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Strict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) positive definite.

Nonstrict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) nonnegative definite.

Either way, inft V (t , x) is assumed proper and positive definite.

Converse Lyapunov theory often guarantees the existence of
strict Lyapunov functions. See Bacciotti-Rosier CCE Book.



Background

Strict Lyapunov function decay:

V̇ (t , x) ≤ −W (x), with W (x) positive definite.

Nonstrict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) nonnegative definite.

Either way, inft V (t , x) is assumed proper and positive definite.

Converse Lyapunov theory often guarantees the existence of
strict Lyapunov functions. See Bacciotti-Rosier CCE Book.



Background

Strict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) positive definite.

Nonstrict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) nonnegative definite.

Either way, inft V (t , x) is assumed proper and positive definite.

Converse Lyapunov theory often guarantees the existence of
strict Lyapunov functions. See Bacciotti-Rosier CCE Book.



Background

Strict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) positive definite.

Nonstrict Lyapunov function decay:

V̇ (t , x) ≤ −W (x), with W (x) nonnegative definite.

Either way, inft V (t , x) is assumed proper and positive definite.

Converse Lyapunov theory often guarantees the existence of
strict Lyapunov functions. See Bacciotti-Rosier CCE Book.



Background

Strict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) positive definite.

Nonstrict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) nonnegative definite.

Either way, inft V (t , x) is assumed proper and positive definite.

Converse Lyapunov theory often guarantees the existence of
strict Lyapunov functions. See Bacciotti-Rosier CCE Book.



Background

Strict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) positive definite.

Nonstrict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) nonnegative definite.

Either way, inft V (t , x) is assumed proper and positive definite.

Converse Lyapunov theory often guarantees the existence of
strict Lyapunov functions. See Bacciotti-Rosier CCE Book.



Background

Strict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) positive definite.

Nonstrict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) nonnegative definite.

Either way, inft V (t , x) is assumed proper and positive definite.

Converse Lyapunov theory often guarantees the existence of
strict Lyapunov functions.

See Bacciotti-Rosier CCE Book.



Background

Strict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) positive definite.

Nonstrict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) nonnegative definite.

Either way, inft V (t , x) is assumed proper and positive definite.

Converse Lyapunov theory often guarantees the existence of
strict Lyapunov functions. See Bacciotti-Rosier CCE Book.



Background

Strict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) positive definite.

Nonstrict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) nonnegative definite.

Either way, inft V (t , x) is assumed proper and positive definite.

Using LaSalle Invariance, we can often use nonstrict Lyapunov
functions to prove stability.
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Background

Strict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) positive definite.

Nonstrict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) nonnegative definite.

Either way, inft V (t , x) is assumed proper and positive definite.

We assume standard assumptions on the dynamics which hold
under smooth forward completeness and time-periodicity.



ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems

ẋ = F(t , x ,d) . (1)

Invented by E. Sontag; see CDC’88, T-AC’89. The state space
X is a general open subset of Euclidean space containing 0.

Assume F(t ,0,0) = 0 for all t . E.g., ẋ = f (t , x) + g(t , x)d if
f (t ,0) = 0 for all t . That’s the control-affine case.

The disturbances d : [0,∞)→ D are measurable essentially
bounded functions valued in some subset D of a Euclidean
space. See our CCE book for standing assumptions on F .

ISS is defined using comparison functions.
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ẋ = F(t , x ,d) . (1)

Invented by E. Sontag; see CDC’88, T-AC’89. The state space
X is a general open subset of Euclidean space containing 0.

Assume F(t ,0,0) = 0 for all t .
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A modulus with respect to X is any continuous positive definite
function α : X → [0,∞) such that α(ζ)→ +∞ as ζ approaches
the boundary of X , or as |ζ| → ∞ with ζ remaining in X (the
latter possibility being ruled out if X is bounded).

A continuous positive definite function α : [0,∞)→ [0,∞) is of
class K∞ provided it is strictly increasing and unbounded.

A function β : [0,∞)× [0,∞)→ [0,∞) is of class KL provided
there exist θi ∈ K∞ such that β(s, t) = θ1(θ2(s)e−t ) everywhere.
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We say that (1) is ISS provided there exist functions β ∈ KL and
γ ∈ K∞ and a modulus ᾱ with respect to X s.t. for all initial
conditions x(t0) = x0 ∈ X and all disturbances d , the
corresponding trajectories t 7→ ζ(t ; t0, x0,d) satisfy

|ζ(t ; t0, x0,d)| ≤ β
(
ᾱ(x0), t − t0

)
+ γ(|d |∞) ∀t ≥ t0 . (2)

Exponential ISS: β(s, t) = β̄se−λt , with β̄, λ > 0 constant.

