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Background

Strict Lyapunov function decay:

V(t, x) < —W(x), with W(x) positive definite.

Nonstrict Lyapunov function decay:

V(t, x) < —W(x), with W(x) nonnegative definite.
Either way, inf; V(t, x) is assumed proper and positive definite.

We assume standard assumptions on the dynamics which hold
under smooth forward completeness and time-periodicity.



ISS Motivation-Part 1/3



ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems

x=F(t,x,d).



ISS Motivation-Part 1/3
Input-to-state stability is a robustness property for systems
x=F(t,x,d).

Invented by E. Sontag; see CDC’88, T-AC’89.



ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems
x=F(t x,d). (1)

Invented by E. Sontag; see CDC’88, T-AC’89. The state space
X is a general open subset of Euclidean space containing 0.



ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems
x=F(t x,d). (1)

Invented by E. Sontag; see CDC’88, T-AC’89. The state space
X is a general open subset of Euclidean space containing 0.

Assume F(t,0,0) = 0 for all t.



ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems
x=F(t x,d). (1)

Invented by E. Sontag; see CDC’88, T-AC’89. The state space
X is a general open subset of Euclidean space containing 0.

Assume F(t,0,0) =0 for all t. E.g., x = f(t,x) + g(t, x)d if
f(t,0) = 0 for all t.



ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems
x=F(t x,d). (1)

Invented by E. Sontag; see CDC’88, T-AC’89. The state space
X is a general open subset of Euclidean space containing 0.

Assume F(t,0,0) =0 for all t. E.g., x = f(t,x) + g(t, x)d if
f(t,0) = O for all t. That'’s the control-affine case.



ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems

x=F(t x,d). (1)
Invented by E. Sontag; see CDC’88, T-AC’89. The state space
X is a general open subset of Euclidean space containing 0.

Assume F(t,0,0) =0 for all t. E.g., x = f(t,x) + g(t, x)d if
f(t,0) = O for all t. That'’s the control-affine case.

The disturbances d : [0,00) — D are measurable essentially
bounded functions valued in some subset D of a Euclidean
space.



ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems

x=F(t x,d). (1)
Invented by E. Sontag; see CDC’88, T-AC’89. The state space
X is a general open subset of Euclidean space containing 0.

Assume F(t,0,0) =0 for all t. E.g., x = f(t,x) + g(t, x)d if
f(t,0) = O for all t. That'’s the control-affine case.

The disturbances d : [0,00) — D are measurable essentially
bounded functions valued in some subset D of a Euclidean
space. See our CCE book for standing assumptions on F.



ISS Motivation-Part 1/3
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x=F(t x,d). (1)
Invented by E. Sontag; see CDC’88, T-AC’89. The state space
X is a general open subset of Euclidean space containing 0.

Assume F(t,0,0) =0 for all t. E.g., x = f(t,x) + g(t, x)d if
f(t,0) = O for all t. That'’s the control-affine case.

The disturbances d : [0,00) — D are measurable essentially
bounded functions valued in some subset D of a Euclidean
space. See our CCE book for standing assumptions on F.

ISS is defined using comparison functions.
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function o : X — [0, o0) such that «(¢) — +oco as ¢ approaches
the boundary of X, or as || — oo with ¢ remaining in X (the
latter possibility being ruled out if X is bounded).

A continuous positive definite function « : [0, 00) — [0, c0) is of
class K provided it is strictly increasing and unbounded.

A function 3 : [0, 00) x [0,00) — [0, 00) is of class L provided
there exist 6; € K, such that 3(s, t) = 6;(62(s)e~!) everywhere.
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We say that (1) is ISS provided there exist functions 5 € £ and
v € K« and a modulus & with respect to X s.t. for all initial
conditions x(fy) = xo € X and all disturbances d, the
corresponding trajectories t — ((t; fp, Xo, d) satisfy

C(t: 10,360, )] < ﬁ(a(m,r— to> (dl) V> . (@)

Exponential ISS: (s, t) = fse~, with 3, A > 0 constant.

Local analogs are defined by only requiring (2) for initial states
near the equilibrium.

