) \mho_i, \ 1 \le i \le s \end{cases}$$
(12)
Here $\hat{\theta}_i = (\hat{\theta}_{i,1}, \dots, \hat{\theta}_{i,p_l})$ for $i = 1, 2, \dots, s,$
$$\varpi_{i,j} = -\frac{\partial V}{\partial \tilde{z}_i}(t, \tilde{\xi}) k_{i,j} (\tilde{\xi} + \xi_R(t)) \text{ and} \\ \mho_i = -\frac{\partial V}{\partial \tilde{z}_i}(t, \tilde{\xi}) \mathbf{u}_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) . \end{cases}$$
(13)
$$\mathbf{u}_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) = \frac{\mathbf{v}_{t,i}(t, \tilde{\xi}) - g_i(\xi) - k_i(\xi) \cdot \hat{\theta}_i + \dot{z}_{R,i}(t)}{\hat{\psi}_i}$$
(14)

The estimator and feedback can only depend on things we know.

We build a global strict Lyapunov function for the Y = (ξ̃, θ̃, ψ̃) = (ξ − ξ_R, θ − θ̂, ψ − ψ̂) dynamics to prove the UGAS condition |Y(t)| ≤ γ₁(e^{t₀−t}γ₂(|Y(t₀)|)).

- We build a global strict Lyapunov function for the Y = (ξ̃, θ̃, ψ̃) = (ξ − ξ_R, θ − θ̂, ψ − ψ̂) dynamics to prove the UGAS condition |Y(t)| ≤ γ₁(e^{t₀−t}γ₂(|Y(t₀)|)).
- We start with the nonstrict Lyapunov function

$$\begin{aligned} V_1(t,\tilde{\xi},\tilde{\theta},\tilde{\psi}) &= V(t,\tilde{\xi}) + \sum_{i=1}^s \sum_{j=1}^{p_i} \int_0^{\widetilde{\theta}_{i,j}} \frac{m}{\theta_M^2 - (m - \theta_{i,j})^2} \mathrm{d}m \\ &+ \sum_{i=1}^s \int_0^{\widetilde{\psi}_i} \frac{m}{(\psi_i - m - \underline{\psi})(\overline{\psi} - \psi_i + m)} \mathrm{d}m \,. \end{aligned}$$

- We build a global strict Lyapunov function for the Y = (ξ̃, θ̃, ψ̃) = (ξ − ξ_R, θ − θ̂, ψ − ψ̂) dynamics to prove the UGAS condition |Y(t)| ≤ γ₁(e^{t₀−t}γ₂(|Y(t₀)|)).
- We start with the nonstrict Lyapunov function

$$\begin{aligned} V_1(t,\tilde{\xi},\tilde{\theta},\tilde{\psi}) &= V(t,\tilde{\xi}) + \sum_{i=1}^s \sum_{j=1}^{p_i} \int_0^{\widetilde{\theta}_{i,j}} \frac{m}{\theta_M^2 - (m - \theta_{i,j})^2} \mathrm{d}m \\ &+ \sum_{i=1}^s \int_0^{\widetilde{\psi}_i} \frac{m}{(\psi_i - m - \underline{\psi})(\overline{\psi} - \psi_i + m)} \mathrm{d}m \,. \end{aligned}$$

• It gives $\dot{V}_1 \leq -W(\tilde{\xi})$ for some positive definite function W.

- We build a global strict Lyapunov function for the Y = (ξ̃, θ̃, ψ̃) = (ξ − ξ_R, θ − θ̂, ψ − ψ̂) dynamics to prove the UGAS condition |Y(t)| ≤ γ₁(e^{t₀−t}γ₂(|Y(t₀)|)).
- We start with the nonstrict Lyapunov function

$$\begin{aligned} V_1(t,\tilde{\xi},\tilde{\theta},\tilde{\psi}) &= V(t,\tilde{\xi}) + \sum_{i=1}^s \sum_{j=1}^{p_i} \int_0^{\widetilde{\theta}_{i,j}} \frac{m}{\theta_M^2 - (m - \theta_{i,j})^2} \mathrm{d}m \\ &+ \sum_{i=1}^s \int_0^{\widetilde{\psi}_i} \frac{m}{(\psi_i - m - \underline{\psi})(\overline{\psi} - \psi_i + m)} \mathrm{d}m \,. \end{aligned}$$

• It gives $\dot{V}_1 \leq -W(\tilde{\xi})$ for some positive definite function W.