Local analogs are defined by only requiring (2) for initial states
near the equilibrium.

The special case where γ and d are not present is UGAS. This
corresponds to point stabilization but not just attractivity.
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γ ∈ K∞ and a modulus ᾱ with respect to X s.t. for all initial
conditions x(t0) = x0 ∈ X and all disturbances d , the
corresponding trajectories t 7→ ζ(t ; t0, x0,d) satisfy

|ζ(t ; t0, x0,d)| ≤ β
(
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Remark on Uniformity

UGAS is not equivalent to attractivity.

ẋ = − x
1 + t

(3)

x(t , t0, x0) = x0
1 + t0
1 + t

(4)

There is no β ∈ KL giving a UGAS estimate∣∣x(t , t0, x0)
∣∣ ≤ β

(
|x0|, t − t0

)
. (5)

To see why, suppose β existed. Take x0 = 1 and t = 2t0 + 1.

1
2

=
1 + t0

2 + 2t0
≤ β(1, t0 + 1) → 0 as t0 → +∞. (6)
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ISS Motivation-Part 2/3

Typically one proves ISS by finding an ISS Lyapunov function.

Assume that V is proper and positive definite and admits a
constant k > 0 and γ ∈ K∞ such that V̇ ≤ −kV + γ(|d |) along
all trajectories. This is exponential stability with overflow.

Multiply both sides by ekt and integrate. That gives ISS since
V (x(t)) ≤ e−ktV (x(0)) + γ(|d |∞)/k along all trajectories.

Assume in addition that there are positive constants ci such that
c1|x |2 ≤ V (x) ≤ c2|x |2 everywhere.

|x(t)| ≤
√

c2

c1
e−tk/2|x(0)|+

√
γ(|d |∞)

kc1
.

More general ISS decay: V̇ ≤ −α1(V ) + α2(|d |), αi ∈ K∞.
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ISS Motivation-Part 3/3

Example: Assume that

ẋ = Fcl(t , x) := f (t , x) + g(t , x)K (t , x) (7)

is UGAS to the origin.

Assume that we have a strict Lyapunov function V so that
W (x) = inft{−[Vt (t , x) + Vx (t , x)Fcl(t , x)]} is proper.

Then

ẋ = f (t , x) + g(t , x)

[
K (t , x)− DxV (t , x) · g(t , x) + d

]
(8)

is ISS with respect to actuator errors d .

Need K (t , x) and DxV (t , x) · g(t , x).
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Brockett’s Criterion

There may be virtual obstacles to time-invariant stabilization.{
ẋ1 = u1
ẋ2 = u2u1.

(9)

There is no C1 feedback k(x) stabilizing the origin of (9).

Brockett’s Stabilization Theorem: Let a system ẋ = f (x ,u) with
f ∈ C1 admit an equilibrium point x∗ and a C1 feedback us(x)
such that ẋ = f

(
x ,us(x)

)
has the LAS equilibrium point x∗. Then

the image of the map f contains some neighborhood of x∗.

Proof: Use degree theory (functional analysis) and homotopy
arguments (general topology). See Chapter 5 of Sontag’s book
Mathematical Control Theory.
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ẋ1 = u1
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ẋ2 = u2u1.

(9)

There is no C1 feedback k(x) stabilizing the origin of (9).

Brockett’s Stabilization Theorem: Let a system ẋ = f (x ,u) with
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Brockett’s Criterion

More generally, we cannot locally continuously stabilize

ẋ = u1g1(x) + . . .+ umgm(x) = G(x)u, x ∈ Rn

with a C1 feedback K (x) if rank[g1(0), . . . ,gm(0)] = m < n.

This includes all totally nonholonomic mechanical systems.

To see why, rearrange the rows of G so that the first m rows are
invertible near 0. Then if (0,a)> is in the image of the dynamics
with a ≈ 0, we get a u such that G(x)u = (0,a)>. Hence
G1(x)u = 0, hence u = 0, so a = 0.

We use time-varying feedback or non-C1 feedback to overcome
such virtual obstacles. An example of the first approach follows.
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ẋ = u1g1(x) + . . .+ umgm(x) = G(x)u, x ∈ Rn

with a C1 feedback K (x) if rank[g1(0), . . . ,gm(0)] = m < n.

This includes all totally nonholonomic mechanical systems.

