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Ẋi = [µi(S) − D(Y )] Xi , i = 1, 2

Y = X1 + X2

(CM)

S = level of the substrate,



Two-Species Chemostat Model
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ẋi = [µi(s) − D(y)] xi , i = 1, 2

y = x1 + ax2, a = G2/G1

(NV)



Change of Variables

Take the new variables (s, x1, x2) = (S, X1/G1, X2/G2).
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ẋi = [µi(s) − D(y)] xi , i = 1, 2

y = x1 + ax2, a = G2/G1

(NV)

Goal was realized for the a ∈ (0, 1) case by (De Leenheer and
Smith, 2003). The case a > 1 is also important (Gouzé, 2005).

We cover the a > 1 case and prove robustness for the feedback.

Standing Assumption: The µi ’s are asymmetric, as follows:
The µi ’s are zero at s = 0 and C1, and µi

′(s) > 0 for i = 1, 2 and
all s ≥ 0. There is a constant s∗ ∈ (0, sin) so that µ1(s) > µ2(s)
on (0, s∗) and µ1(s) < µ2(s) on (s∗, sin). Also, µ1

′(s∗) < µ2
′(s∗).



Controller Design



Controller Design

Fix any constants xi∗ > 0 such that x1∗ + x2∗ = sin − s∗.



Controller Design

Fix any constants xi∗ > 0 such that x1∗ + x2∗ = sin − s∗.

K0 =

min
{

µ1(sin)−µ1(s∗)
(a+1)x1∗+2ax2∗

, µ1(s∗)
4(a+1)sin

, 1
a min

{

µi
′(s) : s ∈ [0, sin], i = 1, 2

}

}



Controller Design

Fix any constants xi∗ > 0 such that x1∗ + x2∗ = sin − s∗.

K0 =

min
{

µ1(sin)−µ1(s∗)
(a+1)x1∗+2ax2∗

, µ1(s∗)
4(a+1)sin

, 1
a min

{

µi
′(s) : s ∈ [0, sin], i = 1, 2

}

}

Let σ : R → [−1, 1] denote the usual saturation.



Controller Design

Fix any constants xi∗ > 0 such that x1∗ + x2∗ = sin − s∗.

K0 =

min
{

µ1(sin)−µ1(s∗)
(a+1)x1∗+2ax2∗

, µ1(s∗)
4(a+1)sin

, 1
a min

{

µi
′(s) : s ∈ [0, sin], i = 1, 2

}

}

Let σ : R → [−1, 1] denote the usual saturation.

Theorem: For each constant K ∈ (0, K0) and each constant
a > 1,



Controller Design

Fix any constants xi∗ > 0 such that x1∗ + x2∗ = sin − s∗.

K0 =

min
{

µ1(sin)−µ1(s∗)
(a+1)x1∗+2ax2∗

, µ1(s∗)
4(a+1)sin

, 1
a min

{

µi
′(s) : s ∈ [0, sin], i = 1, 2

}

}

Let σ : R → [−1, 1] denote the usual saturation.

Theorem: For each constant K ∈ (0, K0) and each constant
a > 1, (NV) in closed loop with the bounded positive controller

D(y) = µ1(s∗) − 2(1 + a)sinKσ
(

1
2(1+a)sin

[y − x1∗ − ax2∗]
)

(C)

is GAS to the equilibrium (s∗, x1∗, x2∗) on (0,∞)3.



Controller Design

Fix any constants xi∗ > 0 such that x1∗ + x2∗ = sin − s∗.

K0 =

min
{

µ1(sin)−µ1(s∗)
(a+1)x1∗+2ax2∗

, µ1(s∗)
4(a+1)sin

, 1
a min

{

µi
′(s) : s ∈ [0, sin], i = 1, 2

}

}

Let σ : R → [−1, 1] denote the usual saturation.

Theorem: For each constant K ∈ (0, K0) and each constant
a > 1, (NV) in closed loop with the bounded positive controller

D(y) = µ1(s∗) − 2(1 + a)sinKσ
(

1
2(1+a)sin

[y − x1∗ − ax2∗]
)

(C)

is GAS to the equilibrium (s∗, x1∗, x2∗) on (0,∞)3.

Proof:



Controller Design

Fix any constants xi∗ > 0 such that x1∗ + x2∗ = sin − s∗.

K0 =

min
{

µ1(sin)−µ1(s∗)
(a+1)x1∗+2ax2∗

, µ1(s∗)
4(a+1)sin

, 1
a min

{

µi
′(s) : s ∈ [0, sin], i = 1, 2

}

}

Let σ : R → [−1, 1] denote the usual saturation.

Theorem: For each constant K ∈ (0, K0) and each constant
a > 1, (NV) in closed loop with the bounded positive controller

D(y) = µ1(s∗) − 2(1 + a)sinKσ
(

1
2(1+a)sin

[y − x1∗ − ax2∗]
)

(C)

is GAS to the equilibrium (s∗, x1∗, x2∗) on (0,∞)3.

