Lyapunov Functions, Point Stabilization, and Strictification

Michael Malisoff
LSU Department of Mathematics
malisoff@lsu.edu

Georgia Tech Workshop on Constructive Lyapunov Control and Strictification with Applications

December 18, 2010

Outline

Outline

- Strict and nonstrict Lyapunov functions

Outline

- Strict and nonstrict Lyapunov functions
- Input-to-state stability and point stabilization

Outline

- Strict and nonstrict Lyapunov functions
- Input-to-state stability and point stabilization
- Obstacles to point stabilization

Outline

- Strict and nonstrict Lyapunov functions
- Input-to-state stability and point stabilization
- Obstacles to point stabilization
- Strictification to certify good performance

Outline

- Strict and nonstrict Lyapunov functions
- Input-to-state stability and point stabilization
- Obstacles to point stabilization
- Strictification to certify good performance
- Jurdjevic-Quinn approach

Outline

- Strict and nonstrict Lyapunov functions
- Input-to-state stability and point stabilization
- Obstacles to point stabilization
- Strictification to certify good performance
- Jurdjevic-Quinn approach
- LaSalle strictification

Outline

- Strict and nonstrict Lyapunov functions
- Input-to-state stability and point stabilization
- Obstacles to point stabilization
- Strictification to certify good performance
- Jurdjevic-Quinn approach
- LaSalle strictification
- Matrosov approaches

Outline

- Strict and nonstrict Lyapunov functions
- Input-to-state stability and point stabilization
- Obstacles to point stabilization
- Strictification to certify good performance
- Jurdjevic-Quinn approach
- LaSalle strictification
- Matrosov approaches
M. Malisoff and F. Mazenc. Constructions of Strict Lyapunov Functions. Communications and Control Engineering Series, Springer-Verlag London Ltd., London, UK, 2009.

Background

Background

Strict Lyapunov function decay:

Background

Strict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ positive definite.

Background

Strict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ positive definite.

Nonstrict Lyapunov function decay:

Background

Strict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ positive definite.

Nonstrict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ nonnegative definite.

Background

Strict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ positive definite.

Nonstrict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ nonnegative definite.

Either way, $\inf _{t} V(t, x)$ is assumed proper and positive definite.

Background

Strict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ positive definite.

Nonstrict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ nonnegative definite.

Either way, $\inf _{t} V(t, x)$ is assumed proper and positive definite.

Converse Lyapunov theory often guarantees the existence of strict Lyapunov functions.

Background

Strict Lyapunov function decay:
$\dot{V}(t, x) \leq-W(x)$, with $W(x)$ positive definite.

Nonstrict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ nonnegative definite.

Either way, $\inf _{t} V(t, x)$ is assumed proper and positive definite.

Converse Lyapunov theory often guarantees the existence of strict Lyapunov functions. See Bacciotti-Rosier CCE Book.

Background

Strict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ positive definite.

Nonstrict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ nonnegative definite.

Either way, $\inf _{t} V(t, x)$ is assumed proper and positive definite.

Using LaSalle Invariance, we can often use nonstrict Lyapunov functions to prove stability.

Background

Strict Lyapunov function decay:
$\dot{V}(t, x) \leq-W(x)$, with $W(x)$ positive definite.

Nonstrict Lyapunov function decay:
$\dot{V}(t, x) \leq-W(x)$, with $W(x)$ nonnegative definite.

Either way, $\inf _{t} V(t, x)$ is assumed proper and positive definite.

For example, take $\dot{x}_{1}=x_{2}, \dot{x}_{2}=-x_{1}-x_{2}^{3}$.

Background

Strict Lyapunov function decay:
$\dot{V}(t, x) \leq-W(x)$, with $W(x)$ positive definite.

Nonstrict Lyapunov function decay:
$\dot{V}(t, x) \leq-W(x)$, with $W(x)$ nonnegative definite.

Either way, $\inf _{t} V(t, x)$ is assumed proper and positive definite.

For example, take $\dot{x}_{1}=x_{2}, \dot{x}_{2}=-x_{1}-x_{2}^{3}$. Use $V(x)=0.5|x|^{2}$.

Background

Strict Lyapunov function decay:
$\dot{V}(t, x) \leq-W(x)$, with $W(x)$ positive definite.

Nonstrict Lyapunov function decay:
$\dot{V}(t, x) \leq-W(x)$, with $W(x)$ nonnegative definite.

Either way, $\inf _{t} V(t, x)$ is assumed proper and positive definite.

For example, take $\dot{x}_{1}=x_{2}, \dot{x}_{2}=-x_{1}-x_{2}^{3}$. Use $V(x)=0.5|x|^{2}$. Then $\dot{V}=-x_{2}^{4}$.

Background

Strict Lyapunov function decay:
$\dot{V}(t, x) \leq-W(x)$, with $W(x)$ positive definite.

Nonstrict Lyapunov function decay:
$\dot{V}(t, x) \leq-W(x)$, with $W(x)$ nonnegative definite.

Either way, $\inf _{t} V(t, x)$ is assumed proper and positive definite.

For example, take $\dot{x}_{1}=x_{2}, \dot{x}_{2}=-x_{1}-x_{2}^{3}$. Use $V(x)=0.5|x|^{2}$.
Then $\dot{V}=-x_{2}^{4}$. The largest invariant set in $\left\{x: x_{2}=0\right\}$ is $\{0\}$.

Background

Strict Lyapunov function decay:
$\dot{V}(t, x) \leq-W(x)$, with $W(x)$ positive definite.

Nonstrict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ nonnegative definite.

Either way, $\inf _{t} V(t, x)$ is assumed proper and positive definite.

However, explicit strict Lyapunov function constructions are often needed in applications to certify robustness.

Background

Strict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ positive definite.

Nonstrict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ nonnegative definite.

Either way, $\inf _{t} V(t, x)$ is assumed proper and positive definite.

This has led to significant research on explicitly constructing strict Lyapunov functions.

Background

Strict Lyapunov function decay:
$\dot{V}(t, x) \leq-W(x)$, with $W(x)$ positive definite.

Nonstrict Lyapunov function decay: $\dot{V}(t, x) \leq-W(x)$, with $W(x)$ nonnegative definite.

Either way, $\inf _{t} V(t, x)$ is assumed proper and positive definite.

We assume standard assumptions on the dynamics which hold under smooth forward completeness and time-periodicity.

ISS Motivation-Part 1/3

ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems

$$
\begin{equation*}
\dot{x}=\mathcal{F}(t, x, d) \tag{1}
\end{equation*}
$$

ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems

$$
\begin{equation*}
\dot{x}=\mathcal{F}(t, x, d) \tag{1}
\end{equation*}
$$

Invented by E. Sontag; see CDC'88, T-AC'89.

ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems

$$
\begin{equation*}
\dot{x}=\mathcal{F}(t, x, d) . \tag{1}
\end{equation*}
$$

Invented by E. Sontag; see CDC'88, T-AC'89. The state space \mathcal{X} is a general open subset of Euclidean space containing 0.

ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems

$$
\begin{equation*}
\dot{x}=\mathcal{F}(t, x, d) \tag{1}
\end{equation*}
$$

Invented by E. Sontag; see CDC'88, T-AC'89. The state space \mathcal{X} is a general open subset of Euclidean space containing 0.

Assume $\mathcal{F}(t, 0,0)=0$ for all t.

ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems

$$
\begin{equation*}
\dot{x}=\mathcal{F}(t, x, d) \tag{1}
\end{equation*}
$$

Invented by E. Sontag; see CDC'88, T-AC'89. The state space \mathcal{X} is a general open subset of Euclidean space containing 0.

Assume $\mathcal{F}(t, 0,0)=0$ for all t. E.g., $\dot{x}=f(t, x)+g(t, x) d$ if $f(t, 0)=0$ for all t.

ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems

$$
\begin{equation*}
\dot{x}=\mathcal{F}(t, x, d) \tag{1}
\end{equation*}
$$

Invented by E. Sontag; see CDC'88, T-AC'89. The state space \mathcal{X} is a general open subset of Euclidean space containing 0.

Assume $\mathcal{F}(t, 0,0)=0$ for all t. E.g., $\dot{x}=f(t, x)+g(t, x) d$ if $f(t, 0)=0$ for all t. That's the control-affine case.

ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems

$$
\begin{equation*}
\dot{x}=\mathcal{F}(t, x, d) \tag{1}
\end{equation*}
$$

Invented by E. Sontag; see CDC'88, T-AC'89. The state space \mathcal{X} is a general open subset of Euclidean space containing 0.

Assume $\mathcal{F}(t, 0,0)=0$ for all t. E.g., $\dot{x}=f(t, x)+g(t, x) d$ if $f(t, 0)=0$ for all t. That's the control-affine case.
The disturbances $d:[0, \infty) \rightarrow D$ are measurable essentially bounded functions valued in some subset D of a Euclidean space.

ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems

$$
\begin{equation*}
\dot{x}=\mathcal{F}(t, x, d) \tag{1}
\end{equation*}
$$

Invented by E. Sontag; see CDC'88, T-AC'89. The state space \mathcal{X} is a general open subset of Euclidean space containing 0.

Assume $\mathcal{F}(t, 0,0)=0$ for all t. E.g., $\dot{x}=f(t, x)+g(t, x) d$ if $f(t, 0)=0$ for all t. That's the control-affine case.

The disturbances $d:[0, \infty) \rightarrow D$ are measurable essentially bounded functions valued in some subset D of a Euclidean space. See our CCE book for standing assumptions on \mathcal{F}.

ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems

$$
\begin{equation*}
\dot{x}=\mathcal{F}(t, x, d) \tag{1}
\end{equation*}
$$

Invented by E. Sontag; see CDC'88, T-AC'89. The state space \mathcal{X} is a general open subset of Euclidean space containing 0.

Assume $\mathcal{F}(t, 0,0)=0$ for all t. E.g., $\dot{x}=f(t, x)+g(t, x) d$ if $f(t, 0)=0$ for all t. That's the control-affine case.

The disturbances $d:[0, \infty) \rightarrow D$ are measurable essentially bounded functions valued in some subset D of a Euclidean space. See our CCE book for standing assumptions on \mathcal{F}.

ISS is defined using comparison functions.

ISS Motivation-Part 1/3

ISS Motivation-Part 1/3

A modulus with respect to \mathcal{X} is any continuous positive definite function $\alpha: \mathcal{X} \rightarrow[0, \infty)$ such that $\alpha(\zeta) \rightarrow+\infty$ as ζ approaches the boundary of \mathcal{X}, or as $|\zeta| \rightarrow \infty$ with ζ remaining in \mathcal{X} (the latter possibility being ruled out if \mathcal{X} is bounded).

ISS Motivation-Part 1/3

A modulus with respect to \mathcal{X} is any continuous positive definite function $\alpha: \mathcal{X} \rightarrow[0, \infty)$ such that $\alpha(\zeta) \rightarrow+\infty$ as ζ approaches the boundary of \mathcal{X}, or as $|\zeta| \rightarrow \infty$ with ζ remaining in \mathcal{X} (the latter possibility being ruled out if \mathcal{X} is bounded).

A continuous positive definite function $\alpha:[0, \infty) \rightarrow[0, \infty)$ is of class \mathcal{K}_{∞} provided it is strictly increasing and unbounded.

ISS Motivation-Part 1/3

A modulus with respect to \mathcal{X} is any continuous positive definite function $\alpha: \mathcal{X} \rightarrow[0, \infty)$ such that $\alpha(\zeta) \rightarrow+\infty$ as ζ approaches the boundary of \mathcal{X}, or as $|\zeta| \rightarrow \infty$ with ζ remaining in \mathcal{X} (the latter possibility being ruled out if \mathcal{X} is bounded).

A continuous positive definite function $\alpha:[0, \infty) \rightarrow[0, \infty)$ is of class \mathcal{K}_{∞} provided it is strictly increasing and unbounded.

A function $\beta:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ is of class $\mathcal{K} \mathcal{L}$ provided there exist $\theta_{i} \in \mathcal{K}_{\infty}$ such that $\beta(s, t)=\theta_{1}\left(\theta_{2}(s) e^{-t}\right)$ everywhere.

ISS Motivation-Part 2/3

We say that (1) is ISS provided there exist functions $\beta \in \mathcal{K} \mathcal{L}$ and $\gamma \in \mathcal{K}_{\infty}$ and a modulus $\bar{\alpha}$ with respect to \mathcal{X} s.t. for all initial conditions $x\left(t_{0}\right)=x_{0} \in \mathcal{X}$ and all disturbances d, the corresponding trajectories $t \mapsto \zeta\left(t ; t_{0}, x_{0}, d\right)$ satisfy

$$
\begin{equation*}
\left|\zeta\left(t ; t_{0}, x_{0}, d\right)\right| \leq \beta\left(\bar{\alpha}\left(x_{0}\right), t-t_{0}\right)+\gamma\left(|d|_{\infty}\right) \forall t \geq t_{0} \tag{2}
\end{equation*}
$$

ISS Motivation-Part 2/3

We say that (1) is ISS provided there exist functions $\beta \in \mathcal{K} \mathcal{L}$ and $\gamma \in \mathcal{K}_{\infty}$ and a modulus $\bar{\alpha}$ with respect to \mathcal{X} s.t. for all initial conditions $x\left(t_{0}\right)=x_{0} \in \mathcal{X}$ and all disturbances d, the corresponding trajectories $t \mapsto \zeta\left(t ; t_{0}, x_{0}, d\right)$ satisfy

$$
\begin{equation*}
\left|\zeta\left(t ; t_{0}, x_{0}, d\right)\right| \leq \beta\left(\bar{\alpha}\left(x_{0}\right), t-t_{0}\right)+\gamma\left(|d|_{\infty}\right) \forall t \geq t_{0} \tag{2}
\end{equation*}
$$

Exponential ISS: $\beta(s, t)=\bar{\beta} s e^{-\lambda t}$, with $\bar{\beta}, \lambda>0$ constant.