The special case where v and d are not present is UGAS. This
corresponds to point stabilization but not just attractivity.
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Remark on Uniformity

UGAS is not equivalent to attractivity.

X

=TT ©)
14 ¢
X(Z‘7 fo,Xo) = X0 1 +? (4)

There is no § € KL giving a UGAS estimate

x(t,fo.x0)| < B(lxlt—t). (5)
To see why, suppose 3 existed. Take xo = 1 and t = 2ty + 1.

1T 1+

= < — —
5 2121 = B(1,lhp+1) 0 as fy — +oo0. (6)
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Typically one proves ISS by finding an ISS Lyapunov function.

Assume that V' is proper and positive definite and admits a
constant k > 0 and v € K, such that V < —kV + ~(|d|) along
all trajectories. This is exponential stability with overflow.

Multiply both sides by ek and integrate. That gives ISS since
V(x(t)) < e MV(x(0)) +~(|d|«)/k along all trajectories.

Assume in addition that there are positive constants ¢; such that
ci|x[? < V(x) < ¢|x|? everywhere.

C2 —tk/2 7(ld])
<. /= Ll
X(0)) </ Ze W20 + [ e

More general ISS decay: V < —a+ (V) + ax(|d]), o € Koo.
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Example: Assume that
x = Fa(t, x) := f(t,x) + 9(t, x)K(t, x) (7)
is UGAS to the origin.

Assume that we have a strict Lyapunov function V so that
W(x) = infs{—[Vi(t, x) + Vx(t, X)Fa(t, x)]} is proper.

Then
x = f(t,x) + g(t, x) |[K(t, x) = D V(t,x) - 9(t,x) + d|  (8)
is ISS with respect to actuator errors d.

Need K(t, x) and Dy V(t, x) - g(t, x).
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There may be virtual obstacles to time-invariant stabilization.

Xt = u
{ ).(‘I B 1 (9)
> = UUy.
There is no C' feedback k(x) stabilizing the origin of (9).

Brockett’s Stabilization Theorem: Let a system x = f(x, u) with

f € C' admit an equilibrium point x, and a C' feedback us(x)
such that x = f(x, us(x)) has the LAS equilibrium point x,. Then
the image of the map f contains some neighborhood of x,.

Proof: Use degree theory (functional analysis) and homotopy
arguments (general topology). See Chapter 5 of Sontag’s book
Mathematical Control Theory.
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Brockett’s Criterion

More generally, we cannot locally continuously stabilize
X=u1g1(X) + ...+ Ungm(x) = G(x)u, x€R"

with a C' feedback K(x) if rank[g;(0), ..., gm(0)] = m < n.
This includes all totally nonholonomic mechanical systems.

To see why, rearrange the rows of G so that the first m rows are
invertible near 0. Then if (0,a) " is in the image of the dynamics
with a ~ 0, we get a u such that G(x)u = (0,a)". Hence
Gi(x)u =0, hence u=0,s0a=0.

We use time-varying feedback or non-C" feedback to overcome
such virtual obstacles. An example of the first approach follows.
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Xo
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U Uy .

uy = —xy+sin(t)[cos(t)x1 + xz]
U, = —sin(t) —cos(t)
X1 = X +sm(t)[cos(t)x1 + Xo]
{ Xo = [—sin(t) —cos(t)][ — x1 + sin(t)(cos(t)x1 + x2)].

¢ =cos()xy + xo. { = —sin?(1)¢. Xy = —xq + sin(t)C.

|X(t, to,Xo)‘ < (4—|—10\/é)670'5(t7t0)‘X0‘
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The system
X1 = —Xq +sm(t)(+(51(t) (10)
Xxo = [—sin(t) — cos(t)][—x1 + sin(t)¢ + d1(1)]

obtained by adding a perturbation to uy is ISS.