To see why, rearrange the rows of G so that the first m rows are
invertible near 0. Then if (0,a)> is in the image of the dynamics
with a ≈ 0, we get a u such that G(x)u = (0,a)>. Hence
G1(x)u = 0, hence u = 0, so a = 0.

We use time-varying feedback or non-C1 feedback to overcome
such virtual obstacles. An example of the first approach follows.



Time-Varying Feebdack

{
ẋ1 = u1
ẋ2 = u2u1.

u1 = −x1 + sin(t)[cos(t)x1 + x2]
u2 = − sin(t)− cos(t)

{
ẋ1 = −x1 + sin(t)

[
cos(t)x1 + x2

]
ẋ2 =

[
− sin(t)− cos(t)

][
− x1 + sin(t)(cos(t)x1 + x2)

]
.

ζ = cos(t)x1 + x2. ζ̇ = − sin2(t)ζ. ẋ1 = −x1 + sin(t)ζ.
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ẋ1 = −x1 + sin(t)

[
cos(t)x1 + x2

]
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ẋ2 = u2u1.

u1 = −x1 + sin(t)[cos(t)x1 + x2]
u2 = − sin(t)− cos(t)

{
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Effects of Perturbations

The system{
ẋ1 = −x1 + sin(t)ζ + δ1(t)

ẋ2 = [− sin(t)− cos(t)][−x1 + sin(t)ζ + δ1(t)]
(10)

obtained by adding a perturbation to u1 is ISS.

Proof. The function

Vs(t , x) = 1
2x2

1 +
(
4 + π

2 − 2 sin(t) cos(t)
)

[cos(t)x1 + x2]2 (11)

is an ISS Lyapunov function for (10). In fact,

V̇s(t , x) ≤ − 1
204Vs(t , x) + 3× 1022δ2

1(t). (12)

along all trajectories of (10), so we have exponential ISS.
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ẋ1 = −x1 + sin(t)ζ + δ1(t)

ẋ2 = [− sin(t)− cos(t) + δ2(t)][−x1 + sin(t)ζ + δ1(t)]
(13)

obtained by adding perturbations to u1 and u2 is not ISS.

Proof. Take δ = (0, sin(t) + cos(t) + 1) and z = (x2 − x1, x2).
Then z1 is constant for all initial conditions. We conclude from:

Lemma: Assume that ẋ = f (t , x ,u) has state space X = Rn. Let
δ be any non-zero input, L ∈ Rn×n be invertible, and
z(t , t0, z0) = Lx(t , t0,L−1z0, δ). If there is an index k such that
the k th component zk of z(t , t0, z0) satisfies ∂

∂t zk (t , t0, z0) = 0 for
all t ≥ t0 ≥ 0 and all z0 ∈ Rn, then the system is not ISS.
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Integral ISS (Sontag, SCL, 1998)

We say that ẋ = f (t , x ,u) is iISS provided there exist functions
β ∈ KL and γi ∈ K∞ and a modulus ᾱ with respect to X s.t. for
all initial conditions x(t0) = x0 ∈ X and all disturbances d , the
corresponding trajectories t 7→ ζ(t ; t0, x0,d) satisfy

γ1(|ζ(t ; t0, x0,d)|) ≤ β
(
ᾱ(x0), t − t0

)
+
∫ t

t0
γ2(|d(r)|)dr ∀t ≥ t0 .

This is typically verified by finding iISS Lyapunov functions,
which are defined the same way as ISS Lyapunov functions
except the decay condition is ∃ a positive definite function α and
γ ∈ K∞ such that V̇ ≤ −α(|x |) + γ(|d |) along all trajectories.

For example, Π(Vs) is an iISS Lyapunov function for the
previous system for a suitable Π. Also, ẋ = −arctan(x) + u.
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Effect of Exponentially Decaying Disturbances

Consider the following example of Teel-Hespanha, T-AC’04:{
ẋ1 = g(x1x2)x1
ẋ2 = −2x2 + d , x ∈ R2, d ∈ R (14)

where g is Lipschitz, bounded by 1, and satisfies g(s) = −1 for
all s ∈

(
−∞, 1

2

]
∪
[3

2 ,∞
)

and g(1) = 1.

When d ≡ 0, the solutions of (14) satisfy |x(t)| ≤ e4e−t |x(0)| for
all t ≥ 0 and all initial states x(0) ∈ R2.