ISS Motivation-Part 2/3

We say that (1) is ISS provided there exist functions $\beta \in \mathcal{K} \mathcal{L}$ and $\gamma \in \mathcal{K}_{\infty}$ and a modulus $\bar{\alpha}$ with respect to \mathcal{X} s.t. for all initial conditions $x\left(t_{0}\right)=x_{0} \in \mathcal{X}$ and all disturbances d, the corresponding trajectories $t \mapsto \zeta\left(t ; t_{0}, x_{0}, d\right)$ satisfy

$$
\begin{equation*}
\left|\zeta\left(t ; t_{0}, x_{0}, d\right)\right| \leq \beta\left(\bar{\alpha}\left(x_{0}\right), t-t_{0}\right)+\gamma\left(|d|_{\infty}\right) \forall t \geq t_{0} \tag{2}
\end{equation*}
$$

Exponential ISS: $\beta(s, t)=\bar{\beta} s e^{-\lambda t}$, with $\bar{\beta}, \lambda>0$ constant.
Local analogs are defined by only requiring (2) for initial states near the equilibrium.

ISS Motivation-Part 2/3

We say that (1) is ISS provided there exist functions $\beta \in \mathcal{K} \mathcal{L}$ and $\gamma \in \mathcal{K}_{\infty}$ and a modulus $\bar{\alpha}$ with respect to \mathcal{X} s.t. for all initial conditions $x\left(t_{0}\right)=x_{0} \in \mathcal{X}$ and all disturbances d, the corresponding trajectories $t \mapsto \zeta\left(t ; t_{0}, x_{0}, d\right)$ satisfy

$$
\begin{equation*}
\left|\zeta\left(t ; t_{0}, x_{0}, d\right)\right| \leq \beta\left(\bar{\alpha}\left(x_{0}\right), t-t_{0}\right)+\gamma\left(|d|_{\infty}\right) \forall t \geq t_{0} \tag{2}
\end{equation*}
$$

Exponential ISS: $\beta(s, t)=\bar{\beta} s e^{-\lambda t}$, with $\bar{\beta}, \lambda>0$ constant.
Local analogs are defined by only requiring (2) for initial states near the equilibrium.

The special case where γ and d are not present is UGAS.

ISS Motivation-Part 2/3

We say that (1) is ISS provided there exist functions $\beta \in \mathcal{K} \mathcal{L}$ and $\gamma \in \mathcal{K}_{\infty}$ and a modulus $\bar{\alpha}$ with respect to \mathcal{X} s.t. for all initial conditions $x\left(t_{0}\right)=x_{0} \in \mathcal{X}$ and all disturbances d, the corresponding trajectories $t \mapsto \zeta\left(t ; t_{0}, x_{0}, d\right)$ satisfy

$$
\begin{equation*}
\left|\zeta\left(t ; t_{0}, x_{0}, d\right)\right| \leq \beta\left(\bar{\alpha}\left(x_{0}\right), t-t_{0}\right)+\gamma\left(|d|_{\infty}\right) \forall t \geq t_{0} \tag{2}
\end{equation*}
$$

Exponential ISS: $\beta(s, t)=\bar{\beta} s e^{-\lambda t}$, with $\bar{\beta}, \lambda>0$ constant.
Local analogs are defined by only requiring (2) for initial states near the equilibrium.

The special case where γ and d are not present is UGAS. This corresponds to point stabilization but not just attractivity.

Remark on Uniformity

UGAS is not equivalent to attractivity.

Remark on Uniformity

UGAS is not equivalent to attractivity.

$$
\begin{equation*}
\dot{x}=-\frac{x}{1+t} \tag{3}
\end{equation*}
$$

Remark on Uniformity

UGAS is not equivalent to attractivity.

$$
\begin{gather*}
\dot{x}=-\frac{x}{1+t} \tag{3}\\
x\left(t, t_{0}, x_{0}\right)=x_{0} \frac{1+t_{0}}{1+t} \tag{4}
\end{gather*}
$$

Remark on Uniformity

UGAS is not equivalent to attractivity.

$$
\begin{gather*}
\dot{x}=-\frac{x}{1+t} \tag{3}\\
x\left(t, t_{0}, x_{0}\right)=x_{0} \frac{1+t_{0}}{1+t} \tag{4}
\end{gather*}
$$

There is no $\beta \in \mathcal{K} \mathcal{L}$ giving a UGAS estimate

$$
\begin{equation*}
\left|x\left(t, t_{0}, x_{0}\right)\right| \leq \beta\left(\left|x_{0}\right|, t-t_{0}\right) \tag{5}
\end{equation*}
$$

Remark on Uniformity

UGAS is not equivalent to attractivity.

$$
\begin{gather*}
\dot{x}=-\frac{x}{1+t} \tag{3}\\
x\left(t, t_{0}, x_{0}\right)=x_{0} \frac{1+t_{0}}{1+t} \tag{4}
\end{gather*}
$$

There is no $\beta \in \mathcal{K} \mathcal{L}$ giving a UGAS estimate

$$
\begin{equation*}
\left|x\left(t, t_{0}, x_{0}\right)\right| \leq \beta\left(\left|x_{0}\right|, t-t_{0}\right) . \tag{5}
\end{equation*}
$$

To see why, suppose β existed.

Remark on Uniformity

UGAS is not equivalent to attractivity.

$$
\begin{gather*}
\dot{x}=-\frac{x}{1+t} \tag{3}\\
x\left(t, t_{0}, x_{0}\right)=x_{0} \frac{1+t_{0}}{1+t} \tag{4}
\end{gather*}
$$

There is no $\beta \in \mathcal{K} \mathcal{L}$ giving a UGAS estimate

$$
\begin{equation*}
\left|x\left(t, t_{0}, x_{0}\right)\right| \leq \beta\left(\left|x_{0}\right|, t-t_{0}\right) . \tag{5}
\end{equation*}
$$

To see why, suppose β existed. Take $x_{0}=1$ and $t=2 t_{0}+1$.

Remark on Uniformity

UGAS is not equivalent to attractivity.

$$
\begin{gather*}
\dot{x}=-\frac{x}{1+t} \tag{3}\\
x\left(t, t_{0}, x_{0}\right)=x_{0} \frac{1+t_{0}}{1+t} \tag{4}
\end{gather*}
$$

There is no $\beta \in \mathcal{K} \mathcal{L}$ giving a UGAS estimate

$$
\begin{equation*}
\left|x\left(t, t_{0}, x_{0}\right)\right| \leq \beta\left(\left|x_{0}\right|, t-t_{0}\right) . \tag{5}
\end{equation*}
$$

To see why, suppose β existed. Take $x_{0}=1$ and $t=2 t_{0}+1$.

$$
\begin{equation*}
\frac{1}{2}=\frac{1+t_{0}}{2+2 t_{0}} \leq \beta\left(1, t_{0}+1\right) \rightarrow 0 \text { as } t_{0} \rightarrow+\infty \tag{6}
\end{equation*}
$$

ISS Motivation-Part 2/3

Typically one proves ISS by finding an ISS Lyapunov function.

ISS Motivation-Part 2/3

Typically one proves ISS by finding an ISS Lyapunov function.
Assume that V is proper and positive definite and admits a constant $k>0$ and $\gamma \in \mathcal{K}_{\infty}$ such that $\dot{V} \leq-k V+\gamma(|d|)$ along all trajectories.

ISS Motivation-Part 2/3

Typically one proves ISS by finding an ISS Lyapunov function.
Assume that V is proper and positive definite and admits a constant $k>0$ and $\gamma \in \mathcal{K}_{\infty}$ such that $\dot{V} \leq-k V+\gamma(|d|)$ along all trajectories. This is exponential stability with overflow.

ISS Motivation-Part 2/3

Typically one proves ISS by finding an ISS Lyapunov function.
Assume that V is proper and positive definite and admits a constant $k>0$ and $\gamma \in \mathcal{K}_{\infty}$ such that $\dot{V} \leq-k V+\gamma(|d|)$ along all trajectories. This is exponential stability with overflow.

Multiply both sides by $e^{k t}$ and integrate.

ISS Motivation-Part 2/3

Typically one proves ISS by finding an ISS Lyapunov function.
Assume that V is proper and positive definite and admits a constant $k>0$ and $\gamma \in \mathcal{K}_{\infty}$ such that $\dot{V} \leq-k V+\gamma(|d|)$ along all trajectories. This is exponential stability with overflow.

Multiply both sides by $e^{k t}$ and integrate. That gives ISS

ISS Motivation-Part 2/3

Typically one proves ISS by finding an ISS Lyapunov function.
Assume that V is proper and positive definite and admits a constant $k>0$ and $\gamma \in \mathcal{K}_{\infty}$ such that $\dot{V} \leq-k V+\gamma(|d|)$ along all trajectories. This is exponential stability with overflow.

Multiply both sides by $e^{k t}$ and integrate. That gives ISS since $V(x(t)) \leq e^{-k t} V(x(0))+\gamma\left(|d|_{\infty}\right) / k$ along all trajectories.

ISS Motivation-Part 2/3

Typically one proves ISS by finding an ISS Lyapunov function.
Assume that V is proper and positive definite and admits a constant $k>0$ and $\gamma \in \mathcal{K}_{\infty}$ such that $\dot{V} \leq-k V+\gamma(|d|)$ along all trajectories. This is exponential stability with overflow.

Multiply both sides by $e^{k t}$ and integrate. That gives ISS since $V(x(t)) \leq e^{-k t} V(x(0))+\gamma\left(|d|_{\infty}\right) / k$ along all trajectories.

Assume in addition that there are positive constants c_{i} such that $c_{1}|x|^{2} \leq V(x) \leq c_{2}|x|^{2}$ everywhere.

ISS Motivation-Part 2/3

Typically one proves ISS by finding an ISS Lyapunov function.
Assume that V is proper and positive definite and admits a constant $k>0$ and $\gamma \in \mathcal{K}_{\infty}$ such that $\dot{V} \leq-k V+\gamma(|d|)$ along all trajectories. This is exponential stability with overflow.

Multiply both sides by $e^{k t}$ and integrate. That gives ISS since $V(x(t)) \leq e^{-k t} V(x(0))+\gamma\left(|d|_{\infty}\right) / k$ along all trajectories.

Assume in addition that there are positive constants c_{i} such that $c_{1}|x|^{2} \leq V(x) \leq c_{2}|x|^{2}$ everywhere.

$$
|x(t)| \leq \sqrt{\frac{c_{2}}{c_{1}}} e^{-t k / 2}|x(0)|+\sqrt{\frac{\gamma\left(|d|_{\infty}\right)}{k c_{1}}} .
$$

ISS Motivation-Part 2/3

Typically one proves ISS by finding an ISS Lyapunov function.
Assume that V is proper and positive definite and admits a constant $k>0$ and $\gamma \in \mathcal{K}_{\infty}$ such that $\dot{V} \leq-k V+\gamma(|d|)$ along all trajectories. This is exponential stability with overflow.

Multiply both sides by $e^{k t}$ and integrate. That gives ISS since $V(x(t)) \leq e^{-k t} V(x(0))+\gamma\left(|d|_{\infty}\right) / k$ along all trajectories.

Assume in addition that there are positive constants c_{i} such that $c_{1}|x|^{2} \leq V(x) \leq c_{2}|x|^{2}$ everywhere.

$$
|x(t)| \leq \sqrt{\frac{c_{2}}{c_{1}}} e^{-t k / 2}|x(0)|+\sqrt{\frac{\gamma\left(|d|_{\infty}\right)}{k c_{1}}} .
$$

More general ISS decay:

ISS Motivation-Part 2/3

Typically one proves ISS by finding an ISS Lyapunov function.
Assume that V is proper and positive definite and admits a constant $k>0$ and $\gamma \in \mathcal{K}_{\infty}$ such that $\dot{V} \leq-k V+\gamma(|d|)$ along all trajectories. This is exponential stability with overflow.

Multiply both sides by $e^{k t}$ and integrate. That gives ISS since $V(x(t)) \leq e^{-k t} V(x(0))+\gamma\left(|d|_{\infty}\right) / k$ along all trajectories.

Assume in addition that there are positive constants c_{i} such that $c_{1}|x|^{2} \leq V(x) \leq c_{2}|x|^{2}$ everywhere.

$$
|x(t)| \leq \sqrt{\frac{c_{2}}{c_{1}}} e^{-t k / 2}|x(0)|+\sqrt{\frac{\gamma\left(|d|_{\infty}\right)}{k c_{1}}} .
$$

More general ISS decay: $\dot{V} \leq-\alpha_{1}(V)+\alpha_{2}(|d|), \alpha_{i} \in \mathcal{K}_{\infty}$.