This is insufficient for robustness analysis because V₁ could be zero outside 0.

- We build a global strict Lyapunov function for the Y = (ξ̃, θ̃, ψ̃) = (ξ − ξ_R, θ − θ̂, ψ − ψ̂) dynamics to prove the UGAS condition |Y(t)| ≤ γ₁(e^{t₀−t}γ₂(|Y(t₀)|)).
- We start with the nonstrict Lyapunov function

$$\begin{aligned} V_1(t,\tilde{\xi},\tilde{\theta},\tilde{\psi}) &= V(t,\tilde{\xi}) + \sum_{i=1}^s \sum_{j=1}^{p_i} \int_0^{\widetilde{\theta}_{i,j}} \frac{m}{\theta_M^2 - (m - \theta_{i,j})^2} \mathrm{d}m \\ &+ \sum_{i=1}^s \int_0^{\widetilde{\psi}_i} \frac{m}{(\psi_i - m - \underline{\psi})(\overline{\psi} - \psi_i + m)} \mathrm{d}m \,. \end{aligned}$$

• It gives $\dot{V}_1 \leq -W(\tilde{\xi})$ for some positive definite function W.

This is insufficient for robustness analysis because V₁ could be zero outside 0. Therefore, we transform V₁.

Transformation (FM-MM-MdQ, NATMA'11)

Transformation (FM-MM-MdQ, NATMA'11)

Theorem: We can construct $K \in \mathcal{K}_{\infty} \cap C^1$ such that

$$V^{\sharp}(t,\tilde{\xi},\tilde{\theta},\tilde{\psi}) \doteq K(V_{1}(t,\tilde{\xi},\tilde{\theta},\tilde{\psi})) + \sum_{i=1}^{s} \overline{\Upsilon}_{i}(t,\tilde{\xi},\tilde{\theta},\tilde{\psi}) \quad ,$$
(15)

where
$$\overline{\Upsilon}_{i}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = -\tilde{z}_{i}\lambda_{i}(t)\alpha_{i}(\tilde{\theta}_{i}, \tilde{\psi}_{i}) + \frac{1}{T\overline{\psi}}\alpha_{i}^{\top}(\tilde{\theta}_{i}, \tilde{\psi}_{i})\Omega_{i}(t)\alpha_{i}(\tilde{\theta}_{i}, \tilde{\psi}_{i})$$
, (16)

$$\lambda_i(t) = (k_i(\xi_R(t)), \dot{z}_{R,i}(t) - g_i(\xi_R(t))) , \qquad (17)$$

$$\alpha_{i}(\widetilde{\theta}_{i},\widetilde{\psi}_{i}) = \begin{bmatrix} \widetilde{\theta}_{i}\psi_{i} - \theta_{i}\widetilde{\psi}_{i} \\ \widetilde{\psi}_{i} \end{bmatrix}, \text{ and}$$

$$\Omega_{i}(t) = \int_{t-T}^{t} \int_{m}^{t} \lambda_{i}^{\top}(s)\lambda_{i}(s)\mathrm{d}s\,\mathrm{d}m ,$$
(18)

is a global strict Lyapunov function for the $Y = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi})$ dynamics.

Transformation (FM-MM-MdQ, NATMA'11)

Theorem: We can construct $K \in \mathcal{K}_{\infty} \cap C^1$ such that

$$V^{\sharp}(t,\tilde{\xi},\tilde{\theta},\tilde{\psi}) \doteq K(V_{1}(t,\tilde{\xi},\tilde{\theta},\tilde{\psi})) + \sum_{i=1}^{s} \overline{\Upsilon}_{i}(t,\tilde{\xi},\tilde{\theta},\tilde{\psi}) \quad ,$$
(15)

where
$$\overline{\Upsilon}_{i}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = -\tilde{z}_{i}\lambda_{i}(t)\alpha_{i}(\tilde{\theta}_{i}, \tilde{\psi}_{i}) + \frac{1}{T\bar{\psi}}\alpha_{i}^{\top}(\tilde{\theta}_{i}, \tilde{\psi}_{i})\Omega_{i}(t)\alpha_{i}(\tilde{\theta}_{i}, \tilde{\psi}_{i})$$
, (16)

$$\lambda_i(t) = (k_i(\xi_R(t)), \dot{z}_{R,i}(t) - g_i(\xi_R(t)))$$
, (17)

$$\begin{aligned}
\alpha_i(\widetilde{\theta}_i, \widetilde{\psi}_i) &= \begin{bmatrix} \widetilde{\theta}_i \psi_i - \theta_i \widetilde{\psi}_i \\ \widetilde{\psi}_i \end{bmatrix}, \text{ and} \\
\Omega_i(t) &= \int_{t-T}^t \int_m^t \lambda_i^\top(s) \lambda_i(s) \mathrm{d}s \, \mathrm{d}m ,
\end{aligned} \tag{18}$$

is a global strict Lyapunov function for the $Y = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi})$ dynamics. Hence, the dynamics are UGAS to 0.

