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Bioreactor. Fresh medium continuously added. Culture liquid
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G; = growth yield constants, 1; = uptake function.

» Main Goal: Design D to render an appropriate equilibrium
(Sx, X14, X2, ) € (0,00)% GAS under monotone but possibly
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» By competitive exclusion, D cannot be constant.
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Standing Assumption: The p;’s are asymmetric, as follows:

The ;’s are zero at s =0 and C', and /(s) > 0 for i = 1,2 and
all s > 0. There is a constant s, € (0, siy) so that 111(S) > pa(S)
on (0,s,) and p1(S) < u2(8) on (S« Sin)- Also, 11/(Sy) < 12’ (Sk).
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Fix any constants x;, > 0 such that xy, + Xo, = Sin — S..
Ko =

min { (’;Lr(fi)")?;fz(:;i, 4(’;§§))s, Imin {p(s): s€0,sn].i = 1,2}}

Let o : R — [—1, 1] denote the usual saturation.

Theorem: For each constant K € (0, Kp) and each constant
a> 1, (NV) in closed loop with the bounded positive controller

D(y) = p1(s:) = 2(1 + a)suKo (g ly — %1 — @) ()

is GAS to the equilibrium (s, Xy, X2,.) on (0, 00)3.

Proof: Use Poincaré-Bendixson Theorem and dimension
reduction. See [FM and MM, “Remarks on output feedback
stabilization....,” Automatica, 45(10): 1739-1742, 2010].
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Suppose we compute D(y) from (C) using a pair of 1,’s, but the
actual uptake functions are some other functions v; that satisfy:

Assumption: (a) The v;’s are 0 at 0 and C', (b) v//(s) > 0 for
i=1,2andall s > 0, (c) there is a constant s, € (0, s;,) so that
v1(8) > vo(s) on (0, s,) and v1(S) < v2(S) on (S, Sin), and (d)
vi'(sy) < v2'(sy).

Corollary: We can choose K and a constant ¢ > 0 such that if
T (1, v) = max{|pi'(s) — v/ (s)| : i=1,2;5 € [0,sm]} < &, then

s = D(y)[sn— 8] —r1(8)x3 — 2(S)xo
{ 5 = (9 - DX i = 1,2 (RC)

is GAS to some point (sy, X1y, X2,) € (0, 00)°.
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Figure 2: Substrate s(t) from (RC) with (d;, db) = (0.1,0.15)
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Figure 3: Species x;(t) from (RC) with (dy, d>) = (0.1,0.15)
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Figure 4: Species x,(t) from (RC) with (dy, d>) = (0.1,0.15)
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Conclusions

>

We achieved output feedback GAS of componentwise
positive equilibria using only the sum of the species levels.

Competitive exclusion required us to use a nonconstant
controller to get permanence of both species.

We dropped the usual assumption on the relative sizes of
the growth yields.

We also allowed uncertain monotone asymmetric uptake
functions that are not necessary concave.

Unlike the standard GAS treatments, our output feedback is
a decreasing function of the output.

Desirable extensions would allow nonmonotone y;'s, more
than two species, or multiple limiting substrates.