Proof. The function
Vs(t, x) = 5x2 + (4 + § — 2sin(t) cos(t)) [cos(t)x1 + x]2  (11)
is an ISS Lyapunov function for (10). In fact,

Vs(t, x) < — ooz Vs(t, X) + 3 x 102252(1). (12)

along all trajectories of (10), so we have exponential ISS.
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The system
X1 = —Xq+sin(t)¢+ 01(t) (13)
Xo = [—sin(t) —cos(t) + d2(t)][—x1 + sin(t)¢ + 01 ()]

obtained by adding perturbations to u; and u» is not ISS.

Proof. Take ¢ = (0, sin(t) + cos(t) + 1) and z = (x2 — X1, X2).
Then z; is constant for all initial conditions. We conclude from:

Lemma: Assume that x = f(t, x, u) has state space X = R". Let
0 be any non-zero input, L € R™" be invertible, and

z(t, ty, z9) = Lx(t, ty, L= 29, 0). If there is an index k such that
the kth component z, of z(t, fy, zy) satisfies 6Qtzk(t, to, 20) = O for
all t > tp > 0 and all z; € R”, then the system is not ISS.
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Integral ISS (Sontag, SCL, 1998)

We say that x = f(t, x, u) is iISS provided there exist functions
8 € KL and v; € K, and a modulus & with respect to X s.t. for
all initial conditions x(f) = xo € X and all disturbances d, the
corresponding trajectories t — ((t; ty, X0, d) satisfy

(¢t o, X0, d)]) < B(E(x0), t = o) + [ v2(l(r))dr vt >t

This is typically verified by finding ilSS Lyapunov functions,
which are defined the same way as ISS Lyapunov functions
except the decay condition is 3 a positive definite function « and
v € Ko such that V < —a(|x|) + +(|d|) along all trajectories.

For example, M(Vs) is an ilSS Lyapunov function for the
previous system for a suitable M. Also, x = — arctan(x) + u.
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Effect of Exponentially Decaying Disturbances

Consider the following example of Teel-Hespanha, T-AC’04:
X1 = g(xix)x (14)
Xo = —2x+d,xcR? deR
where g is Lipschitz, bounded by 1, and satisfies g(s) = —1 for
alls e (—o0, 5] U [3,00) and g(1) = 1.
When d = 0, the solutions of (14) satisfy |x(f)| < e*e~!|x(0)] for
all t > 0 and all initial states x(0) € R2.
When x4(0) # 0, x2(0) = x4(0)~', and d(t) = x2(0)e !, the
solutions are x;(t) = e'x;(0) and xx(t) = e~ x»(0) Vt > 0.
Hence, there is no strict Lyapunov function for the d = 0 case

that has a gradient bound C. In fact, if one existed, then
V(x(t)) < V(x(0)) + C|x2(0)|, by taking d(t) = x»(0)e~".
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x = f(x)+9g(x)u, xeR" ueR. (15)

ad?(g) =g, adf(g) = [f’ g] = g*f - f*g,
and adf(g) = ady (adf'(g))

Theorem: Assume the following:

1. f(x) = Ax for some skew symmetric matrix A; and

2. span{(ad¥(9))(x) : k =0,1,2,...} =R"for all x € R"\ {0}.
Then the feedback u(x) = —x" g(x) renders (15) GAS to zero.

Proof: Since &|x(t,x0)[2 = —2u?(x(t, x0)) < O everywhere, we
can use LaSalle Invariance.

We can build strict Lyapunov functions under generalized
Jurdjevic-Quinn conditions for much more general systems.
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Strict Lyapunov Function Construction (MM-FM)

x = f(x)+9(x)u, xeR" vueR™ f0)=0. (16)

Assumption J: There is a storage function V : R" — [0, o0) such
that L;V(x) < 0 everywhere. Moreover, there is a smooth scalar
function ¢ such that if x # 0 is such that L;V(x) = 0 and
LyV(x) = 0 both hold, then Ls)(x) < 0.

Theorem: Take any smooth everywhere positive function
¢ :R" — (0,00). We can build C' functions \ and I' such that

Ux) = A(V(x))w(x) + T(V(x)) (17)

is a strict Lyapunov function for (16) with u(x) = —¢£(x)LgV(X)T.