Linear magnetic circuit.

$$\begin{cases} \dot{y}_{1} = y_{2} \\ \dot{y}_{2} = -\frac{B}{M}y_{2} - \frac{N}{M}\sin(y_{1}) + K_{\tau}[K_{b}\zeta_{1} + 1]\zeta_{2} \\ \dot{\zeta}_{i} = H_{i}(y,\zeta)\beta_{i} + \gamma_{i}u_{i}, \quad i = 1,2 \end{cases}$$
(19)

$$\begin{cases} \dot{y}_{1} = y_{2} \\ \dot{y}_{2} = -\frac{B}{M}y_{2} - \frac{N}{M}\sin(y_{1}) + \mathcal{K}_{\tau}[\mathcal{K}_{b}\zeta_{1} + 1]\zeta_{2} \\ \dot{\zeta}_{i} = \mathcal{H}_{i}(y,\zeta)\beta_{i} + \gamma_{i}u_{i}, \quad i = 1,2 \end{cases}$$
(19)
$$\mathcal{H}_{1}(y,\zeta) = (-\zeta_{1}, y_{2}\zeta_{2}).$$

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$\begin{cases} \dot{y}_{1} = y_{2} \\ \dot{y}_{2} = -\frac{B}{M}y_{2} - \frac{N}{M}\sin(y_{1}) + K_{\tau}[K_{b}\zeta_{1} + 1]\zeta_{2} \\ \dot{\zeta}_{i} = H_{i}(y,\zeta)\beta_{i} + \gamma_{i}u_{i}, \quad i = 1,2 \end{cases}$$
(19)

 $H_1(y,\zeta) = (-\zeta_1, y_2\zeta_2).$ $H_2(y,\zeta) = (-\zeta_2, -y_2\zeta_1, -y_2).$

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$\begin{cases} \dot{y}_{1} = y_{2} \\ \dot{y}_{2} = -\frac{B}{M}y_{2} - \frac{N}{M}\sin(y_{1}) + K_{\tau}[K_{b}\zeta_{1} + 1]\zeta_{2} \\ \dot{\zeta}_{i} = H_{i}(y,\zeta)\beta_{i} + \gamma_{i}u_{i}, \quad i = 1,2 \end{cases}$$
(19)

$$H_1(y,\zeta) = (-\zeta_1, y_2\zeta_2).$$
 $H_2(y,\zeta) = (-\zeta_2, -y_2\zeta_1, -y_2).$

• $y_1, y_2 =$ load position and velocity.

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$\begin{cases} \dot{y}_{1} = y_{2} \\ \dot{y}_{2} = -\frac{B}{M}y_{2} - \frac{N}{M}\sin(y_{1}) + K_{\tau}[K_{b}\zeta_{1} + 1]\zeta_{2} \\ \dot{\zeta}_{i} = H_{i}(y,\zeta)\beta_{i} + \gamma_{i}u_{i}, \quad i = 1,2 \end{cases}$$
(19)

$$H_1(y,\zeta) = (-\zeta_1, y_2\zeta_2).$$
 $H_2(y,\zeta) = (-\zeta_2, -y_2\zeta_1, -y_2).$

• $y_1, y_2 =$ load position and velocity. $\zeta_i =$ winding currents.

$$\begin{cases} \dot{y}_{1} = y_{2} \\ \dot{y}_{2} = -\frac{B}{M}y_{2} - \frac{N}{M}\sin(y_{1}) + K_{\tau}[K_{b}\zeta_{1} + 1]\zeta_{2} \\ \dot{\zeta}_{i} = H_{i}(y,\zeta)\beta_{i} + \gamma_{i}u_{i}, \quad i = 1,2 \end{cases}$$
(19)

$$H_1(y,\zeta) = (-\zeta_1, y_2\zeta_2).$$
 $H_2(y,\zeta) = (-\zeta_2, -y_2\zeta_1, -y_2).$

