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Human heart rate (HR) is a widely used indicator of exercise
intensity, because it is easy to monitor, and can play a role in
detecting and preventing overtraining.

Hence, controlling HR in real time during exercise can help
develop training or rehabilitation protocols, e.g., for athletes and
patients with cardiovascular or obesity problems.

The HR increase is not proportional to the walking speed, and
the transient HR behavior depends on both the walking speed
and the exercise intensity.

Hence, the existing linear models e.g. (Brodan, Hajek, & Kuhn,
1971) and (Cooper, Fletcher-Shaw, & Robertson, 1998) based
on PID control may not be accurate.
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ẋ2 = −a3x2 + a4
x1

1 + e−(x1−a5)
, (1b)

x1 = deviation of the HR from the at rest heart rate.

x2 = slower, local peripheral effects on the HR (e.g., hormonal
effects, increase in body temperature, and loss of body fluids).

u = treadmill speed. ai = constant parameter.

Motivation: Metabolic cost from walking on level ground is
approximately proportional to the square of the walking speed.

Model has been validated with human subjects.



Model (Cheng, Savkin, et al., IEEE-TBE)

ẋ1 = −a1x1 + a2x2 + a2u2 (1a)

ẋ2 = −a3x2 + a4
x1

1 + e−(x1−a5)
, (1b)

x1 = deviation of the HR from the at rest heart rate.

x2 = slower, local peripheral effects on the HR (e.g., hormonal
effects, increase in body temperature, and loss of body fluids).

u = treadmill speed. ai = constant parameter.

Motivation: Metabolic cost from walking on level ground is
approximately proportional to the square of the walking speed.

Model has been validated with human subjects. Unlike
conventional linear models, it captures peripheral effects and is
suitable for long duration exercise.
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design the controller u so that the tracking error variable
x̃ = (x̃1, x̃2) = (x1 − x1r , x2 − x2r ) dynamics

˙̃x1 = −a1x̃1 + a2x̃2 + a2[u
2 − ur (t)2] (3a)

˙̃x2 = −a3x̃2 + a4

[

x1

1 + e−(x1−a5)
−

x1r (t)
1 + e−(x1r (t)−a5)

]

(3b)

is globally exponentially stable to zero, i.e., there are constants
ci > 0 so that |x̃(t)| ≤ c1e−c2t |x̃(0)| for all trajectories of (1).
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0 ea3(τ−t) x1r (τ)

1+be−x1r (τ)
dτ.

(5)

That means nonnegativity of Jx1r (t) for all t ≥ 0 is necessary and
sufficient for x1r to be the first component of a trajectory.

This condition holds for x1r (t) = c +∆(t) with positive constant
c’s, provided the functions ∆ and ∆̇ are sufficiently small.

However, we need another condition to ensure trackability of xr .
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We always assume that there is a constant ε ∈ (0,1] such that

a1a3
a2a4

> Pε
def
= max

{

1+ε
ε
, supt≥0

1+b(1+{1+ε}x1r (t))e−x1r (t)

[1+be−{1+ε}x1r (t)][1+be−x1r (t)]

}

(SA)

where b = ea5.

This condition is robust with respect to perturbations of the ai ’s.

This robustness is important because the ai ’s are uncertain.

Cheng et al. use the Levenberg-Marquardt method to estimate
the ai ’s.
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−1 ex̃1mdm
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(6)

solves the aforementioned control problem.

Proof: Take V (x̃1, x̃2) =
1
2 x̃2

1 + k
2 x̃2

2 , where k = a2
a4Pε

.

Then V̇ ≤ −σV along all trajectories of the closed loop system,
where σ = 2c0/max{k ,1}, c0 = min{−λmax,a1, ka3}, and
λmax < 0 is the maximal eigenvalue of

M =

[

−a1 a2

a2 −ka3

]

.
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Assume that x2(0) is unknown. Use

uc(x1, x̂2, t) =

√

max
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The estimate x̂2 of x̃2 is from the observer

˙̂x1 = − a1x̂1 + a2x̂2 + k1x̄1 + a2[u2
c (x1, x̂2, t) − ur (t)2]

˙̂x2 = − a3x̂2 + a4R(x̃1, t)x̃1 + k2x̄1 .
(8)

Here k1 > 0 and k2 > 0 are tuning constants, and x1 = x̃1 − x̂1.

Proposition. The (x̃ , x) dynamics in closed loop with (7) is
globally exponentially stable to the origin.

Proof: Take V ♯(x̃ , x̄) = V (x̃) + L̄|x̄ |2 for a big enough L̄ > 0.
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Simulations

We took a1 = 2.2, a2 = 19.96, a3 = 0.0831, a4 = 0.002526,
a5 = 8.32 (Cheng et al., IEEE-TBE).

We generated the reference trajectory xr by designing ur and
then solving the reference dynamics with xr (0) = 0.
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The resulting x1r satisfies (SA) with ε = 0.5 so our results apply.
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Initial state: x(0) = (2,0).
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Tracking using Output Control uc(x1, x̂2, t)

500 1000 1500
Time HsL

5
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HR aove rest HbpmL

x1r (blue and dashed) and state x1 (red and solid).
Initial states: x(0) = (0.01,0.05), x̂(0) = (2,0.3).
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This is input-to-state stability with exponential transient decay.
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along all trajectories of the x̄ subdynamics in (9). This can be
done because the x̄ dynamics are exponentially stable to zero.

Step 2: Show that along all trajectories of (9), the function
V ♯(x̃ , x) = V (x̃) + W (x) satisfies

V̇ ♯ ≤ −1
8c0|x̃ |2 −

2a2
2
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|x |2

+
a2

2
c0

(|d|+ 2|ur |∞ + 4(1 + |xr |∞))2 d2 .

This means that V ♯ is an ISS Lyapunov function for (9) with
disturbances d bounded by δ̄ in the sup norm.
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x1r (blue and dashed) and state x1 (red and solid).
x(0) = (0.01,0.05), x̂(0) = (2,0.3). d(t) = 0.15e−t .
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◮ The control of human heart rate in real time during exercise
is an important problem in biomedical engineering.

◮ We designed a bounded exponentially stabilizing controller
for a nonlinear human heart rate dynamics.

◮ The reference trajectory gives a desired heart rate profile,
and the control input is the treadmill speed.

◮ Using an observer, the tracking is guaranteed for all
possible initial values and gives ISS to actuator errors.

◮ For complete proofs, see [FM, MM, and MdQ, “Tracking
control and robustness analysis for a nonlinear model of
human heart rate during exercise," Automatica, accepted.]