When x1(0) 6= 0, x2(0) = x1(0)−1, and d(t) = x2(0)e−t , the
solutions are x1(t) = etx1(0) and x2(t) = e−tx2(0) ∀t ≥ 0.

Hence, there is no strict Lyapunov function for the d = 0 case
that has a gradient bound C. In fact, if one existed, then
V (x(t)) ≤ V (x(0)) + C|x2(0)|, by taking d(t) = x2(0)e−t .
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ẋ2 = −2x2 + d , x ∈ R2, d ∈ R (14)

where g is Lipschitz, bounded by 1,

and satisfies g(s) = −1 for
all s ∈

(
−∞, 1

2

]
∪
[3

2 ,∞
)

and g(1) = 1.

When d ≡ 0, the solutions of (14) satisfy |x(t)| ≤ e4e−t |x(0)| for
all t ≥ 0 and all initial states x(0) ∈ R2.

When x1(0) 6= 0, x2(0) = x1(0)−1, and d(t) = x2(0)e−t , the
solutions are x1(t) = etx1(0) and x2(t) = e−tx2(0) ∀t ≥ 0.

Hence, there is no strict Lyapunov function for the d = 0 case
that has a gradient bound C. In fact, if one existed, then
V (x(t)) ≤ V (x(0)) + C|x2(0)|, by taking d(t) = x2(0)e−t .



Effect of Exponentially Decaying Disturbances

Consider the following example of Teel-Hespanha, T-AC’04:{
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ẋ2 = −2x2 + d , x ∈ R2, d ∈ R (14)

where g is Lipschitz, bounded by 1, and satisfies g(s) = −1 for
all s ∈

(
−∞, 1

2

]
∪
[3

2 ,∞
)

and g(1) = 1.

When d ≡ 0, the solutions of (14) satisfy |x(t)| ≤ e4e−t |x(0)| for
all t ≥ 0 and all initial states x(0) ∈ R2.

When x1(0) 6= 0, x2(0) = x1(0)−1, and d(t) = x2(0)e−t , the
solutions are x1(t) = etx1(0) and x2(t) = e−tx2(0) ∀t ≥ 0.

Hence, there is no strict Lyapunov function for the d = 0 case
that has a gradient bound C.

In fact, if one existed, then
V (x(t)) ≤ V (x(0)) + C|x2(0)|, by taking d(t) = x2(0)e−t .



Effect of Exponentially Decaying Disturbances

Consider the following example of Teel-Hespanha, T-AC’04:{
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Original Jurdjevic-Quinn Theorem

ẋ = f (x) + g(x)u, x ∈ Rn, u ∈ R . (15)

ad0
f (g) = g, adf (g) = [f ,g] = g∗f − f∗g,

and adk
f (g) = adf

(
adk−1

f (g)
)

Theorem: Assume the following:
1. f (x) = Ax for some skew symmetric matrix A; and
2. span{(adk

f (g))(x) : k = 0,1,2, . . .} = Rn for all x ∈ Rn \ {0}.
Then the feedback u(x) = −x>g(x) renders (15) GAS to zero.

Proof: Since d
dt |x(t , x0)|2 = −2u2(x(t , x0)

)
≤ 0 everywhere, we

can use LaSalle Invariance.

We can build strict Lyapunov functions under generalized
Jurdjevic-Quinn conditions for much more general systems.
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ẋ = f (x) + g(x)u, x ∈ Rn, u ∈ R . (15)

ad0
f (g) = g, adf (g) = [f ,g] = g∗f − f∗g,

and adk
f (g) = adf

(
adk−1

f (g)
)

Theorem: Assume the following:
1. f (x) = Ax for some skew symmetric matrix A; and
2. span{(adk

f (g))(x) : k = 0,1,2, . . .} = Rn for all x ∈ Rn \ {0}.
Then the feedback u(x) = −x>g(x) renders (15) GAS to zero.

Proof: Since d
dt |x(t , x0)|2 = −2u2(x(t , x0)

)
≤ 0 everywhere, we

can use LaSalle Invariance.

We can build strict Lyapunov functions under generalized
Jurdjevic-Quinn conditions for much more general systems.



Original Jurdjevic-Quinn Theorem
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Strict Lyapunov Function Construction (MM-FM)

ẋ = f (x) + g(x)u, x ∈ Rn, u ∈ Rm, f (0) = 0. (16)

Assumption J: There is a storage function V : Rn → [0,∞) such
that Lf V (x) ≤ 0 everywhere. Moreover, there is a smooth scalar
function ψ such that if x 6= 0 is such that Lf V (x) = 0 and
LgV (x) = 0 both hold, then Lfψ(x) < 0.