ISS Motivation-Part 3/3

ISS Motivation-Part 3/3

Example:

ISS Motivation-Part 3/3

Example: Assume that

$$
\begin{equation*}
\dot{x}=\mathcal{F}_{\mathrm{cl}}(t, x):=f(t, x)+g(t, x) K(t, x) \tag{7}
\end{equation*}
$$

is UGAS to the origin.

ISS Motivation-Part 3/3

Example: Assume that

$$
\begin{equation*}
\dot{x}=\mathcal{F}_{\mathrm{cl}}(t, x):=f(t, x)+g(t, x) K(t, x) \tag{7}
\end{equation*}
$$

is UGAS to the origin.
Assume that we have a strict Lyapunov function V so that $W(x)=\inf _{t}\left\{-\left[V_{t}(t, x)+V_{x}(t, x) \mathcal{F}_{\mathrm{cl}}(t, x)\right]\right\}$ is proper.

ISS Motivation-Part 3/3

Example: Assume that

$$
\begin{equation*}
\dot{x}=\mathcal{F}_{\mathrm{cl}}(t, x):=f(t, x)+g(t, x) K(t, x) \tag{7}
\end{equation*}
$$

is UGAS to the origin.
Assume that we have a strict Lyapunov function V so that $W(x)=\inf _{t}\left\{-\left[V_{t}(t, x)+V_{x}(t, x) \mathcal{F}_{\mathrm{cl}}(t, x)\right]\right\}$ is proper.

Then

$$
\begin{equation*}
\dot{x}=f(t, x)+g(t, x)\left[K(t, x)-D_{x} V(t, x) \cdot g(t, x)+d\right] \tag{8}
\end{equation*}
$$

is ISS with respect to actuator errors d.

ISS Motivation-Part 3/3

Example: Assume that

$$
\begin{equation*}
\dot{x}=\mathcal{F}_{\mathrm{cl}}(t, x):=f(t, x)+g(t, x) K(t, x) \tag{7}
\end{equation*}
$$

is UGAS to the origin.
Assume that we have a strict Lyapunov function V so that $W(x)=\inf _{t}\left\{-\left[V_{t}(t, x)+V_{x}(t, x) \mathcal{F}_{\mathrm{cl}}(t, x)\right]\right\}$ is proper.

Then

$$
\begin{equation*}
\dot{x}=f(t, x)+g(t, x)\left[K(t, x)-D_{x} V(t, x) \cdot g(t, x)+d\right] \tag{8}
\end{equation*}
$$

is ISS with respect to actuator errors d.
Need $K(t, x)$ and $D_{x} V(t, x) \cdot g(t, x)$.

Brockett's Criterion

Brockett's Criterion

There may be virtual obstacles to time-invariant stabilization.

Brockett's Criterion

There may be virtual obstacles to time-invariant stabilization.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \tag{9}\\
\dot{x}_{2}=u_{2} u_{1}
\end{array}\right.
$$

Brockett's Criterion

There may be virtual obstacles to time-invariant stabilization.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \tag{9}\\
\dot{x}_{2}=u_{2} u_{1} .
\end{array}\right.
$$

There is no C^{1} feedback $k(x)$ stabilizing the origin of (9).

Brockett's Criterion

There may be virtual obstacles to time-invariant stabilization.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \tag{9}\\
\dot{x}_{2}=u_{2} u_{1} .
\end{array}\right.
$$

There is no C^{1} feedback $k(x)$ stabilizing the origin of (9).
Brockett's Stabilization Theorem:

Brockett's Criterion

There may be virtual obstacles to time-invariant stabilization.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \tag{9}\\
\dot{x}_{2}=u_{2} u_{1} .
\end{array}\right.
$$

There is no C^{1} feedback $k(x)$ stabilizing the origin of (9).
Brockett's Stabilization Theorem: Let a system $\dot{x}=f(x, u)$ with $f \in C^{1}$ admit an equilibrium point x_{*} and a C^{1} feedback $u_{s}(x)$ such that $\dot{x}=f\left(x, u_{s}(x)\right)$ has the LAS equilibrium point x_{*}.

Brockett's Criterion

There may be virtual obstacles to time-invariant stabilization.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \tag{9}\\
\dot{x}_{2}=u_{2} u_{1} .
\end{array}\right.
$$

There is no C^{1} feedback $k(x)$ stabilizing the origin of (9).
Brockett's Stabilization Theorem: Let a system $\dot{x}=f(x, u)$ with $f \in C^{1}$ admit an equilibrium point x_{*} and a C^{1} feedback $u_{s}(x)$ such that $\dot{x}=f\left(x, u_{s}(x)\right)$ has the LAS equilibrium point x_{*}. Then the image of the map f contains some neighborhood of x_{*}.

Brockett's Criterion

There may be virtual obstacles to time-invariant stabilization.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \tag{9}\\
\dot{x}_{2}=u_{2} u_{1} .
\end{array}\right.
$$

There is no C^{1} feedback $k(x)$ stabilizing the origin of (9).
Brockett's Stabilization Theorem: Let a system $\dot{x}=f(x, u)$ with $f \in C^{1}$ admit an equilibrium point x_{*} and a C^{1} feedback $u_{s}(x)$ such that $\dot{x}=f\left(x, u_{s}(x)\right)$ has the LAS equilibrium point x_{*}. Then the image of the map f contains some neighborhood of x_{*}.

Proof:

Brockett's Criterion

There may be virtual obstacles to time-invariant stabilization.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \tag{9}\\
\dot{x}_{2}=u_{2} u_{1} .
\end{array}\right.
$$

There is no C^{1} feedback $k(x)$ stabilizing the origin of (9).
Brockett's Stabilization Theorem: Let a system $\dot{x}=f(x, u)$ with $f \in C^{1}$ admit an equilibrium point x_{*} and a C^{1} feedback $u_{s}(x)$ such that $\dot{x}=f\left(x, u_{s}(x)\right)$ has the LAS equilibrium point x_{*}. Then the image of the map f contains some neighborhood of x_{*}.
Proof: Use degree theory (functional analysis) and homotopy arguments (general topology).

Brockett's Criterion

There may be virtual obstacles to time-invariant stabilization.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \tag{9}\\
\dot{x}_{2}=u_{2} u_{1} .
\end{array}\right.
$$

There is no C^{1} feedback $k(x)$ stabilizing the origin of (9).
Brockett's Stabilization Theorem: Let a system $\dot{x}=f(x, u)$ with $f \in C^{1}$ admit an equilibrium point x_{*} and a C^{1} feedback $u_{s}(x)$ such that $\dot{x}=f\left(x, u_{s}(x)\right)$ has the LAS equilibrium point x_{*}. Then the image of the map f contains some neighborhood of x_{*}.
Proof: Use degree theory (functional analysis) and homotopy arguments (general topology). See Chapter 5 of Sontag's book Mathematical Control Theory.

Brockett's Criterion

More generally, we cannot locally continuously stabilize

$$
\dot{x}=u_{1} g_{1}(x)+\ldots+u_{m} g_{m}(x)=G(x) u, \quad x \in \mathbb{R}^{n}
$$

with a C^{1} feedback $K(x)$ if $\operatorname{rank}\left[g_{1}(0), \ldots, g_{m}(0)\right]=m<n$.

Brockett's Criterion

More generally, we cannot locally continuously stabilize

$$
\dot{x}=u_{1} g_{1}(x)+\ldots+u_{m} g_{m}(x)=G(x) u, \quad x \in \mathbb{R}^{n}
$$

with a C^{1} feedback $K(x)$ if $\operatorname{rank}\left[g_{1}(0), \ldots, g_{m}(0)\right]=m<n$.
This includes all totally nonholonomic mechanical systems.

Brockett's Criterion

More generally, we cannot locally continuously stabilize

$$
\dot{x}=u_{1} g_{1}(x)+\ldots+u_{m} g_{m}(x)=G(x) u, \quad x \in \mathbb{R}^{n}
$$

with a C^{1} feedback $K(x)$ if $\operatorname{rank}\left[g_{1}(0), \ldots, g_{m}(0)\right]=m<n$.
This includes all totally nonholonomic mechanical systems.
To see why, rearrange the rows of G so that the first m rows are invertible near 0.

Brockett's Criterion

More generally, we cannot locally continuously stabilize

$$
\dot{x}=u_{1} g_{1}(x)+\ldots+u_{m} g_{m}(x)=G(x) u, \quad x \in \mathbb{R}^{n}
$$

with a C^{1} feedback $K(x)$ if $\operatorname{rank}\left[g_{1}(0), \ldots, g_{m}(0)\right]=m<n$.
This includes all totally nonholonomic mechanical systems.
To see why, rearrange the rows of G so that the first m rows are invertible near 0 . Then if $(0, a)^{\top}$ is in the image of the dynamics with $a \approx 0$, we get a u such that $G(x) u=(0, a)^{\top}$.

Brockett's Criterion

More generally, we cannot locally continuously stabilize

$$
\dot{x}=u_{1} g_{1}(x)+\ldots+u_{m} g_{m}(x)=G(x) u, \quad x \in \mathbb{R}^{n}
$$

with a C^{1} feedback $K(x)$ if $\operatorname{rank}\left[g_{1}(0), \ldots, g_{m}(0)\right]=m<n$.
This includes all totally nonholonomic mechanical systems.
To see why, rearrange the rows of G so that the first m rows are invertible near 0 . Then if $(0, a)^{\top}$ is in the image of the dynamics with $a \approx 0$, we get a u such that $G(x) u=(0, a)^{\top}$. Hence $G_{1}(x) u=0$,

Brockett's Criterion

More generally, we cannot locally continuously stabilize

$$
\dot{x}=u_{1} g_{1}(x)+\ldots+u_{m} g_{m}(x)=G(x) u, \quad x \in \mathbb{R}^{n}
$$

with a C^{1} feedback $K(x)$ if $\operatorname{rank}\left[g_{1}(0), \ldots, g_{m}(0)\right]=m<n$.
This includes all totally nonholonomic mechanical systems.
To see why, rearrange the rows of G so that the first m rows are invertible near 0 . Then if $(0, a)^{\top}$ is in the image of the dynamics with $a \approx 0$, we get a u such that $G(x) u=(0, a)^{\top}$. Hence $G_{1}(x) u=0$, hence $u=0$,

Brockett's Criterion

More generally, we cannot locally continuously stabilize

$$
\dot{x}=u_{1} g_{1}(x)+\ldots+u_{m} g_{m}(x)=G(x) u, \quad x \in \mathbb{R}^{n}
$$

with a C^{1} feedback $K(x)$ if $\operatorname{rank}\left[g_{1}(0), \ldots, g_{m}(0)\right]=m<n$.
This includes all totally nonholonomic mechanical systems.
To see why, rearrange the rows of G so that the first m rows are invertible near 0 . Then if $(0, a)^{\top}$ is in the image of the dynamics with $a \approx 0$, we get a u such that $G(x) u=(0, a)^{\top}$. Hence $G_{1}(x) u=0$, hence $u=0$, so $a=0$.

Brockett's Criterion

More generally, we cannot locally continuously stabilize

$$
\dot{x}=u_{1} g_{1}(x)+\ldots+u_{m} g_{m}(x)=G(x) u, \quad x \in \mathbb{R}^{n}
$$

with a C^{1} feedback $K(x)$ if $\operatorname{rank}\left[g_{1}(0), \ldots, g_{m}(0)\right]=m<n$.
This includes all totally nonholonomic mechanical systems.
To see why, rearrange the rows of G so that the first m rows are invertible near 0 . Then if $(0, a)^{\top}$ is in the image of the dynamics with $a \approx 0$, we get a u such that $G(x) u=(0, a)^{\top}$. Hence $G_{1}(x) u=0$, hence $u=0$, so $a=0$.
We use time-varying feedback or non- C^{1} feedback to overcome such virtual obstacles.

Brockett's Criterion

More generally, we cannot locally continuously stabilize

$$
\dot{x}=u_{1} g_{1}(x)+\ldots+u_{m} g_{m}(x)=G(x) u, \quad x \in \mathbb{R}^{n}
$$

with a C^{1} feedback $K(x)$ if $\operatorname{rank}\left[g_{1}(0), \ldots, g_{m}(0)\right]=m<n$.
This includes all totally nonholonomic mechanical systems.
To see why, rearrange the rows of G so that the first m rows are invertible near 0 . Then if $(0, a)^{\top}$ is in the image of the dynamics with $a \approx 0$, we get a u such that $G(x) u=(0, a)^{\top}$. Hence $G_{1}(x) u=0$, hence $u=0$, so $a=0$.
We use time-varying feedback or non- C^{1} feedback to overcome such virtual obstacles. An example of the first approach follows.