We can extend to x = F(x, u) by assuming its first order
expansion in u satisfies Assumption J.
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X2 = —x2+u.
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[llustration

X1 = X
. 18
{ X2 = —x2+u. (18)

14 15

V(x1,Xx2) = 25 T 3% (19)
Y= X1 X2 (20)

V(x) + 6(V(x))w(x)

1 1 1 1

fo' + §X22 +46 <4x14 + 2x22> XiX2, where (o4)

u(x) = —&(x)x2
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Euler-Lagrange Systems

d/oL, ..\ oL, .
o (aq(q’ q)) “og@ =" (22)

q € R" gives generalized configuration. 7 is the control.
L = K — P is the difference between the kinetic energy K and
the potential energy P(q) > 0.

In many applications, K(q, q) = %qTM(q)q where the inertia
matrix M(q) is C', symmetric and positive definite for all g.

. oV T . oV T
= — = —— 2
q=55@P) s P ag(@P) + (23)
V(x) = H(q,p) + A(q). p = M(q)q gives generalized momenta.

H(q.p) = zp"M~(q)p + P(q)- 7 =m0 — Ga(@)T- v (x) = q"p.
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Constructing the Auxiliary Function

Need [(x # 0) & (LsV(x) = 0) & (LgV(x) = 0)] = (Ls(x) < 0).
g(x)u = fi(x)us + b(X)u2 + ... + fn(X)Um. f(x) = fo(x).
We assume the Weak Jurdjevic Quinn Conditions: There exists
a smooth function V : R" — R satisfying:

1. Vis positive definite and radially unbounded;

2. forall x e R", Ly V(x) < 0; and

3. there exists an integer / > 2 such that the set

" )
W(V) = xeR":Vke{1,...,m}and Vi€ {0,...,/},

Lo V(X) = Lagy (1) V(X) =0

equals {0}.



Constructing the Auxiliary Function ¢ (MM-FM)

Proposition: If x = fy(x) + fi(X)us + (X)U2 + ... 4+ fn(X)Um
satisfies the Weak Jurdjevic Quinn Conditions for some integer /
and some storage function V, and if we define G by

I-1 m
G=> > Xikady(f), (24)
i=0 k=1

where
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Ak =Y _(=1y7'* d,2f gV ik, (25)
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then ¢(x) = LgV(x) satisfies:



Constructing the Auxiliary Function ¢ (MM-FM)

Proposition: If x = fy(x) + fi(X)us + (X)U2 + ... 4+ fn(X)Um
satisfies the Weak Jurdjevic Quinn Conditions for some integer /
and some storage function V, and if we define G by

I-1 m
G=> > Xikady(f), (24)
i=0 k=1
where .
>‘I',k — Z( 1)/ H+ df2l ’+1)( )V VI7 k? (25)
J=i 0
then ¢ (x) = LgV(x) satisfies: If x ¢ R\ {0}, and if L; V(x) =0
fori=0,1,...,m, then L1 (x) < 0.
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LaSalle Invariance

Assume x = f(x) has a nonstrict Lyapunov function V so that:
3N, > 0s.t. Vg € R"\ {0}, 3i € [1,N,] s.t. LiV(g) #0. (NDC)
This makes the system UGAS, by LaSalle Invariance.

In fact, if LsV(x(t, xp)) = 0 along some trajectory, then
LkV(x(t,x))) =0forall t > 0and k € N, so LKV(xp) = 0.

Question: Can we transform V into a strict Lyapunov function?
Answer: Yes. (Mazenc-Nesic, IEEE T-AC, 2004).

Objective: Find a simpler construction that also applies to t-v
systems, and that has a much less restrictive NDC on V.
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First Construction

We have several other methods for converting a nonstrict
Lyapunov function into a strict one.

We call this process strictification.
However, this term is not a standard English word.

We strictify by adding auxiliary functions to a smoothly
transformed nonstrict Lyapunov function.

Let V € C* be a nonstrict Lyapunov function for x = f(¢, x),
x € R", with f and V having period T in .
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ar = V. aiy = =& A(t,X) = Xy amyt (£ X)am(t, X).