Theorem: Take any smooth everywhere positive function
ξ : Rn → (0,∞). We can build C1 functions λ and Γ such that

U(x) = λ
(
V (x)

)
ψ(x) + Γ

(
V (x)

)
(17)

is a strict Lyapunov function for (16) with u(x) = −ξ(x)LgV (x)>.

We can extend to ẋ = F(x ,u) by assuming its first order
expansion in u satisfies Assumption J.
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Illustration

{
ẋ1 = x2
ẋ2 = −x3

1 + u .
(18)

V (x1, x2) =
1
4

x4
1 +

1
2

x2
2 (19)

ψ = x1x2 (20)

U(x) = V (x) + δ
(
V (x)

)
ψ(x)

=
1
4

x4
1 +

1
2

x2
2 + δ

(
1
4

x4
1 +

1
2

x2
2

)
x1x2, where

δ(v) =
v2

8(1 + v)2 . u(x) = −ξ(x)x2

(21)
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ẋ1 = x2
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Euler-Lagrange Systems

d
dt

(
∂L
∂q̇

(q, q̇)

)
− ∂L
∂q

(q, q̇) = τ (22)

q ∈ Rn gives generalized configuration. τ is the control.
L = K − P is the difference between the kinetic energy K and
the potential energy P(q) ≥ 0.

In many applications, K (q, q̇) = 1
2 q̇>M(q)q̇ where the inertia

matrix M(q) is C1, symmetric and positive definite for all q.

q̇ =
∂V
∂p

(q,p)>, ṗ = −∂V
∂q

(q,p)> + τn (23)

V (x) = H(q,p) + Λ(q). p = M(q)q̇ gives generalized momenta.
H(q,p) = 1

2p>M−1(q)p + P(q). τ = τn − ∂Λ
∂q (q)>. ψ(x) = q>p.
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Constructing the Auxiliary Function ψ

Need [(x 6= 0) & (Lf V (x) = 0) & (LgV (x) = 0)] ⇒ (Lfψ(x) < 0).

g(x)u = f1(x)u1 + f2(x)u2 + . . .+ fm(x)um. f (x) = f0(x).

We assume the Weak Jurdjevic Quinn Conditions: There exists
a smooth function V : Rn → R satisfying:

1. V is positive definite and radially unbounded;
2. for all x ∈ Rn, Lf0V (x) ≤ 0; and
3. there exists an integer l ≥ 2 such that the set

W (V ) =

 x ∈ Rn : ∀k ∈ {1, . . . ,m} and ∀i ∈ {0, . . . , l},
Lf0V (x) = Lad i

f0
(fk )V (x) = 0


equals {0}.
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Constructing the Auxiliary Function ψ (MM-FM)

Proposition: If ẋ = f0(x) + f1(x)u1 + f2(x)u2 + . . .+ fm(x)um
satisfies the Weak Jurdjevic Quinn Conditions for some integer l
and some storage function V , and if we define G by

G =
l−1∑
i=0

m∑
k=1

λi,k adi
f0(fk ), (24)

where

λi,k =
l−1∑
j=i

(−1)j−i+1L
ad(2j−i+1)

f0
(fk )

V ∀i , k , (25)

then ψ(x) = LGV (x) satisfies:

If x ∈ Rn \ {0}, and if Lfi V (x) = 0
for i = 0,1, . . . ,m, then Lf0ψ(x) < 0.
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LaSalle Invariance

Assume ẋ = f (x) has a nonstrict Lyapunov function V so that:

∃N∗ > 0 s.t. ∀q ∈ Rn \ {0}, ∃i ∈ [1,N∗] s.t. Li
f V (q) 6= 0. (NDC)

This makes the system UGAS, by LaSalle Invariance.

In fact, if Lf V (x(t , x0)) ≡ 0 along some trajectory, then
Lk

f V (x(t , x0)) ≡ 0 for all t ≥ 0 and k ∈ N, so Lk
f V (x0) ≡ 0.

Question: Can we transform V into a strict Lyapunov function?

Answer: Yes. (Mazenc-Nesic, IEEE T-AC, 2004).

Objective: Find a simpler construction that also applies to t-v
systems, and that has a much less restrictive NDC on V .
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Assume ẋ = f (x) has a nonstrict Lyapunov function V so that:

∃N∗ > 0 s.t. ∀q ∈ Rn \ {0}, ∃i ∈ [1,N∗] s.t. Li
f V (q) 6= 0. (NDC)

This makes the system UGAS, by LaSalle Invariance.