Time-Varying Feebdack

Time-Varying Feebdack

$$
\left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \\
\dot{x}_{2}=u_{2} u_{1} .
\end{array}\right.
$$

Time-Varying Feebdack

$$
\begin{gathered}
\left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \\
\dot{x}_{2}= \\
u_{2} u_{1} .
\end{array}\right. \\
u_{1}=-x_{1}+\sin (t)\left[\cos (t) x_{1}+x_{2}\right] \\
u_{2}=-\sin (t)-\cos (t)
\end{gathered}
$$

Time-Varying Feebdack

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \\
\dot{x}_{2}= \\
u_{2} u_{1}
\end{array}\right. \\
u_{1}=-x_{1}+\sin (t)\left[\cos (t) x_{1}+x_{2}\right] \\
u_{2}=-\sin (t)-\cos (t)
\end{array}\right\} \begin{aligned}
& \dot{x}_{1}=-x_{1}+\sin (t)\left[\cos (t) x_{1}+x_{2}\right] \\
& \dot{x}_{2}=[-\sin (t)-\cos (t)]\left[-x_{1}+\sin (t)\left(\cos (t) x_{1}+x_{2}\right)\right] .
\end{aligned}
$$

Time-Varying Feebdack

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \\
\dot{x}_{2}=u_{2} u_{1} .
\end{array}\right. \\
& u_{1}=-x_{1}+\sin (t)\left[\cos (t) x_{1}+x_{2}\right] \\
& u_{2}=-\sin (t)-\cos (t) \\
& \left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t)\left[\cos (t) x_{1}+x_{2}\right]
\end{array}\right. \\
& \left\{\begin{array}{l}
\dot{x}_{2}=[-\sin (t)-\cos (t)]\left[-x_{1}+\sin (t)\left(\cos (t) x_{1}+x_{2}\right)\right] .
\end{array}\right. \\
& \zeta=\cos (t) x_{1}+x_{2} .
\end{aligned}
$$

Time-Varying Feebdack

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \\
\dot{x}_{2}=u_{2} u_{1} .
\end{array}\right. \\
& u_{1}=-x_{1}+\sin (t)\left[\cos (t) x_{1}+x_{2}\right] \\
& u_{2}=-\sin (t)-\cos (t) \\
& \left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t)\left[\cos (t) x_{1}+x_{2}\right]
\end{array}\right. \\
& \left\{\begin{array}{l}
\dot{x}_{2}=[-\sin (t)-\cos (t)]\left[-x_{1}+\sin (t)\left(\cos (t) x_{1}+x_{2}\right)\right] .
\end{array}\right. \\
& \zeta=\cos (t) x_{1}+x_{2} \cdot \dot{\zeta}=-\sin ^{2}(t) \zeta .
\end{aligned}
$$

Time-Varying Feebdack

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \\
\dot{x}_{2}=u_{2} u_{1} .
\end{array}\right. \\
& u_{1}=-x_{1}+\sin (t)\left[\cos (t) x_{1}+x_{2}\right] \\
& u_{2}=-\sin (t)-\cos (t) \\
& \left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t)\left[\cos (t) x_{1}+x_{2}\right] \\
\dot{x}_{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
\dot{x}_{2}=[-\sin (t)-\cos (t)]\left[-x_{1}+\sin (t)\left(\cos (t) x_{1}+x_{2}\right)\right] .
\end{array}\right. \\
& \zeta=\cos (t) x_{1}+x_{2} \cdot \dot{\zeta}=-\sin ^{2}(t) \zeta . \dot{x}_{1}=-x_{1}+\sin (t) \zeta .
\end{aligned}
$$

Time-Varying Feebdack

$$
\left.\left.\begin{array}{c}
\left\{\begin{array}{l}
\dot{x}_{1}=u_{1} \\
\dot{x}_{2}=
\end{array} u_{2} u_{1} .\right.
\end{array}\right\} \begin{array}{c}
u_{1}=-x_{1}+\sin (t)\left[\cos (t) x_{1}+x_{2}\right] \\
u_{2}=-\sin (t)-\cos (t)
\end{array}\right\} \begin{gathered}
\dot{x}_{1}=-x_{1}+\sin (t)\left[\cos (t) x_{1}+x_{2}\right] \\
\dot{x}_{2}=[-\sin (t)-\cos (t)]\left[-x_{1}+\sin (t)\left(\cos (t) x_{1}+x_{2}\right)\right] . \\
\zeta=\cos (t) x_{1}+x_{2} \cdot \dot{\zeta}=-\sin ^{2}(t) \zeta \cdot \dot{x}_{1}=-x_{1}+\sin (t) \zeta . \\
\left|x\left(t, t_{0}, x_{0}\right)\right| \leq(4+10 \sqrt{e}) e^{-0.5\left(t-t_{0}\right)}\left|x_{0}\right|
\end{gathered}
$$

Effects of Perturbations

Effects of Perturbations

The system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t) \zeta+\delta_{1}(t) \tag{10}\\
\dot{x}_{2}=[-\sin (t)-\cos (t)]\left[-x_{1}+\sin (t) \zeta+\delta_{1}(t)\right]
\end{array}\right.
$$

obtained by adding a perturbation to u_{1} is ISS.

Effects of Perturbations

The system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t) \zeta+\delta_{1}(t) \tag{10}\\
\dot{x}_{2}=[-\sin (t)-\cos (t)]\left[-x_{1}+\sin (t) \zeta+\delta_{1}(t)\right]
\end{array}\right.
$$

obtained by adding a perturbation to u_{1} is ISS.
Proof.

Effects of Perturbations

The system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t) \zeta+\delta_{1}(t) \tag{10}\\
\dot{x}_{2}=[-\sin (t)-\cos (t)]\left[-x_{1}+\sin (t) \zeta+\delta_{1}(t)\right]
\end{array}\right.
$$

obtained by adding a perturbation to u_{1} is ISS.
Proof. The function

$$
\begin{equation*}
V_{s}(t, x)=\frac{1}{2} x_{1}^{2}+\left(4+\frac{\pi}{2}-2 \sin (t) \cos (t)\right)\left[\cos (t) x_{1}+x_{2}\right]^{2} \tag{11}
\end{equation*}
$$

is an ISS Lyapunov function for (10).

Effects of Perturbations

The system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t) \zeta+\delta_{1}(t) \tag{10}\\
\dot{x}_{2}=[-\sin (t)-\cos (t)]\left[-x_{1}+\sin (t) \zeta+\delta_{1}(t)\right]
\end{array}\right.
$$

obtained by adding a perturbation to u_{1} is ISS.
Proof. The function

$$
\begin{equation*}
V_{s}(t, x)=\frac{1}{2} x_{1}^{2}+\left(4+\frac{\pi}{2}-2 \sin (t) \cos (t)\right)\left[\cos (t) x_{1}+x_{2}\right]^{2} \tag{11}
\end{equation*}
$$

is an ISS Lyapunov function for (10). In fact,

$$
\begin{equation*}
\dot{V}_{s}(t, x) \leq-\frac{1}{204} V_{s}(t, x)+3 \times 102^{2} \delta_{1}^{2}(t) \tag{12}
\end{equation*}
$$

along all trajectories of (10), so we have exponential ISS.

Effects of Perturbations

The system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t) \zeta+\delta_{1}(t) \\
\dot{x}_{2}=\left[-\sin (t)-\cos (t)+\delta_{2}(t)\right]\left[-x_{1}+\sin (t) \zeta+\delta_{1}(t)\right] \tag{13}
\end{array}\right.
$$

obtained by adding perturbations to u_{1} and u_{2} is not ISS.

Effects of Perturbations

The system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t) \zeta+\delta_{1}(t) \\
\dot{x}_{2}=\left[-\sin (t)-\cos (t)+\delta_{2}(t)\right]\left[-x_{1}+\sin (t) \zeta+\delta_{1}(t)\right] \tag{13}
\end{array}\right.
$$

obtained by adding perturbations to u_{1} and u_{2} is not ISS.
Proof.

Effects of Perturbations

The system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t) \zeta+\delta_{1}(t) \tag{13}\\
\dot{x}_{2}=\left[-\sin (t)-\cos (t)+\delta_{2}(t)\right]\left[-x_{1}+\sin (t) \zeta+\delta_{1}(t)\right]
\end{array}\right.
$$

obtained by adding perturbations to u_{1} and u_{2} is not ISS.
Proof. Take $\delta=(0, \sin (t)+\cos (t)+1)$ and $z=\left(x_{2}-x_{1}, x_{2}\right)$.

Effects of Perturbations

The system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t) \zeta+\delta_{1}(t) \tag{13}\\
\dot{x}_{2}=\left[-\sin (t)-\cos (t)+\delta_{2}(t)\right]\left[-x_{1}+\sin (t) \zeta+\delta_{1}(t)\right]
\end{array}\right.
$$

obtained by adding perturbations to u_{1} and u_{2} is not ISS.
Proof. Take $\delta=(0, \sin (t)+\cos (t)+1)$ and $z=\left(x_{2}-x_{1}, x_{2}\right)$.
Then z_{1} is constant for all initial conditions.

Effects of Perturbations

The system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t) \zeta+\delta_{1}(t) \tag{13}\\
\dot{x}_{2}=\left[-\sin (t)-\cos (t)+\delta_{2}(t)\right]\left[-x_{1}+\sin (t) \zeta+\delta_{1}(t)\right]
\end{array}\right.
$$

obtained by adding perturbations to u_{1} and u_{2} is not ISS.
Proof. Take $\delta=(0, \sin (t)+\cos (t)+1)$ and $z=\left(x_{2}-x_{1}, x_{2}\right)$.
Then z_{1} is constant for all initial conditions. We conclude from:

Effects of Perturbations

The system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t) \zeta+\delta_{1}(t) \tag{13}\\
\dot{x}_{2}=\left[-\sin (t)-\cos (t)+\delta_{2}(t)\right]\left[-x_{1}+\sin (t) \zeta+\delta_{1}(t)\right]
\end{array}\right.
$$

obtained by adding perturbations to u_{1} and u_{2} is not ISS.
Proof. Take $\delta=(0, \sin (t)+\cos (t)+1)$ and $z=\left(x_{2}-x_{1}, x_{2}\right)$. Then z_{1} is constant for all initial conditions. We conclude from:

Lemma:

Effects of Perturbations

The system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t) \zeta+\delta_{1}(t) \tag{13}\\
\dot{x}_{2}=\left[-\sin (t)-\cos (t)+\delta_{2}(t)\right]\left[-x_{1}+\sin (t) \zeta+\delta_{1}(t)\right]
\end{array}\right.
$$

obtained by adding perturbations to u_{1} and u_{2} is not ISS.
Proof. Take $\delta=(0, \sin (t)+\cos (t)+1)$ and $z=\left(x_{2}-x_{1}, x_{2}\right)$. Then z_{1} is constant for all initial conditions. We conclude from:

Lemma: Assume that $\dot{x}=f(t, x, u)$ has state space $\mathcal{X}=\mathbb{R}^{n}$.

Effects of Perturbations

The system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t) \zeta+\delta_{1}(t) \tag{13}\\
\dot{x}_{2}=\left[-\sin (t)-\cos (t)+\delta_{2}(t)\right]\left[-x_{1}+\sin (t) \zeta+\delta_{1}(t)\right]
\end{array}\right.
$$

obtained by adding perturbations to u_{1} and u_{2} is not ISS.
Proof. Take $\delta=(0, \sin (t)+\cos (t)+1)$ and $z=\left(x_{2}-x_{1}, x_{2}\right)$.
Then z_{1} is constant for all initial conditions. We conclude from:
Lemma: Assume that $\dot{x}=f(t, x, u)$ has state space $\mathcal{X}=\mathbb{R}^{n}$. Let δ be any non-zero input, $L \in \mathbb{R}^{n \times n}$ be invertible, and $z\left(t, t_{0}, z_{0}\right)=L x\left(t, t_{0}, L^{-1} z_{0}, \delta\right)$.

Effects of Perturbations

The system

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-x_{1}+\sin (t) \zeta+\delta_{1}(t) \tag{13}\\
\dot{x}_{2}=\left[-\sin (t)-\cos (t)+\delta_{2}(t)\right]\left[-x_{1}+\sin (t) \zeta+\delta_{1}(t)\right]
\end{array}\right.
$$

obtained by adding perturbations to u_{1} and u_{2} is not ISS.
Proof. Take $\delta=(0, \sin (t)+\cos (t)+1)$ and $z=\left(x_{2}-x_{1}, x_{2}\right)$.
Then z_{1} is constant for all initial conditions. We conclude from:
Lemma: Assume that $\dot{x}=f(t, x, u)$ has state space $\mathcal{X}=\mathbb{R}^{n}$. Let δ be any non-zero input, $L \in \mathbb{R}^{n \times n}$ be invertible, and $z\left(t, t_{0}, z_{0}\right)=L x\left(t, t_{0}, L^{-1} z_{0}, \delta\right)$. If there is an index k such that the k th component z_{k} of $z\left(t, t_{0}, z_{0}\right)$ satisfies $\frac{\partial}{\partial t} z_{k}\left(t, t_{0}, z_{0}\right)=0$ for all $t \geq t_{0} \geq 0$ and all $z_{0} \in \mathbb{R}^{n}$, then the system is not ISS.