Proof: Use Poincaré-Bendixson Theorem and dimension
reduction.



Controller Design

Fix any constants xi∗ > 0 such that x1∗ + x2∗ = sin − s∗.

K0 =

min
{

µ1(sin)−µ1(s∗)
(a+1)x1∗+2ax2∗

, µ1(s∗)
4(a+1)sin

, 1
a min

{

µi
′(s) : s ∈ [0, sin], i = 1, 2

}

}

Let σ : R → [−1, 1] denote the usual saturation.

Theorem: For each constant K ∈ (0, K0) and each constant
a > 1, (NV) in closed loop with the bounded positive controller

D(y) = µ1(s∗) − 2(1 + a)sinKσ
(

1
2(1+a)sin

[y − x1∗ − ax2∗]
)

(C)

is GAS to the equilibrium (s∗, x1∗, x2∗) on (0,∞)3.

Proof: Use Poincaré-Bendixson Theorem and dimension
reduction. See [FM and MM, “Remarks on output feedback
stabilization....,” Automatica, 45(10): 1739-1742, 2010].



Robustness Corollary



Robustness Corollary

Suppose we compute D(y) from (C) using a pair of µi ’s, but the
actual uptake functions are some other functions νi that satisfy:



Robustness Corollary

Suppose we compute D(y) from (C) using a pair of µi ’s, but the
actual uptake functions are some other functions νi that satisfy:

Assumption:



Robustness Corollary

Suppose we compute D(y) from (C) using a pair of µi ’s, but the
actual uptake functions are some other functions νi that satisfy:

Assumption: (a) The νi ’s are 0 at 0 and C1,



Robustness Corollary

Suppose we compute D(y) from (C) using a pair of µi ’s, but the
actual uptake functions are some other functions νi that satisfy:

Assumption: (a) The νi ’s are 0 at 0 and C1, (b) νi
′(s) > 0 for

i = 1, 2 and all s ≥ 0,



Robustness Corollary

Suppose we compute D(y) from (C) using a pair of µi ’s, but the
actual uptake functions are some other functions νi that satisfy:

Assumption: (a) The νi ’s are 0 at 0 and C1, (b) νi
′(s) > 0 for

i = 1, 2 and all s ≥ 0, (c) there is a constant sv ∈ (0, sin) so that
ν1(s) > ν2(s) on (0, sv ) and ν1(s) < ν2(s) on (sv , sin)



Robustness Corollary

Suppose we compute D(y) from (C) using a pair of µi ’s, but the
actual uptake functions are some other functions νi that satisfy:

Assumption: (a) The νi ’s are 0 at 0 and C1, (b) νi
′(s) > 0 for

i = 1, 2 and all s ≥ 0, (c) there is a constant sv ∈ (0, sin) so that
ν1(s) > ν2(s) on (0, sv ) and ν1(s) < ν2(s) on (sv , sin), and (d)
ν1

′(sv ) < ν2
′(sv ).



Robustness Corollary

Suppose we compute D(y) from (C) using a pair of µi ’s, but the
actual uptake functions are some other functions νi that satisfy:

Assumption: (a) The νi ’s are 0 at 0 and C1, (b) νi
′(s) > 0 for

i = 1, 2 and all s ≥ 0, (c) there is a constant sv ∈ (0, sin) so that
ν1(s) > ν2(s) on (0, sv ) and ν1(s) < ν2(s) on (sv , sin), and (d)
ν1

′(sv ) < ν2
′(sv ).

Corollary: We can choose K and a constant ε > 0 such that if
T (µ, ν) = max{|µi

′(s) − νi
′(s)| : i = 1, 2; s ∈ [0, sin]} < ε, then

{
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ẋ2 =
[

0.052s
25+d2+s − D(y)

]

x2

y = x1 + 1.2x2

(RC)

µ1(s) = 0.05s
20+s , µ2(s) = 0.052s

25+s ,

ν1(s) = 0.05s
20+d1+s , and ν2(s) = 0.052s

25+d2+s .



Simulations
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Figure 2: Substrate s(t) from (RC) with (d1, d2) = (0.1, 0.15)
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Figure 3: Species x1(t) from (RC) with (d1, d2) = (0.1, 0.15)
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Figure 4: Species x2(t) from (RC) with (d1, d2) = (0.1, 0.15)
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Conclusions
I We achieved output feedback GAS of componentwise

positive equilibria using only the sum of the species levels.

I Competitive exclusion required us to use a nonconstant
controller to get permanence of both species.

I We dropped the usual assumption on the relative sizes of
the growth yields.

I We also allowed uncertain monotone asymmetric uptake
functions that are not necessary concave.

I Unlike the standard GAS treatments, our output feedback is
a decreasing function of the output.

I Desirable extensions would allow nonmonotone µi ’s, more
than two species, or multiple limiting substrates.