In fact, if Lf V (x(t , x0)) ≡ 0 along some trajectory, then
Lk

f V (x(t , x0)) ≡ 0 for all t ≥ 0 and k ∈ N, so Lk
f V (x0) ≡ 0.

Question:

Can we transform V into a strict Lyapunov function?

Answer: Yes. (Mazenc-Nesic, IEEE T-AC, 2004).

Objective: Find a simpler construction that also applies to t-v
systems, and that has a much less restrictive NDC on V .



LaSalle Invariance
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First Construction

We have several other methods for converting a nonstrict
Lyapunov function into a strict one.

We call this process strictification.

However, this term is not a standard English word.

We strictify by adding auxiliary functions to a smoothly
transformed nonstrict Lyapunov function.

Let V ∈ C∞ be a nonstrict Lyapunov function for ẋ = f (t , x),
x ∈ Rn, with f and V having period T in t .
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First Construction (MM-FM)

a1 = −V̇ .

ai+1 = −ȧi . Aj(t , x) =
∑j

m=1 am+1(t , x)am(t , x).

Theorem 1
Assume ∃ constants τ ∈ (0,T ] and ` ∈ N and a positive definite
continuous function ρ such that for all x ∈ Rn and all t ∈ [0, τ ],

a1(t , x) +
∑̀
m=2

a2
m(t , x) ≥ ρ(V (t , x)) . (26)

Then we can explicitly determine functions Fj and G such that

V ](t , x) =
`−1∑
j=1

Fj
(
V (t , x)

)
Aj(t , x)+G

(
t ,V (t , x)

)
(27)

is a strict Lyapunov function, giving UGAS of the dynamics.
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Remarks on Relaxed NDC

The relaxed NDC (5) allows cases where all of the iterated Lie
derivatives vanish for some times t .

{
ẋ1 = cos(t)x2

ẋ2 = − cos(t)x1 − x2 .
(28)

V (x) = 1
2 |x |

2, ` = 3, and T = 2π. Nonstrict: V̇ (x) = −x2
2 .

a1(t , x) + a2
2(t , x) + a2

3(t , x) ≥ 4 cos4(t)
200(V (x) + 1)

V 2(x) .

Hence, (5) holds with τ = π
4 and ρ(r) = r2/{200(r + 1)}.
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ẋ1 = cos(t)x2
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Idea of Proof of Thm 1, Part 1/3

Let Γ ∈ C1 be any everywhere positive increasing function s.t.

Γ(V (t , x)) ≥ (`+ 2)|am(t , x)|+ 1

for all m ∈ {1, ..., `+ 1} and all (t , x) ∈ [0,∞)× Rn.

Pick ω ∈ K∞ ∩C1 and the strictly increasing everywhere positive
function K ∈ C1 such that

ρ(r) ≥ ω(r)

K (r)
∀r ≥ 0 . (29)
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Idea of Proof of Thm 1, Part 2/3

Set

k`−1(v) = ω2`−1
(v)

and kp(v) = k`−1(v)Ω1−2`−p−1
(v)

for 1 ≤ p ≤ `− 2, where Ω(v) =
2τω(v)

3T (`− 2)Γ2(v)K (v)

(30)

and

Mp(t , x) =

p∑
m=1

am+1(t , x)am(t , x) +

∫ V (t ,x)

0
Γ(r)dr . (31)
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Idea of Proof of Thm 1, Part 2/3

Let k0 be any C1 increasing function such that

k0
(
V (t , x)

)
+ k ′0

(
V (t , x)

)
V (t , x) ≥

`−1∑
p=1

∣∣k ′p(V (t , x)
)∣∣|Mp(t , x)|+ 1

(32)

and q : R→ [0,1] be any continuous function with period T s.t.
q(t) = 0 for all t ∈ [τ,T ] and q(t) = 1 for all t ∈ [ τ3 ,

2τ
3 ].
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Idea of Proof of Thm 1, Part 2/3

Let G be any C1 function such that

G′(v) ≥ T
∣∣∣∣k`−1(v)

ω′(v)K (v)−ω(v)K ′(v)

K 2(v)
+ k ′`−1(v)

ω(v)

K (v)

∣∣∣∣
for all v ≥ 0.