Integral ISS (Sontag, SCL, 1998)

Integral ISS (Sontag, SCL, 1998)

We say that $\dot{x}=f(t, x, u)$ is ilSS provided there exist functions $\beta \in \mathcal{K} \mathcal{L}$ and $\gamma_{i} \in \mathcal{K}_{\infty}$ and a modulus $\bar{\alpha}$ with respect to \mathcal{X} s.t. for all initial conditions $x\left(t_{0}\right)=x_{0} \in \mathcal{X}$ and all disturbances d, the corresponding trajectories $t \mapsto \zeta\left(t ; t_{0}, x_{0}, d\right)$ satisfy

$$
\gamma_{1}\left(\left|\zeta\left(t ; t_{0}, x_{0}, d\right)\right|\right) \leq \beta\left(\bar{\alpha}\left(x_{0}\right), t-t_{0}\right)+\int_{t_{0}}^{t} \gamma_{2}(|d(r)|) \mathrm{d} r \forall t \geq t_{0}
$$

Integral ISS (Sontag, SCL, 1998)

We say that $\dot{x}=f(t, x, u)$ is ilSS provided there exist functions $\beta \in \mathcal{K} \mathcal{L}$ and $\gamma_{i} \in \mathcal{K}_{\infty}$ and a modulus $\bar{\alpha}$ with respect to \mathcal{X} s.t. for all initial conditions $x\left(t_{0}\right)=x_{0} \in \mathcal{X}$ and all disturbances d, the corresponding trajectories $t \mapsto \zeta\left(t ; t_{0}, \chi_{0}, d\right)$ satisfy

$$
\gamma_{1}\left(\left|\zeta\left(t ; t_{0}, x_{0}, d\right)\right|\right) \leq \beta\left(\bar{\alpha}\left(x_{0}\right), t-t_{0}\right)+\int_{t_{0}}^{t} \gamma_{2}(|d(r)|) \mathrm{d} r \quad \forall t \geq t_{0} .
$$

This is typically verified by finding iISS Lyapunov functions, which are defined the same way as ISS Lyapunov functions except the decay condition is \exists a positive definite function α and $\gamma \in \mathcal{K}_{\infty}$ such that $\dot{V} \leq-\alpha(|x|)+\gamma(|d|)$ along all trajectories.

Integral ISS (Sontag, SCL, 1998)

We say that $\dot{x}=f(t, x, u)$ is iISS provided there exist functions $\beta \in \mathcal{K} \mathcal{L}$ and $\gamma_{i} \in \mathcal{K}_{\infty}$ and a modulus $\bar{\alpha}$ with respect to \mathcal{X} s.t. for all initial conditions $x\left(t_{0}\right)=x_{0} \in \mathcal{X}$ and all disturbances d, the corresponding trajectories $t \mapsto \zeta\left(t ; t_{0}, \chi_{0}, d\right)$ satisfy

$$
\gamma_{1}\left(\left|\zeta\left(t ; t_{0}, x_{0}, d\right)\right|\right) \leq \beta\left(\bar{\alpha}\left(x_{0}\right), t-t_{0}\right)+\int_{t_{0}}^{t} \gamma_{2}(|d(r)|) \mathrm{d} r \quad \forall t \geq t_{0} .
$$

This is typically verified by finding iISS Lyapunov functions, which are defined the same way as ISS Lyapunov functions except the decay condition is \exists a positive definite function α and $\gamma \in \mathcal{K}_{\infty}$ such that $\dot{V} \leq-\alpha(|x|)+\gamma(|d|)$ along all trajectories.

For example, $\Pi\left(V_{s}\right)$ is an ilSS Lyapunov function for the previous system for a suitable Π.

Integral ISS (Sontag, SCL, 1998)

We say that $\dot{x}=f(t, x, u)$ is iISS provided there exist functions $\beta \in \mathcal{K} \mathcal{L}$ and $\gamma_{i} \in \mathcal{K}_{\infty}$ and a modulus $\bar{\alpha}$ with respect to \mathcal{X} s.t. for all initial conditions $x\left(t_{0}\right)=x_{0} \in \mathcal{X}$ and all disturbances d, the corresponding trajectories $t \mapsto \zeta\left(t ; t_{0}, \chi_{0}, d\right)$ satisfy

$$
\gamma_{1}\left(\left|\zeta\left(t ; t_{0}, x_{0}, d\right)\right|\right) \leq \beta\left(\bar{\alpha}\left(x_{0}\right), t-t_{0}\right)+\int_{t_{0}}^{t} \gamma_{2}(|d(r)|) \mathrm{d} r \forall t \geq t_{0} .
$$

This is typically verified by finding iISS Lyapunov functions, which are defined the same way as ISS Lyapunov functions except the decay condition is \exists a positive definite function α and $\gamma \in \mathcal{K}_{\infty}$ such that $\dot{V} \leq-\alpha(|x|)+\gamma(|d|)$ along all trajectories.

For example, $\Pi\left(V_{s}\right)$ is an ilSS Lyapunov function for the previous system for a suitable Π. Also, $\dot{x}=-\arctan (x)+u$.

Effect of Exponentially Decaying Disturbances

Effect of Exponentially Decaying Disturbances

Consider the following example of Teel-Hespanha, T-AC'04:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=g\left(x_{1} x_{2}\right) x_{1} \tag{14}\\
\dot{x}_{2}=-2 x_{2}+d, x \in \mathbb{R}^{2}, d \in \mathbb{R}
\end{array}\right.
$$

Effect of Exponentially Decaying Disturbances

Consider the following example of Teel-Hespanha, T-AC'04:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=g\left(x_{1} x_{2}\right) x_{1} \tag{14}\\
\dot{x}_{2}=-2 x_{2}+d, x \in \mathbb{R}^{2}, d \in \mathbb{R}
\end{array}\right.
$$

where g is Lipschitz,

Effect of Exponentially Decaying Disturbances

Consider the following example of Teel-Hespanha, T-AC'04:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=g\left(x_{1} x_{2}\right) x_{1} \tag{14}\\
\dot{x}_{2}=-2 x_{2}+d, x \in \mathbb{R}^{2}, d \in \mathbb{R}
\end{array}\right.
$$

where g is Lipschitz, bounded by 1 ,

Effect of Exponentially Decaying Disturbances

Consider the following example of Teel-Hespanha, T-AC'04:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=g\left(x_{1} x_{2}\right) x_{1} \tag{14}\\
\dot{x}_{2}=-2 x_{2}+d, x \in \mathbb{R}^{2}, d \in \mathbb{R}
\end{array}\right.
$$

where g is Lipschitz, bounded by 1 , and satisfies $g(s)=-1$ for all $s \in\left(-\infty, \frac{1}{2}\right] \cup\left[\frac{3}{2}, \infty\right)$ and $g(1)=1$.

Effect of Exponentially Decaying Disturbances

Consider the following example of Teel-Hespanha, T-AC'04:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=g\left(x_{1} x_{2}\right) x_{1} \tag{14}\\
\dot{x}_{2}=-2 x_{2}+d, x \in \mathbb{R}^{2}, d \in \mathbb{R}
\end{array}\right.
$$

where g is Lipschitz, bounded by 1 , and satisfies $g(s)=-1$ for all $s \in\left(-\infty, \frac{1}{2}\right] \cup\left[\frac{3}{2}, \infty\right)$ and $g(1)=1$.
When $d \equiv 0$, the solutions of (14) satisfy $|x(t)| \leq e^{4} e^{-t}|x(0)|$ for all $t \geq 0$ and all initial states $x(0) \in \mathbb{R}^{2}$.

Effect of Exponentially Decaying Disturbances

Consider the following example of Teel-Hespanha, T-AC'04:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=g\left(x_{1} x_{2}\right) x_{1} \tag{14}\\
\dot{x}_{2}=-2 x_{2}+d, x \in \mathbb{R}^{2}, d \in \mathbb{R}
\end{array}\right.
$$

where g is Lipschitz, bounded by 1 , and satisfies $g(s)=-1$ for all $s \in\left(-\infty, \frac{1}{2}\right] \cup\left[\frac{3}{2}, \infty\right)$ and $g(1)=1$.
When $d \equiv 0$, the solutions of (14) satisfy $|x(t)| \leq e^{4} e^{-t}|x(0)|$ for all $t \geq 0$ and all initial states $x(0) \in \mathbb{R}^{2}$.
When $x_{1}(0) \neq 0, x_{2}(0)=x_{1}(0)^{-1}$, and $d(t)=x_{2}(0) e^{-t}$, the solutions are $x_{1}(t)=e^{t} x_{1}(0)$ and $x_{2}(t)=e^{-t} x_{2}(0) \forall t \geq 0$.

Effect of Exponentially Decaying Disturbances

Consider the following example of Teel-Hespanha, T-AC'04:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=g\left(x_{1} x_{2}\right) x_{1} \tag{14}\\
\dot{x}_{2}=-2 x_{2}+d, x \in \mathbb{R}^{2}, d \in \mathbb{R}
\end{array}\right.
$$

where g is Lipschitz, bounded by 1 , and satisfies $g(s)=-1$ for all $s \in\left(-\infty, \frac{1}{2}\right] \cup\left[\frac{3}{2}, \infty\right)$ and $g(1)=1$.
When $d \equiv 0$, the solutions of (14) satisfy $|x(t)| \leq e^{4} e^{-t}|x(0)|$ for all $t \geq 0$ and all initial states $x(0) \in \mathbb{R}^{2}$.
When $x_{1}(0) \neq 0, x_{2}(0)=x_{1}(0)^{-1}$, and $d(t)=x_{2}(0) e^{-t}$, the solutions are $x_{1}(t)=e^{t} x_{1}(0)$ and $x_{2}(t)=e^{-t} x_{2}(0) \forall t \geq 0$.
Hence, there is no strict Lyapunov function for the $d=0$ case that has a gradient bound C.

Effect of Exponentially Decaying Disturbances

Consider the following example of Teel-Hespanha, T-AC'04:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=g\left(x_{1} x_{2}\right) x_{1} \tag{14}\\
\dot{x}_{2}=-2 x_{2}+d, x \in \mathbb{R}^{2}, d \in \mathbb{R}
\end{array}\right.
$$

where g is Lipschitz, bounded by 1 , and satisfies $g(s)=-1$ for all $s \in\left(-\infty, \frac{1}{2}\right] \cup\left[\frac{3}{2}, \infty\right)$ and $g(1)=1$.
When $d \equiv 0$, the solutions of (14) satisfy $|x(t)| \leq e^{4} e^{-t}|x(0)|$ for all $t \geq 0$ and all initial states $x(0) \in \mathbb{R}^{2}$.
When $x_{1}(0) \neq 0, x_{2}(0)=x_{1}(0)^{-1}$, and $d(t)=x_{2}(0) e^{-t}$, the solutions are $x_{1}(t)=e^{t} x_{1}(0)$ and $x_{2}(t)=e^{-t} x_{2}(0) \forall t \geq 0$.
Hence, there is no strict Lyapunov function for the $d=0$ case that has a gradient bound C. In fact, if one existed, then $V(x(t)) \leq V(x(0))+C\left|x_{2}(0)\right|$, by taking $d(t)=x_{2}(0) e^{-t}$.

Original Jurdjevic-Quinn Theorem

Original Jurdjevic-Quinn Theorem

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R} . \tag{15}
\end{equation*}
$$

Original Jurdjevic-Quinn Theorem

$$
\begin{align*}
& \dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R} . \tag{15}\\
& \operatorname{ad}_{f}^{0}(g)=g, \quad \operatorname{ad}_{f}(g)=[f, g]=g_{*} f-f_{*} g, \\
& \operatorname{and}_{\operatorname{ad}_{f}^{k}(g)=\operatorname{ad}_{f}\left(\operatorname{ad}_{f}^{k-1}(g)\right)}
\end{align*}
$$

Original Jurdjevic-Quinn Theorem

$$
\begin{align*}
& \dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R} . \tag{15}\\
& \operatorname{ad}_{f}^{0}(g)=g, \quad \operatorname{ad}_{f}(g)=[f, g]=g_{*} f-f_{*} g, \\
& \operatorname{and}_{\operatorname{ad}_{f}^{k}(g)=\operatorname{ad}_{f}\left(\operatorname{ad}_{f}^{k-1}(g)\right)}
\end{align*}
$$

Theorem: Assume the following:

1. $f(x)=A x$ for some skew symmetric matrix A; and
2. $\operatorname{span}\left\{\left(a d_{f}^{k}(g)\right)(x): k=0,1,2, \ldots\right\}=\mathbb{R}^{n}$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$.

Then the feedback $u(x)=-x^{\top} g(x)$ renders (15) GAS to zero.

Original Jurdjevic-Quinn Theorem

$$
\begin{align*}
& \dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R} . \tag{15}\\
& \operatorname{ad}_{f}^{0}(g)=g, \quad \operatorname{ad}_{f}(g)=[f, g]=g_{*} f-f_{*} g, \\
& \operatorname{and}_{\operatorname{ad}_{f}^{k}(g)=\operatorname{ad}_{f}\left(\operatorname{ad}_{f}^{k-1}(g)\right)}
\end{align*}
$$

Theorem: Assume the following:

1. $f(x)=A x$ for some skew symmetric matrix A; and
2. $\operatorname{span}\left\{\left(a d_{f}^{k}(g)\right)(x): k=0,1,2, \ldots\right\}=\mathbb{R}^{n}$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$.