Theorem 1
Assume 3 constants T € (0, T] and ¢ € N and a positive definite

continuous function p such that for all x € R" and all t € [0, 7],
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ai(t,x)+ > an(t,x) > p(V(t,x)) . (26)

m=2



First Construction (MM-FM)

ar = V. a1 = =& A(t,x) = Yy @mi1(t, X)am(t, x).

Theorem 1
Assume 3 constants T € (0, T] and ¢ € N and a positive definite

continuous function p such that for all x € R" and all t € [0, 7],
¢
ai(t,x)+ > _ aq(t,x) > p(V(t,x)). (26)
m=2
Then we can explicitly determine functions F; and G such that
Zf, (LX) +G (L V(t X)) (27)

is a strict Lyapunov funct/on, giving UGAS of the dynamics.
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Remarks on Relaxed NDC

The relaxed NDC (5) allows cases where all of the iterated Lie
derivatives vanish for some times t.

Xy = cos(t)xz (28)
Xo = —cos(t)xq — Xz .

V(x) = 3|x|?, £ =3, and T = 2. Nonstrict: V(x) = —x3.

4 cos?(t
as(t,x) + &(t,x) + &(t.x) > (1)

* a0V 1)

Hence, (5) holds with 7 = Z and p(r) = r?/{200(r + 1)}.
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Let I € C' be any everywhere positive increasing function s.t.
Fr(V(t,x)) >+ 2)|am(t, x)| +1
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Idea of Proof of Thm 1, Part 1/3

Let I € C' be any everywhere positive increasing function s.t.
Fr(V(t,x)) >+ 2)|am(t, x)| +1
forallme {1,....,¢+ 1} and all (f,x) € [0,00) x R".

Pick w € K5 N C' and the strictly increasing everywhere positive
function K € C' such that
w(r)

p(r) > W Yr>0. (29)

~—
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Idea of Proof of Thm 1, Part 2/3

Set

ki—1(v) = W2 (v) and kp(v) = ke_1(v)Q1_2l,p,1 (v)

for 1 <p<{¢-2, where Q(v)= 2reo(v)

3T(¢—2)r2(v)K(v)

and

P V(t,x)
Mp(t, x) = Z am1(t, x)am(t, x) +/ r(rydr.
0

m=1



Idea of Proof of Thm 1, Part 2/3

Let ky be any C' increasing function such that
ko(V X)) + kg (V(t X)) V(t x) >

»
Z ko (V(t, X)) [|Mp(t, X)| + 1

p=1



Idea of Proof of Thm 1, Part 2/3

Let ky be any C' increasing function such that

ko(V(t,x)) + ky(V(t, X)) V(t,x) >

-1 (32)
|k (V(t, %)) |[Mp(t, x)| + 1

p=1

and q : R — [0, 1] be any continuous function with period T s.t.
q(t)=0forall t € [r, T] and g(t) = 1 for all t € [, &].



Idea of Proof of Thm 1, Part 2/3

Let G be any C' function such that

J(V)K(v)—w(V)K'(v)
K2(v)

G(v) = Tlk-1(v)

for all v > 0.
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VE(t, x)=V(t, x)Ss(t, x) + (V(t, x)) V(t, X),
where 83(t x)—S1( X) + Sa(t, x) ,
ka (£, X)) Mp(t, x) + ko (V(t, X)) V(t, x),
Sa(t, x) = G(V(tx))
#7 (o I atryaras) ks (Vi) o)




Idea of Proof of Thm 1, Part 3/3
VE(t, x)=V(t, x)Ss(t, x) + w(V(t, X)) V(t, x),
where ss(r x)—S1( X) + Sa(t, x) ,
ka (£, X)) Mp(t, x) + ko (V(t, X)) V(t, x),
So(t, x) = G(V(t X))
w7 (o Fatr)aras) ko (VI 20)

and k € C' is any increasing function such that
k(V(t,x)) > |Ss(t, x)| + 1 everywhere.
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Second Construction for x = f(x), x € X