Idea of Proof of Thm 1, Part 3/3

V ](t , x)=V (t , x)S3(t , x) + κ
(
V (t , x)

)
V (t , x)

,

where S3(t , x)=S1(t , x) + S2(t , x) ,

S1(t , x)=
`−1∑
p=1

kp
(
V (t , x)

)
Mp(t , x) + k0

(
V (t , x)

)
V (t , x),

S2(t , x) = G
(
V (t , x)

)
+

1
T

(∫ t
t−T

∫ t
s q(r) dr ds

)
k`−1

(
V (t , x)

)ω(V (t , x))

K (V (t , x))
,

and κ ∈ C1 is any increasing function such that
κ(V (t , x)) ≥ |S3(t , x)|+ 1 everywhere.
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Second Construction for ẋ = f (x), x ∈ X

Assumptions 1
There exist a storage function V1 : X → [0,∞); functions
h1, . . . ,hm such that hj(0) = 0 for all j ; everywhere positive
functions r1, . . . , rm and ρ; and an integer N > 0 for which

∇V1(x)f (x) ≤ −r1(x)h2
1(x)− ...− rm(x)h2

m(x) ∀x ∈ X (33)

and
N−1∑
k=0

m∑
j=1

[
Lk

f hj(x)
]2
≥ ρ(V1(x))V1(x) ∀x ∈ X . (34)

Also, f ∈ C∞(Rn), and V1 has a positive definite quadratic lower
bound in some neighborhood of 0 ∈ Rn.
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Second Construction for ẋ = f (x), x ∈ X (MM-FM)

Theorem 2
Assume that ẋ = f (x) satisfies Assumptions 1. Set

Vi(x) = −
m∑
`=1

Li−2
f h`(x)Li−1

f h`(x) , i = 2, . . . ,N . (35)

One can determine explicit functions k`,Ω` ∈ K∞ ∩ C1 such that

S(x) =
N∑
`=1

Ω`

(
k`(V1(x)) + V`(x)

)
(36)

is a strict Lyapunov function on X satisfying S(x) ≥ V1(x) on X .

Significance:
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Idea of Proof-Part 1/3

Find everywhere positive C1 increasing φ1 and p1 s.t.

∇Vi(x)f (x) ≤ −Ni(x) + φ1
(
V1(x)

)√
Ni−1(x)

√
V1(x) (37)

and |Vi(x)| ≤ p1(V1(x))V1(x) (38)

everywhere when 1 ≤ i ≤ N, where

N1(x) = R(x)
m∑

l=1

h2
l (x), R(x) =

∏m
i=1 ri(x)∏m

i=1[ri(x) + 1]
,

and Ni(x) =
m∑

l=1

[
Li−1

f hl(x)
]2
∀i ≥ 2.
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Idea of Proof-Part 2/3

Find α ∈ K∞ so that V1(x) ≥ α(|x |) on X .

Find a decreasing everywhere positive function ρ so that

R(x) ≥ ρ(α(|x |)) ≥ ρ(V1(x)) ∀x ∈ X .

Finally, find a continuous everywhere positive ρ̃ so that

N∑
i=1

Ni(x) ≥ ρ̃(V1(x))V1(x) (39)

everywhere.
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Idea of Proof-Part 3/3

Use our Matrosov construction from ACC’08.

S(x) = Ω1
(
2V1(x)

)
+

N∑
i=2

Ωi
(
Ui(x)

)
, where (40)

Ui(x) = Vi(x) + V1(x)[1 + p1(V1(x))], (41)

ΩN(r) = r , and {Ωi}N−1
i=1 satisfy

Ω′i(Ui) ≥ (N − 1)2 8φ2
1(V1)

ρ̃(V1)

N∑
r=1+i

Ω′r (Ur )2, (42)

with Ω′i : [0,∞)→ [1,∞) continuous and increasing for each i .
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Another Matrosov Construction

{
ẋ1 = x2
ẋ2 = −x1 − x3

2 .
(43)

V1(x) = 1
4(x2

1 + x2
2 )2 , N1(x) = (x2

1 + x2
2 )x4

2 ,

V2(x) = 1
2(x2

1 + x2
2 ) , N2(x) = x4

2 ,

V3(x) = 1
2(x2

1 + x2
2 )x1x2 , and N3(x) = 1

2 [x2
1 + x2

2 ]x2
1 .

U2(x) = V1(x) + V2(x)
U3(x) = 2V1(x) + V3(x)

(44)

S(x) = 2U2(x) + 8U2
2 (x) + U3(x). (45)

Ṡ(x) ≤ −1
2

V1(x) . (46)
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ẋ1 = x2
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ẋ2 = −x1 − x3

2 .
(43)

V1(x) = 1
4(x2

1 + x2
2 )2 , N1(x) = (x2

1 + x2
2 )x4

2 ,

V2(x) = 1
2(x2

1 + x2
2 ) , N2(x) = x4

2 ,

V3(x) = 1
2(x2

1 + x2
2 )x1x2 , and N3(x) = 1

2 [x2
1 + x2

2 ]x2
1 .