Then the feedback $u(x)=-x^{\top} g(x)$ renders (15) GAS to zero.
Proof:

Original Jurdjevic-Quinn Theorem

$$
\begin{align*}
& \dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R} . \tag{15}\\
& \operatorname{ad}_{f}^{0}(g)=g, \quad \operatorname{ad}_{f}(g)=[f, g]=g_{*} f-f_{*} g, \\
& \operatorname{and}_{\operatorname{ad}_{f}^{k}(g)=\operatorname{ad}_{f}\left(\operatorname{ad}_{f}^{k-1}(g)\right)}
\end{align*}
$$

Theorem: Assume the following:

1. $f(x)=A x$ for some skew symmetric matrix A; and
2. $\operatorname{span}\left\{\left(\operatorname{ad} d_{f}^{k}(g)\right)(x): k=0,1,2, \ldots\right\}=\mathbb{R}^{n}$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$.

Then the feedback $u(x)=-x^{\top} g(x)$ renders (15) GAS to zero.
Proof: Since $\frac{d}{d t}\left|x\left(t, x_{0}\right)\right|^{2}=-2 u^{2}\left(x\left(t, x_{0}\right)\right) \leq 0$ everywhere, we can use LaSalle Invariance.

Original Jurdjevic-Quinn Theorem

$$
\begin{align*}
& \dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R} . \tag{15}\\
& \operatorname{ad}_{f}^{0}(g)=g, \quad \operatorname{ad}_{f}(g)=[f, g]=g_{*} f-f_{*} g, \\
& \operatorname{and}_{\operatorname{ad}_{f}^{k}(g)=\operatorname{ad}_{f}\left(\operatorname{ad}_{f}^{k-1}(g)\right)}
\end{align*}
$$

Theorem: Assume the following:

1. $f(x)=A x$ for some skew symmetric matrix A; and
2. $\operatorname{span}\left\{\left(\operatorname{ad}_{f}^{k}(g)\right)(x): k=0,1,2, \ldots\right\}=\mathbb{R}^{n}$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$.

Then the feedback $u(x)=-x^{\top} g(x)$ renders (15) GAS to zero.
Proof: Since $\frac{d}{d t}\left|x\left(t, x_{0}\right)\right|^{2}=-2 u^{2}\left(x\left(t, x_{0}\right)\right) \leq 0$ everywhere, we can use LaSalle Invariance.

We can build strict Lyapunov functions under generalized Jurdjevic-Quinn conditions for much more general systems.

Strict Lyapunov Function Construction (MM-FM)

Strict Lyapunov Function Construction (MM-FM)

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{m}, \quad f(0)=0 . \tag{16}
\end{equation*}
$$

Strict Lyapunov Function Construction (MM-FM)

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{m}, \quad f(0)=0 . \tag{16}
\end{equation*}
$$

Assumption J:

Strict Lyapunov Function Construction (MM-FM)

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{m}, \quad f(0)=0 \tag{16}
\end{equation*}
$$

Assumption J : There is a storage function $V: \mathbb{R}^{n} \rightarrow[0, \infty)$ such that $L_{f} V(x) \leq 0$ everywhere.

Strict Lyapunov Function Construction (MM-FM)

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{m}, \quad f(0)=0 . \tag{16}
\end{equation*}
$$

Assumption J : There is a storage function $V: \mathbb{R}^{n} \rightarrow[0, \infty)$ such that $L_{f} V(x) \leq 0$ everywhere. Moreover, there is a smooth scalar function ψ such that if $x \neq 0$ is such that $L_{f} V(x)=0$ and $L_{g} V(x)=0$ both hold, then $L_{f} \psi(x)<0$.

Strict Lyapunov Function Construction (MM-FM)

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{m}, \quad f(0)=0 . \tag{16}
\end{equation*}
$$

Assumption J : There is a storage function $V: \mathbb{R}^{n} \rightarrow[0, \infty)$ such that $L_{f} V(x) \leq 0$ everywhere. Moreover, there is a smooth scalar function ψ such that if $x \neq 0$ is such that $L_{f} V(x)=0$ and $L_{g} V(x)=0$ both hold, then $L_{f} \psi(x)<0$.

Theorem:

Strict Lyapunov Function Construction (MM-FM)

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{m}, \quad f(0)=0 . \tag{16}
\end{equation*}
$$

Assumption J : There is a storage function $V: \mathbb{R}^{n} \rightarrow[0, \infty)$ such that $L_{f} V(x) \leq 0$ everywhere. Moreover, there is a smooth scalar function ψ such that if $x \neq 0$ is such that $L_{f} V(x)=0$ and $L_{g} V(x)=0$ both hold, then $L_{f} \psi(x)<0$.

Theorem: Take any smooth everywhere positive function $\xi: \mathbb{R}^{n} \rightarrow(0, \infty)$.

Strict Lyapunov Function Construction (MM-FM)

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{m}, \quad f(0)=0 . \tag{16}
\end{equation*}
$$

Assumption J : There is a storage function $V: \mathbb{R}^{n} \rightarrow[0, \infty)$ such that $L_{f} V(x) \leq 0$ everywhere. Moreover, there is a smooth scalar function ψ such that if $x \neq 0$ is such that $L_{f} V(x)=0$ and $L_{g} V(x)=0$ both hold, then $L_{f} \psi(x)<0$.
Theorem: Take any smooth everywhere positive function $\xi: \mathbb{R}^{n} \rightarrow(0, \infty)$. We can build C^{1} functions λ and Γ such that

$$
\begin{equation*}
\mathcal{U}(x)=\lambda(V(x)) \psi(x)+\Gamma(V(x)) \tag{17}
\end{equation*}
$$

is a strict Lyapunov function for (16) with $u(x)=-\xi(x) L_{g} V(x)^{\top}$.

Strict Lyapunov Function Construction (MM-FM)

$$
\begin{equation*}
\dot{x}=f(x)+g(x) u, \quad x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{m}, \quad f(0)=0 . \tag{16}
\end{equation*}
$$

Assumption J : There is a storage function $V: \mathbb{R}^{n} \rightarrow[0, \infty)$ such that $L_{f} V(x) \leq 0$ everywhere. Moreover, there is a smooth scalar function ψ such that if $x \neq 0$ is such that $L_{f} V(x)=0$ and $L_{g} V(x)=0$ both hold, then $L_{f} \psi(x)<0$.
Theorem: Take any smooth everywhere positive function $\xi: \mathbb{R}^{n} \rightarrow(0, \infty)$. We can build C^{1} functions λ and Γ such that

$$
\begin{equation*}
\mathcal{U}(x)=\lambda(V(x)) \psi(x)+\Gamma(V(x)) \tag{17}
\end{equation*}
$$

is a strict Lyapunov function for (16) with $u(x)=-\xi(x) L_{g} V(x)^{\top}$. We can extend to $\dot{x}=\mathcal{F}(x, u)$ by assuming its first order expansion in u satisfies Assumption J .

Illustration

Illustration

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \tag{18}\\
\dot{x}_{2}=-x_{1}^{3}+u .
\end{array}\right.
$$

Illustration

$$
\begin{gather*}
\left\{\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-x_{1}^{3}+u
\end{aligned}\right. \tag{18}\\
V\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{4}+\frac{1}{2} x_{2}^{2} \tag{19}
\end{gather*}
$$

Illustration

$$
\begin{align*}
&\left\{\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-x_{1}^{3}+u .
\end{aligned}\right. \tag{18}\\
& V\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{4}+\frac{1}{2} x_{2}^{2} \tag{19}\\
& \psi=x_{1} x_{2} \tag{20}
\end{align*}
$$

Illustration

$$
\begin{gather*}
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}^{3}+u
\end{array}\right. \tag{18}\\
V\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{4}+\frac{1}{2} x_{2}^{2} \tag{19}\\
\psi=x_{1} x_{2} \tag{20}\\
U(x)=V(x)+\delta(V(x)) \psi(x) \\
=\frac{1}{4} x_{1}^{4}+\frac{1}{2} x_{2}^{2}+\delta\left(\frac{1}{4} x_{1}^{4}+\frac{1}{2} x_{2}^{2}\right) x_{1} x_{2}, \quad \text { where } \\
\delta(v)=\frac{v^{2}}{8(1+v)^{2}} .
\end{gather*}
$$

Illustration

$$
\begin{gather*}
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}^{3}+u
\end{array}\right. \tag{18}\\
V\left(x_{1}, x_{2}\right)=\frac{1}{4} x_{1}^{4}+\frac{1}{2} x_{2}^{2} \tag{19}\\
\psi=x_{1} x_{2} \tag{20}\\
U(x)=V(x)+\delta(V(x)) \psi(x) \\
=\frac{1}{4} x_{1}^{4}+\frac{1}{2} x_{2}^{2}+\delta\left(\frac{1}{4} x_{1}^{4}+\frac{1}{2} x_{2}^{2}\right) x_{1} x_{2}, \quad \text { where } \tag{21}\\
\delta(v)=\frac{v^{2}}{8(1+v)^{2}} \cdot \quad u(x)=-\xi(x) x_{2}
\end{gather*}
$$

Euler-Lagrange Systems

Euler-Lagrange Systems

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}(q, \dot{q})\right)-\frac{\partial L}{\partial q}(q, \dot{q})=\tau \tag{22}
\end{equation*}
$$

Euler-Lagrange Systems

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}(q, \dot{q})\right)-\frac{\partial L}{\partial q}(q, \dot{q})=\tau \tag{22}
\end{equation*}
$$

$q \in \mathbb{R}^{n}$ gives generalized configuration.

Euler-Lagrange Systems

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}(q, \dot{q})\right)-\frac{\partial L}{\partial q}(q, \dot{q})=\tau \tag{22}
\end{equation*}
$$

$q \in \mathbb{R}^{n}$ gives generalized configuration. τ is the control.

Euler-Lagrange Systems

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}(q, \dot{q})\right)-\frac{\partial L}{\partial q}(q, \dot{q})=\tau \tag{22}
\end{equation*}
$$

$q \in \mathbb{R}^{n}$ gives generalized configuration. τ is the control.
$L=K-P$ is the difference between the kinetic energy K and the potential energy $P(q) \geq 0$.

Euler-Lagrange Systems

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}(q, \dot{q})\right)-\frac{\partial L}{\partial q}(q, \dot{q})=\tau \tag{22}
\end{equation*}
$$

$q \in \mathbb{R}^{n}$ gives generalized configuration. τ is the control.
$L=K-P$ is the difference between the kinetic energy K and the potential energy $P(q) \geq 0$.
In many applications, $K(q, \dot{q})=\frac{1}{2} \dot{q}^{\top} M(q) \dot{q}$ where the inertia matrix $M(q)$ is C^{1}, symmetric and positive definite for all q.

Euler-Lagrange Systems

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}(q, \dot{q})\right)-\frac{\partial L}{\partial q}(q, \dot{q})=\tau \tag{22}
\end{equation*}
$$

$q \in \mathbb{R}^{n}$ gives generalized configuration. τ is the control.
$L=K-P$ is the difference between the kinetic energy K and the potential energy $P(q) \geq 0$.
In many applications, $K(q, \dot{q})=\frac{1}{2} \dot{q}^{\top} M(q) \dot{q}$ where the inertia matrix $M(q)$ is C^{1}, symmetric and positive definite for all q.

$$
\begin{equation*}
\dot{q}=\frac{\partial V}{\partial p}(q, p)^{\top}, \quad \dot{p}=-\frac{\partial V}{\partial q}(q, p)^{\top}+\tau_{n} \tag{23}
\end{equation*}
$$

Euler-Lagrange Systems

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}(q, \dot{q})\right)-\frac{\partial L}{\partial q}(q, \dot{q})=\tau \tag{22}
\end{equation*}
$$

$q \in \mathbb{R}^{n}$ gives generalized configuration. τ is the control.
$L=K-P$ is the difference between the kinetic energy K and the potential energy $P(q) \geq 0$.
In many applications, $K(q, \dot{q})=\frac{1}{2} \dot{q}^{\top} M(q) \dot{q}$ where the inertia matrix $M(q)$ is C^{1}, symmetric and positive definite for all q.

$$
\begin{equation*}
\dot{q}=\frac{\partial V}{\partial p}(q, p)^{\top}, \quad \dot{p}=-\frac{\partial V}{\partial q}(q, p)^{\top}+\tau_{n} \tag{23}
\end{equation*}
$$

$V(x)=H(q, p)+\Lambda(q)$.

Euler-Lagrange Systems

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}(q, \dot{q})\right)-\frac{\partial L}{\partial q}(q, \dot{q})=\tau \tag{22}
\end{equation*}
$$

$q \in \mathbb{R}^{n}$ gives generalized configuration. τ is the control.
$L=K-P$ is the difference between the kinetic energy K and the potential energy $P(q) \geq 0$.
In many applications, $K(q, \dot{q})=\frac{1}{2} \dot{q}^{\top} M(q) \dot{q}$ where the inertia matrix $M(q)$ is C^{1}, symmetric and positive definite for all q.

$$
\begin{equation*}
\dot{q}=\frac{\partial V}{\partial p}(q, p)^{\top}, \quad \dot{p}=-\frac{\partial V}{\partial q}(q, p)^{\top}+\tau_{n} \tag{23}
\end{equation*}
$$

$V(x)=H(q, p)+\Lambda(q) . p=M(q) \dot{q}$ gives generalized momenta.