Assumptions 1

There exist a storage function V; : X — [0, 00), functions
hi, ..., hm such that h;(0) = 0O for all j; everywhere positive

functions ry, ..., rm and p; and an integer N > 0 for which
VVi(x)f(X) < —r(x)(x) — ... — rm(x)R2,(x) ¥x € X (33)
N-1 m 5
and >N {L’f‘hj(x)} > p(Vi(x))Vi(x) Yx € X.  (34)
k=0 j=1

Also, f € C>*(R"), and V; has a positive definite quadratic lower
bound in some neighborhood of 0 € R”".
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Theorem 2
Assume that x = f(x) satisfies Assumptions 1. Set
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Vi(x) = = L 2hy(x)L he(x), i=2,...N. (35)
=1
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Theorem 2
Assume that x = f( ) satisfies Assumptions 1. Set

ZL’ 2ho(X)Li T he(x), i=2,...,N. (35)
One can determme explicit functions k;,Q, € Koo N C' such that

N
= > s (k(vi(x) + Vi) (36)
=1

is a strict Lyapunov function on X satisfying S(x) > V4(x) on X.
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Theorem 2
Assume that x = f( ) satisfies Assumptions 1. Set

ZL’ 2h(X)Li T he(x), i=2,...,N. (35)

One can determ:ne explicit functions k;,Q, € Koo N C' such that
N

- Zm(mw (x)) + Vz(X)> (36)
/=1

is a strict Lyapunov function on X satisfying S(x) > V4(x) on X.

Significance: Allows any open state space X containing 0 € R”".



Second Construction for x = f(x), x € X (MM-FM)

Theorem 2
Assume that x = f( ) satisfies Assumptions 1. Set

ZL’ 2h(X)Li T he(x), i=2,...,N. (35)

One can determ:ne explicit functions k;,Q, € Koo N C' such that
N

- Zm(mw (x)) + Vz(X)> (36)
/=1

is a strict Lyapunov function on X satisfying S(x) > V4(x) on X.

Significance: Readily extends to time periodic t-v systems.
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Find everywhere positive C' increasing ¢4 and p; s.t.

VVi(x)f(x) < =Ni(x) + o1 (Va(X)) VN1 (X)y/ Vi(x)  (37)
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Idea of Proof-Part 1/3

Find everywhere positive C' increasing ¢4 and p; s.t.

VVO)HX) < ~Ni(x) + 61 (Vi (X)) VN1 (0 VA (X)

and

everywhere when 1 < j < N, where

_ . P nx)
Ni(x) = R(x)éh%(x» R(x) = W
and Nj(x) = Zm: {L;—1h,(x)]2 Vi > 2.

I

1
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Idea of Proof-Part 2/3

Find a € K so that V4(x) > a(|x|) on X.
Find a decreasing everywhere positive function p so that
R(x) > pla(x])) > p(V4(x)) Vx € X .
Finally, find a continuous everywhere positive j so that
N
D ONix) = V40 Vi(x) (39)
i=1

everywhere.
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Idea of Proof-Part 3/3

Use our Matrosov construction from ACC’08.

S(x) = Qi (2V4(x +ZQ (Ui(x)), where (40)

Ui(x) = Vi(x) + Va(x)[1 + p1 (V1 (X)), (41)
Qn(r) = r, and {Q;} 5" satisfy
QUU;) > (N - 28¢1 Z Q(Uy)?, (42)
r=1+i

with Q} : [0, 00) — [1, 00) continuous and increasing for each /.
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).(1 = Xo
Xz = —X1—Xg.

(43)

Vix) = F0E+xE)72, Ni(x) = (62 +x3)x5
Vo(x) = J(x2+x3), Na(x)=x3,
Va(x) = 3(x2+x3)x1x2, and Nj(x) = 5[x2 + x3]x2 .
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X1
Xo

X2
—X1 — X3. (43)

Vilx) = 202 +x2)2, Ni(x) = (x2+x2)x3

Va(x) = 202 +x2), No(x)=x3,

Va(x) = 3(x2+x3)x1x2, and Nj(x) = 5[x2 + x3]x2 .
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S(x) = 2Us(x) + 8U5(x) + Us(x). (45)



Another Matrosov Construction

X1
Xo
(X2 +x2)2, Ni(x) = (x2+x3)x3

(X2 +x2), Nao(x)=x5,

(X2 + x3)x1x2 , and N3(x) = 3[x? + xZ]x2 .