U2(x) = V1(x) + V2(x)
U3(x) = 2V1(x) + V3(x)

(44)

S(x) = 2U2(x) + 8U2
2 (x) + U3(x). (45)
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Statement of Problem

Lotka-Volterra predator-prey dynamics:{
χ̇ = γχ

(
1− χ

L

)
− aχζ

ζ̇ = βχζ −∆ζ
(47)

ζ = predator. χ = prey. a, β, γ,∆,L = positive constants.

Change coordinates and rescale to get the error dynamics{
˙̃x = −[x̃ + αỹ ](x̃ + x∗)
˙̃y = αx̃(ỹ + y∗) ,

(48)

with state space X = (−x∗,+∞)× (−y∗,+∞),

α = βL
γ , d = ∆

γ , x∗ = d
α and y∗ = 1

α −
d
α2 . (49)

Assume α > d . Want a global strict Lyapunov function for (48).
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(48)

with state space X = (−x∗,+∞)× (−y∗,+∞),

α = βL
γ , d = ∆

γ , x∗ = d
α and y∗ = 1

α −
d
α2 . (49)

Assume α > d . Want a global strict Lyapunov function for (48).



Statement of Problem

Lotka-Volterra predator-prey dynamics:{
χ̇ = γχ

(
1− χ

L

)
− aχζ

ζ̇ = βχζ −∆ζ
(47)

ζ = predator. χ = prey. a, β, γ,∆,L = positive constants.

Change coordinates and rescale to get the error dynamics{
˙̃x = −[x̃ + αỹ ](x̃ + x∗)
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with state space X = (−x∗,+∞)× (−y∗,+∞),

α = βL
γ , d = ∆

γ , x∗ = d
α and y∗ = 1

α −
d
α2 . (49)

Assume α > d .

Want a global strict Lyapunov function for (48).
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Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra
models available based on computing the LaSalle invariant set.

Our result is original and significant because we provide a global
strict Lyapunov function.

V1(x̃ , ỹ) = x̃ − x∗ ln
(

1 +
x̃
x∗

)
+ ỹ − y∗ ln

(
1 +

ỹ
y∗

)
(50)

Nonstrict Lyapunov decay condition: V̇1(x̃ , ỹ) ≤ −|x̃ |2.

Auxiliary function from theorem: V2(x̃ , ỹ) = x̃ [x̃ + αỹ ](x̃ + x∗).
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V1(x̃ , ỹ) = x̃ − x∗ ln
(

1 +
x̃
x∗

)
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V1(x̃ , ỹ) = x̃ − x∗ ln
(

1 +
x̃
x∗

)
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Strict Lyapunov Function Construction (MM-FM)

S(x̃ , ỹ) = V2(x̃ , ỹ) +
∫ V1(x̃ ,ỹ)

0 φ1(r) dr

+
[
p1
(
V1(x̃ , ỹ)

)
+ 1
]
V1(x̃ , ỹ),

(51)

where

φ1(r) = 2
[
(289x∗+144αy∗)2+144α2x∗y∗

]
e2

(
1

x∗
+ 1

y∗

)
r

and

p1(r) = 1536(x∗ + 1)(α + 1)(1 + x∗ + y∗)4(1 + r)3.

Along the trajectories of the L-V error dynamics,

Ṡ ≤ −1
4

[
x̃2 +

{
(x̃ + αỹ)(x̃ + x∗)

}2
]
. (52)
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0 φ1(r) dr

+
[
p1
(
V1(x̃ , ỹ)
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Conclusions

I The point stabilization and strict Lyapunov function
construction problems are closely related.

I Even if the system is time invariant, time-varying feedbacks
are often required because of Brockett’s Condition.

I While UGAS can be established using nonstrict Lyapunov
functions, strict Lyapunov functions are much more useful.

I For example, strict Lyapunov functions can give ISS, which
is a central unifying paradigm in nonlinear control.

I The Jurdjevic-Quinn, LaSalle, and Matrosov approaches
transform nonstrict Lyapunov functions into strict ones.

I Extensions exist for multiple time scales and unknown
parameters, e.g., adaptive, delayed, and hybrid systems.
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