Euler-Lagrange Systems

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}(q, \dot{q})\right)-\frac{\partial L}{\partial q}(q, \dot{q})=\tau \tag{22}
\end{equation*}
$$

$q \in \mathbb{R}^{n}$ gives generalized configuration. τ is the control.
$L=K-P$ is the difference between the kinetic energy K and the potential energy $P(q) \geq 0$.
In many applications, $K(q, \dot{q})=\frac{1}{2} \dot{q}^{\top} M(q) \dot{q}$ where the inertia matrix $M(q)$ is C^{1}, symmetric and positive definite for all q.

$$
\begin{equation*}
\dot{q}=\frac{\partial V}{\partial p}(q, p)^{\top}, \quad \dot{p}=-\frac{\partial V}{\partial q}(q, p)^{\top}+\tau_{n} \tag{23}
\end{equation*}
$$

$V(x)=H(q, p)+\Lambda(q) . p=M(q) \dot{q}$ gives generalized momenta. $H(q, p)=\frac{1}{2} p^{\top} M^{-1}(q) p+P(q)$.

Euler-Lagrange Systems

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}(q, \dot{q})\right)-\frac{\partial L}{\partial q}(q, \dot{q})=\tau \tag{22}
\end{equation*}
$$

$q \in \mathbb{R}^{n}$ gives generalized configuration. τ is the control.
$L=K-P$ is the difference between the kinetic energy K and the potential energy $P(q) \geq 0$.
In many applications, $K(q, \dot{q})=\frac{1}{2} \dot{q}^{\top} M(q) \dot{q}$ where the inertia matrix $M(q)$ is C^{1}, symmetric and positive definite for all q.

$$
\begin{equation*}
\dot{q}=\frac{\partial V}{\partial p}(q, p)^{\top}, \quad \dot{p}=-\frac{\partial V}{\partial q}(q, p)^{\top}+\tau_{n} \tag{23}
\end{equation*}
$$

$V(x)=H(q, p)+\Lambda(q) . p=M(q) \dot{q}$ gives generalized momenta.
$H(q, p)=\frac{1}{2} p^{\top} M^{-1}(q) p+P(q) . \tau=\tau_{n}-\frac{\partial \Lambda}{\partial q}(q)^{\top}$.

Euler-Lagrange Systems

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}(q, \dot{q})\right)-\frac{\partial L}{\partial q}(q, \dot{q})=\tau \tag{22}
\end{equation*}
$$

$q \in \mathbb{R}^{n}$ gives generalized configuration. τ is the control.
$L=K-P$ is the difference between the kinetic energy K and the potential energy $P(q) \geq 0$.
In many applications, $K(q, \dot{q})=\frac{1}{2} \dot{q}^{\top} M(q) \dot{q}$ where the inertia matrix $M(q)$ is C^{1}, symmetric and positive definite for all q.

$$
\begin{equation*}
\dot{q}=\frac{\partial V}{\partial p}(q, p)^{\top}, \quad \dot{p}=-\frac{\partial V}{\partial q}(q, p)^{\top}+\tau_{n} \tag{23}
\end{equation*}
$$

$V(x)=H(q, p)+\Lambda(q) . p=M(q) \dot{q}$ gives generalized momenta. $H(q, p)=\frac{1}{2} p^{\top} M^{-1}(q) p+P(q) \cdot \tau=\tau_{n}-\frac{\partial \Lambda}{\partial q}(q)^{\top} \cdot \psi(x)=q^{\top} p$.

Constructing the Auxiliary Function ψ

Constructing the Auxiliary Function ψ

Need $\left[(x \neq 0) \&\left(L_{f} V(x)=0\right) \&\left(L_{g} V(x)=0\right)\right] \Rightarrow\left(L_{f} \psi(x)<0\right)$.

Constructing the Auxiliary Function ψ

Need $\left[(x \neq 0) \&\left(L_{f} V(x)=0\right) \&\left(L_{g} V(x)=0\right)\right] \Rightarrow\left(L_{f} \psi(x)<0\right)$. $g(x) u=f_{1}(x) u_{1}+f_{2}(x) u_{2}+\ldots+f_{m}(x) u_{m}$.

Constructing the Auxiliary Function ψ

Need $\left[(x \neq 0) \&\left(L_{f} V(x)=0\right) \&\left(L_{g} V(x)=0\right)\right] \Rightarrow\left(L_{f} \psi(x)<0\right)$. $g(x) u=f_{1}(x) u_{1}+f_{2}(x) u_{2}+\ldots+f_{m}(x) u_{m} . f(x)=f_{0}(x)$.

Constructing the Auxiliary Function ψ

Need $\left[(x \neq 0) \&\left(L_{f} V(x)=0\right) \&\left(L_{g} V(x)=0\right)\right] \Rightarrow\left(L_{f} \psi(x)<0\right)$.
$g(x) u=f_{1}(x) u_{1}+f_{2}(x) u_{2}+\ldots+f_{m}(x) u_{m} . f(x)=f_{0}(x)$.
We assume the Weak Jurdjevic Quinn Conditions: There exists a smooth function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying:

1. V is positive definite and radially unbounded;
2. for all $x \in \mathbb{R}^{n}, L_{f_{0}} V(x) \leq 0$; and
3. there exists an integer $I \geq 2$ such that the set

$$
W(V)=\left\{\begin{array}{l}
x \in \mathbb{R}^{n}: \forall k \in\{1, \ldots, m\} \text { and } \forall i \in\{0, \ldots, l\} \\
L_{f_{0}} V(x)=L_{a d_{t_{0}}^{i}\left(f_{k}\right)} V(x)=0
\end{array}\right\}
$$

equals $\{0\}$.

Constructing the Auxiliary Function ψ (MM-FM)

Proposition: If $\dot{x}=f_{0}(x)+f_{1}(x) u_{1}+f_{2}(x) u_{2}+\ldots+f_{m}(x) u_{m}$ satisfies the Weak Jurdjevic Quinn Conditions for some integer / and some storage function V, and if we define G by

$$
\begin{equation*}
G=\sum_{i=0}^{I-1} \sum_{k=1}^{m} \lambda_{i, k} \operatorname{ad}_{f_{0}}^{i}\left(f_{k}\right) \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{i, k}=\sum_{j=i}^{I-1}(-1)^{j-i+1} L_{\mathrm{ad}_{f_{0}}^{(2 j-i+1)}\left(f_{k}\right)} V \quad \forall i, k \tag{25}
\end{equation*}
$$

then $\psi(x)=L_{G} V(x)$ satisfies:

Constructing the Auxiliary Function ψ (MM-FM)

Proposition: If $\dot{x}=f_{0}(x)+f_{1}(x) u_{1}+f_{2}(x) u_{2}+\ldots+f_{m}(x) u_{m}$ satisfies the Weak Jurdjevic Quinn Conditions for some integer / and some storage function V, and if we define G by

$$
\begin{equation*}
G=\sum_{i=0}^{I-1} \sum_{k=1}^{m} \lambda_{i, k} \operatorname{ad}_{f_{0}}^{i}\left(f_{k}\right) \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{i, k}=\sum_{j=i}^{I-1}(-1)^{j-i+1} L_{\mathrm{ad}_{f_{0}}^{(2 j-i+1)}\left(f_{k}\right)} V \quad \forall i, k, \tag{25}
\end{equation*}
$$

then $\psi(x)=L_{G} V(x)$ satisfies: If $x \in \mathbb{R}^{n} \backslash\{0\}$, and if $L_{f_{i}} V(x)=0$ for $i=0,1, \ldots, m$, then $L_{f_{0}} \psi(x)<0$.

LaSalle Invariance

LaSalle Invariance

Assume $\dot{x}=f(x)$ has a nonstrict Lyapunov function V so that:

$$
\exists N_{*}>0 \text { s.t. } \forall q \in \mathbb{R}^{n} \backslash\{0\}, \exists i \in\left[1, N_{*}\right] \text { s.t. } L_{f}^{i} V(q) \neq 0 \text {. (NDC) }
$$

LaSalle Invariance

Assume $\dot{x}=f(x)$ has a nonstrict Lyapunov function V so that:

$$
\exists N_{*}>0 \text { s.t. } \forall q \in \mathbb{R}^{n} \backslash\{0\}, \exists i \in\left[1, N_{*}\right] \text { s.t. } L_{f}^{i} V(q) \neq 0 \text {. (NDC) }
$$

This makes the system UGAS, by LaSalle Invariance.

LaSalle Invariance

Assume $\dot{x}=f(x)$ has a nonstrict Lyapunov function V so that:

$$
\exists N_{*}>0 \text { s.t. } \forall q \in \mathbb{R}^{n} \backslash\{0\}, \exists i \in\left[1, N_{*}\right] \text { s.t. } L_{f}^{i} V(q) \neq 0 \text {. (NDC) }
$$

This makes the system UGAS, by LaSalle Invariance.
In fact, if $L_{f} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ along some trajectory, then $L_{f}^{k} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ for all $t \geq 0$ and $k \in \mathbb{N}$, so $L_{f}^{k} V\left(x_{0}\right) \equiv 0$.

LaSalle Invariance

Assume $\dot{x}=f(x)$ has a nonstrict Lyapunov function V so that:

$$
\exists N_{*}>0 \text { s.t. } \forall q \in \mathbb{R}^{n} \backslash\{0\}, \exists i \in\left[1, N_{*}\right] \text { s.t. } L_{f}^{i} V(q) \neq 0 \text {. (NDC) }
$$

This makes the system UGAS, by LaSalle Invariance.
In fact, if $L_{f} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ along some trajectory, then $L_{f}^{k} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ for all $t \geq 0$ and $k \in \mathbb{N}$, so $L_{f}^{k} V\left(x_{0}\right) \equiv 0$.

Question:

LaSalle Invariance

Assume $\dot{x}=f(x)$ has a nonstrict Lyapunov function V so that:

$$
\exists N_{*}>0 \text { s.t. } \forall q \in \mathbb{R}^{n} \backslash\{0\}, \exists i \in\left[1, N_{*}\right] \text { s.t. } L_{f}^{i} V(q) \neq 0 \text {. (NDC) }
$$

This makes the system UGAS, by LaSalle Invariance.
In fact, if $L_{f} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ along some trajectory, then $L_{f}^{k} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ for all $t \geq 0$ and $k \in \mathbb{N}$, so $L_{f}^{k} V\left(x_{0}\right) \equiv 0$.
Question: Can we transform V into a strict Lyapunov function?

LaSalle Invariance

Assume $\dot{x}=f(x)$ has a nonstrict Lyapunov function V so that:

$$
\exists N_{*}>0 \text { s.t. } \forall q \in \mathbb{R}^{n} \backslash\{0\}, \exists i \in\left[1, N_{*}\right] \text { s.t. } L_{f}^{i} V(q) \neq 0 \text {. (NDC) }
$$

This makes the system UGAS, by LaSalle Invariance.
In fact, if $L_{f} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ along some trajectory, then $L_{f}^{k} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ for all $t \geq 0$ and $k \in \mathbb{N}$, so $L_{f}^{k} V\left(x_{0}\right) \equiv 0$.
Question: Can we transform V into a strict Lyapunov function?
Answer:

LaSalle Invariance

Assume $\dot{x}=f(x)$ has a nonstrict Lyapunov function V so that:

$$
\exists N_{*}>0 \text { s.t. } \forall q \in \mathbb{R}^{n} \backslash\{0\}, \exists i \in\left[1, N_{*}\right] \text { s.t. } L_{f}^{i} V(q) \neq 0 \text {. (NDC) }
$$

This makes the system UGAS, by LaSalle Invariance.
In fact, if $L_{f} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ along some trajectory, then $L_{f}^{k} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ for all $t \geq 0$ and $k \in \mathbb{N}$, so $L_{f}^{k} V\left(x_{0}\right) \equiv 0$.
Question: Can we transform V into a strict Lyapunov function?
Answer: Yes.

LaSalle Invariance

Assume $\dot{x}=f(x)$ has a nonstrict Lyapunov function V so that:

$$
\exists N_{*}>0 \text { s.t. } \forall q \in \mathbb{R}^{n} \backslash\{0\}, \exists i \in\left[1, N_{*}\right] \text { s.t. } L_{f}^{i} V(q) \neq 0 \text {. (NDC) }
$$

This makes the system UGAS, by LaSalle Invariance.
In fact, if $L_{f} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ along some trajectory, then $L_{f}^{k} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ for all $t \geq 0$ and $k \in \mathbb{N}$, so $L_{f}^{k} V\left(x_{0}\right) \equiv 0$.
Question: Can we transform V into a strict Lyapunov function?
Answer: Yes. (Mazenc-Nesic, IEEE T-AC, 2004).