X2
—X1 — X3. (43)

o~
—
>
SN N N
Il
= N[ =

Ua(x)
Us(x)

Vi(x) + Va(x)
2Vi(x) + Va(x)

S(x) = 2Us(x) + 8U5(x) + Us(x). (45)

() < L Vi(0). (46)
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- 1_X)_
{ X yx (1-7F) —ax 47)
¢ = Bx¢—AC
¢ =predator. x =prey. a, 3,7, A, L =positive constants.
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Lotka-Volterra predator-prey dynamics:
- 1_X)_
{ X yx (1-7F) —ax 47)
¢ = Bx¢—AC
¢ =predator. x =prey. a, 3,7, A, L =positive constants.

Change coordinates and rescale to get the error dynamics
{ x = —P?fay](ﬂx*) (48)
y = ok(y+y.),
with state space X = (—x,, +00) x (—Yx, +00),

<
~
Q
|
>
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Statement of Problem

Lotka-Volterra predator-prey dynamics:

{X = w(1-%) —ax 47)
¢ = Bx¢—AC¢

¢ =predator. x =prey. a, 3,7, A, L =positive constants.

Change coordinates and rescale to get the error dynamics

{ Y Bl (49)
y = ax(y+y.),
with state space X = (—x,, +00) x (—Yx, +00),

a:%, d=2, x.=2 and y.=1-9. (49)

Assume a > d.



Statement of Problem

Lotka-Volterra predator-prey dynamics:

L _X) _

{ X = yx (1-7F) —ax 47)
¢ = Bx¢—AC

¢ =predator. x =prey. a, 3,7, A, L =positive constants.

Change coordinates and rescale to get the error dynamics

{ x = _P?f af](% + x.) (48)
y = ax(y+y.).
with state space X' = (—x,, +00) x (—yx, +00),

a:%l‘, d:%, X*:g and y*:é—%. (49)

Assume « > d. Want a global strict Lyapunov function for (48).
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Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra
models available based on computing the LaSalle invariant set.

Our result is original and significant because we provide a global
strict Lyapunov function.

Vi (%,7) = X — x. In <1+;(>+}"/—y*ln <1+5’> (50)

* *

Nonstrict Lyapunov decay condition: V4 (%, j7) < —|%|2.

Auxiliary function from theorem: Vu (X, y) = X[X + ay](X + x.).
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Strict Lyapunov Function Construction (MM-FM)

S, 7) = Va(%,7)+ JJ 5 gy (r)dr

ol (51)
+p1(Vi(%. 7)) + 1] V4(%.9),

where

01(r) = 2[(289x+144ay.)*+1440%x.y. Sl )r
and

pi(r) = 1536(x. + 1)(a+ 1)(1 + x. + y.)* (1 + ).



Strict Lyapunov Function Construction (MM-FM)

S, 7) = Va(%,7)+ JJ 5 gy (r)dr

! 51)
oy (W (E7) + 1] V(%)

where

01(r) = 2[(289x+144ay.)*+1440%x.y. Sl )r
and

pi(r) = 1536(x. + 1)(a+ 1)(1 + x. + y.)* (1 + ).

Along the trajectories of the L-V error dynamics,

< _% [ 4+ {(% + o) (% + x))7]. (52)
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Conclusions

» The point stabilization and strict Lyapunov function
construction problems are closely related.

» Even if the system is time invariant, time-varying feedbacks
are often required because of Brockett’s Condition.

» While UGAS can be established using nonstrict Lyapunov
functions, strict Lyapunov functions are much more useful.

» For example, strict Lyapunov functions can give ISS, which
is a central unifying paradigm in nonlinear control.

» The Jurdjevic-Quinn, LaSalle, and Matrosov approaches
transform nonstrict Lyapunov functions into strict ones.

» Extensions exist for multiple time scales and unknown
parameters, e.g., adaptive, delayed, and hybrid systems.
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