- $y_1, y_2 =$ load position and velocity. $\zeta_i =$ winding currents.
- B = viscous friction coefficient.

$$\begin{cases} \dot{y}_{1} = y_{2} \\ \dot{y}_{2} = -\frac{B}{M}y_{2} - \frac{N}{M}\sin(y_{1}) + K_{\tau}[K_{b}\zeta_{1} + 1]\zeta_{2} \\ \dot{\zeta}_{i} = H_{i}(y,\zeta)\beta_{i} + \gamma_{i}u_{i}, \quad i = 1,2 \end{cases}$$
(19)

$$H_1(y,\zeta) = (-\zeta_1, y_2\zeta_2).$$
 $H_2(y,\zeta) = (-\zeta_2, -y_2\zeta_1, -y_2).$

- $y_1, y_2 =$ load position and velocity. $\zeta_i =$ winding currents.
- B = viscous friction coefficient. M = mechanical inertia.

$$\begin{cases} \dot{y}_{1} = y_{2} \\ \dot{y}_{2} = -\frac{B}{M}y_{2} - \frac{N}{M}\sin(y_{1}) + K_{\tau}[K_{b}\zeta_{1} + 1]\zeta_{2} \\ \dot{\zeta}_{i} = H_{i}(y,\zeta)\beta_{i} + \gamma_{i}u_{i}, \quad i = 1,2 \end{cases}$$
(19)

$$H_1(y,\zeta) = (-\zeta_1, y_2\zeta_2).$$
 $H_2(y,\zeta) = (-\zeta_2, -y_2\zeta_1, -y_2).$

- $y_1, y_2 =$ load position and velocity. $\zeta_i =$ winding currents.
- B = viscous friction coefficient. M = mechanical inertia. N = related to the load mass and gravitational constant.

$$\begin{cases} \dot{y}_{1} = y_{2} \\ \dot{y}_{2} = -\frac{B}{M}y_{2} - \frac{N}{M}\sin(y_{1}) + K_{\tau}[K_{b}\zeta_{1} + 1]\zeta_{2} \\ \dot{\zeta}_{i} = H_{i}(y,\zeta)\beta_{i} + \gamma_{i}u_{i}, \quad i = 1,2 \end{cases}$$
(19)

$$H_1(y,\zeta) = (-\zeta_1, y_2\zeta_2).$$
 $H_2(y,\zeta) = (-\zeta_2, -y_2\zeta_1, -y_2).$

- $y_1, y_2 =$ load position and velocity. $\zeta_i =$ winding currents.
- B = viscous friction coefficient. M = mechanical inertia. N = related to the load mass and gravitational constant. $K_{\tau}, K_{b} =$ torque transmission coefficients.

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$\begin{cases} \dot{y}_{1} = y_{2} \\ \dot{y}_{2} = -\frac{B}{M}y_{2} - \frac{N}{M}\sin(y_{1}) + K_{\tau}[K_{b}\zeta_{1} + 1]\zeta_{2} \\ \dot{\zeta}_{i} = H_{i}(y,\zeta)\beta_{i} + \gamma_{i}u_{i}, \quad i = 1,2 \end{cases}$$
(19)

 $H_1(y,\zeta) = (-\zeta_1, y_2\zeta_2).$ $H_2(y,\zeta) = (-\zeta_2, -y_2\zeta_1, -y_2).$

- $y_1, y_2 =$ load position and velocity. $\zeta_i =$ winding currents.
- B = viscous friction coefficient. M = mechanical inertia. N = related to the load mass and gravitational constant. $K_{\tau}, K_{b} =$ torque transmission coefficients.
- The unknown vectors β₁ ∈ ℝ² and β₂ ∈ ℝ³ and unknown scalars γ₁ and γ₂ are the motor electric parameters.

Conclusions

Conclusions

 Adaptive tracking and estimation is a central problem with applications in many branches of engineering.

Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.
- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.
Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.
- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.
- Our strict Lyapunov functions gave robustness to additive uncertainties on the parameters using the ISS paradigm.

Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.
- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.
- Our strict Lyapunov functions gave robustness to additive uncertainties on the parameters using the ISS paradigm.
- We covered systems with unknown control gains including brushless DC motors turning mechanical loads.

Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.
- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.
- Our strict Lyapunov functions gave robustness to additive uncertainties on the parameters using the ISS paradigm.
- We covered systems with unknown control gains including brushless DC motors turning mechanical loads.
- It would be useful to extend to cover models that are not affine in θ, feedback delays, and output feedbacks.