LaSalle Invariance

Assume $\dot{x}=f(x)$ has a nonstrict Lyapunov function V so that:

$$
\exists N_{*}>0 \text { s.t. } \forall q \in \mathbb{R}^{n} \backslash\{0\}, \exists i \in\left[1, N_{*}\right] \text { s.t. } L_{f}^{i} V(q) \neq 0 \text {. (NDC) }
$$

This makes the system UGAS, by LaSalle Invariance.
In fact, if $L_{f} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ along some trajectory, then $L_{f}^{k} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ for all $t \geq 0$ and $k \in \mathbb{N}$, so $L_{f}^{k} V\left(x_{0}\right) \equiv 0$.
Question: Can we transform V into a strict Lyapunov function?
Answer: Yes. (Mazenc-Nesic, IEEE T-AC, 2004).
Objective:

LaSalle Invariance

Assume $\dot{x}=f(x)$ has a nonstrict Lyapunov function V so that:

$$
\exists N_{*}>0 \text { s.t. } \forall q \in \mathbb{R}^{n} \backslash\{0\}, \exists i \in\left[1, N_{*}\right] \text { s.t. } L_{f}^{i} V(q) \neq 0 \text {. (NDC) }
$$

This makes the system UGAS, by LaSalle Invariance.
In fact, if $L_{f} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ along some trajectory, then $L_{f}^{k} V\left(x\left(t, x_{0}\right)\right) \equiv 0$ for all $t \geq 0$ and $k \in \mathbb{N}$, so $L_{f}^{k} V\left(x_{0}\right) \equiv 0$.
Question: Can we transform V into a strict Lyapunov function?
Answer: Yes. (Mazenc-Nesic, IEEE T-AC, 2004).
Objective: Find a simpler construction that also applies to t-v systems, and that has a much less restrictive NDC on V.

First Construction

First Construction

We have several other methods for converting a nonstrict Lyapunov function into a strict one.

First Construction

We have several other methods for converting a nonstrict Lyapunov function into a strict one.
We call this process strictification.

First Construction

We have several other methods for converting a nonstrict Lyapunov function into a strict one.
We call this process strictification.
However, this term is not a standard English word.

First Construction

We have several other methods for converting a nonstrict Lyapunov function into a strict one.
We call this process strictification.
However, this term is not a standard English word.
We strictify by adding auxiliary functions to a smoothly transformed nonstrict Lyapunov function.

First Construction

We have several other methods for converting a nonstrict Lyapunov function into a strict one.

We call this process strictification.
However, this term is not a standard English word.
We strictify by adding auxiliary functions to a smoothly transformed nonstrict Lyapunov function.

Let $V \in C^{\infty}$ be a nonstrict Lyapunov function for $\dot{x}=f(t, x)$, $x \in \mathbb{R}^{n}$, with f and V having period T in t.

First Construction (MM-FM)

$$
a_{1}=-\dot{V} .
$$

First Construction (MM-FM)

$$
a_{1}=-\dot{V} . a_{i+1}=-\dot{a}_{i} .
$$

First Construction (MM-FM)

$$
a_{1}=-\dot{V} \cdot a_{i+1}=-\dot{a}_{i} . A_{j}(t, x)=\sum_{m=1}^{j} a_{m+1}(t, x) a_{m}(t, x)
$$

First Construction (MM-FM)

$$
a_{1}=-\dot{V} \cdot a_{i+1}=-\dot{a}_{i} . A_{j}(t, x)=\sum_{m=1}^{j} a_{m+1}(t, x) a_{m}(t, x)
$$

Theorem 1

First Construction (MM-FM)

$$
a_{1}=-\dot{V} . a_{i+1}=-\dot{a}_{i} . A_{j}(t, x)=\sum_{m=1}^{j} a_{m+1}(t, x) a_{m}(t, x) .
$$

Theorem 1
Assume \exists constants $\tau \in(0, T]$ and $\ell \in \mathbb{N}$ and a positive definite continuous function ρ such that for all $x \in \mathbb{R}^{n}$ and all $t \in[0, \tau]$,

$$
\begin{equation*}
a_{1}(t, x)+\sum_{m=2}^{\ell} a_{m}^{2}(t, x) \geq \rho(V(t, x)) . \tag{26}
\end{equation*}
$$

First Construction (MM-FM)

$$
a_{1}=-\dot{V} . a_{i+1}=-\dot{a}_{i} . A_{j}(t, x)=\sum_{m=1}^{j} a_{m+1}(t, x) a_{m}(t, x) .
$$

Theorem 1
Assume \exists constants $\tau \in(0, T]$ and $\ell \in \mathbb{N}$ and a positive definite continuous function ρ such that for all $x \in \mathbb{R}^{n}$ and all $t \in[0, \tau]$,

$$
\begin{equation*}
a_{1}(t, x)+\sum_{m=2}^{\ell} a_{m}^{2}(t, x) \geq \rho(V(t, x)) . \tag{26}
\end{equation*}
$$

Then we can explicitly determine functions \mathcal{F}_{j} and \mathcal{G} such that

$$
\begin{equation*}
V^{\sharp}(t, x)=\sum_{j=1}^{\ell-1} \mathcal{F}_{j}(V(t, x)) A_{j}(t, x)+\mathcal{G}(t, V(t, x)) \tag{27}
\end{equation*}
$$

is a strict Lyapunov function, giving UGAS of the dynamics.

Remarks on Relaxed NDC

The relaxed NDC (5) allows cases where all of the iterated Lie derivatives vanish for some times t.

Remarks on Relaxed NDC

The relaxed NDC (5) allows cases where all of the iterated Lie derivatives vanish for some times t.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\cos (t) x_{2} \tag{28}\\
\dot{x}_{2}=-\cos (t) x_{1}-x_{2}
\end{array}\right.
$$

Remarks on Relaxed NDC

The relaxed NDC (5) allows cases where all of the iterated Lie derivatives vanish for some times t.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\cos (t) x_{2} \tag{28}\\
\dot{x}_{2}=-\cos (t) x_{1}-x_{2}
\end{array}\right.
$$

$$
V(x)=\frac{1}{2}|x|^{2}
$$

Remarks on Relaxed NDC

The relaxed NDC (5) allows cases where all of the iterated Lie derivatives vanish for some times t.

$$
\begin{gather*}
\left\{\begin{array}{l}
\dot{x}_{1}=\cos (t) x_{2} \\
\dot{x}_{2}=-\cos (t) x_{1}-x_{2} .
\end{array}\right. \tag{28}\\
V(x)=\frac{1}{2}|x|^{2}, \ell=3, \text { and } T=2 \pi .
\end{gather*}
$$

Remarks on Relaxed NDC

The relaxed NDC (5) allows cases where all of the iterated Lie derivatives vanish for some times t.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\cos (t) x_{2} \tag{28}\\
\dot{x}_{2}=-\cos (t) x_{1}-x_{2}
\end{array}\right.
$$

$V(x)=\frac{1}{2}|x|^{2}, \ell=3$, and $T=2 \pi$. Nonstrict:

Remarks on Relaxed NDC

The relaxed NDC (5) allows cases where all of the iterated Lie derivatives vanish for some times t.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\cos (t) x_{2} \tag{28}\\
\dot{x}_{2}=-\cos (t) x_{1}-x_{2}
\end{array}\right.
$$

$V(x)=\frac{1}{2}|x|^{2}, \ell=3$, and $T=2 \pi$. Nonstrict: $\dot{V}(x)=-x_{2}^{2}$.

Remarks on Relaxed NDC

The relaxed NDC (5) allows cases where all of the iterated Lie derivatives vanish for some times t.

$$
\begin{gather*}
\left\{\begin{array}{l}
\dot{x}_{1}=\cos (t) x_{2} \\
\dot{x}_{2}=-\cos (t) x_{1}-x_{2} .
\end{array}\right. \tag{28}\\
V(x)=\frac{1}{2}|x|^{2}, \ell=3, \text { and } T=2 \pi . \text { Nonstrict: } \dot{V}(x)=-x_{2}^{2} . \\
a_{1}(t, x)+a_{2}^{2}(t, x)+a_{3}^{2}(t, x) \geq \frac{4 \cos ^{4}(t)}{200(V(x)+1)} V^{2}(x) .
\end{gather*}
$$

Remarks on Relaxed NDC

The relaxed NDC (5) allows cases where all of the iterated Lie derivatives vanish for some times t.

$$
\left\{\begin{array}{l}
\dot{x}_{1}=\cos (t) x_{2} \tag{28}\\
\dot{x}_{2}=-\cos (t) x_{1}-x_{2}
\end{array}\right.
$$

$V(x)=\frac{1}{2}|x|^{2}, \ell=3$, and $T=2 \pi$. Nonstrict: $\dot{V}(x)=-x_{2}^{2}$.

$$
a_{1}(t, x)+a_{2}^{2}(t, x)+a_{3}^{2}(t, x) \geq \frac{4 \cos ^{4}(t)}{200(V(x)+1)} V^{2}(x)
$$

Hence, (5) holds with $\tau=\frac{\pi}{4}$ and $\rho(r)=r^{2} /\{200(r+1)\}$.

Idea of Proof of Thm 1, Part $1 / 3$

Idea of Proof of Thm 1, Part 1/3

Let $\Gamma \in C^{1}$ be any everywhere positive increasing function s.t.

$$
\Gamma(V(t, x)) \geq(\ell+2)\left|a_{m}(t, x)\right|+1
$$

for all $m \in\{1, \ldots, \ell+1\}$ and all $(t, x) \in[0, \infty) \times \mathbb{R}^{n}$.

Idea of Proof of Thm 1, Part 1/3

Let $\Gamma \in C^{1}$ be any everywhere positive increasing function s.t.

$$
\Gamma(V(t, x)) \geq(\ell+2)\left|a_{m}(t, x)\right|+1
$$

for all $m \in\{1, \ldots, \ell+1\}$ and all $(t, x) \in[0, \infty) \times \mathbb{R}^{n}$.
Pick $\omega \in \mathcal{K}_{\infty} \cap C^{1}$ and the strictly increasing everywhere positive function $K \in C^{1}$ such that

$$
\begin{equation*}
\rho(r) \geq \frac{\omega(r)}{K(r)} \forall r \geq 0 \tag{29}
\end{equation*}
$$

Idea of Proof of Thm 1, Part 2/3

Set

$$
k_{\ell-1}(v)=\omega^{2^{\ell-1}}(v)
$$

Idea of Proof of Thm 1, Part 2/3

Set

$$
\begin{aligned}
& k_{\ell-1}(v)=\omega^{2^{\ell-1}}(v) \text { and } k_{p}(v)=k_{\ell-1}(v) \Omega^{1-2^{\ell-p-1}}(v) \\
& \text { for } 1 \leq p \leq \ell-2
\end{aligned}
$$

Idea of Proof of Thm 1, Part 2/3

Set

$$
\begin{align*}
& k_{\ell-1}(v)=\omega^{2^{\ell-1}}(v) \text { and } k_{p}(v)=k_{\ell-1}(v) \Omega^{1-2^{\ell-p-1}}(v) \\
& \text { for } 1 \leq p \leq \ell-2, \text { where } \Omega(v)=\frac{2 \tau \omega(v)}{3 T(\ell-2) \Gamma^{2}(v) K(v)} \tag{30}
\end{align*}
$$

Idea of Proof of Thm 1, Part 2/3

Set

$$
\begin{align*}
& k_{\ell-1}(v)=\omega^{2^{\ell-1}}(v) \text { and } k_{p}(v)=k_{\ell-1}(v) \Omega^{1-2^{\ell-p-1}}(v) \\
& \text { for } 1 \leq p \leq \ell-2, \text { where } \Omega(v)=\frac{2 \tau \omega(v)}{3 T(\ell-2) \Gamma^{2}(v) K(v)} \tag{30}
\end{align*}
$$

and

$$
\begin{equation*}
M_{p}(t, x)=\sum_{m=1}^{p} a_{m+1}(t, x) a_{m}(t, x)+\int_{0}^{V(t, x)} \Gamma(r) \mathrm{d} r \tag{31}
\end{equation*}
$$

Idea of Proof of Thm 1, Part 2/3

Let k_{0} be any C^{1} increasing function such that

$$
\begin{align*}
& k_{0}(V(t, x))+k_{0}^{\prime}(V(t, x)) V(t, x) \geq \\
& \sum_{p=1}^{\ell-1}\left|k_{p}^{\prime}(V(t, x))\right|\left|M_{p}(t, x)\right|+1 \tag{32}
\end{align*}
$$

Idea of Proof of Thm 1, Part 2/3

Let k_{0} be any C^{1} increasing function such that

$$
\begin{align*}
& k_{0}(V(t, x))+k_{0}^{\prime}(V(t, x)) V(t, x) \geq \\
& \sum_{p=1}^{\ell-1}\left|k_{p}^{\prime}(V(t, x))\right|\left|M_{p}(t, x)\right|+1 \tag{32}
\end{align*}
$$

and $q: \mathbb{R} \rightarrow[0,1]$ be any continuous function with period T s.t. $q(t)=0$ for all $t \in[\tau, T]$ and $q(t)=1$ for all $t \in\left[\frac{\tau}{3}, \frac{2 \tau}{3}\right]$.

Idea of Proof of Thm 1, Part 2/3

Let G be any C^{1} function such that

$$
G^{\prime}(v) \geq T\left|k_{\ell-1}(v) \frac{\omega^{\prime}(v) K(v)-\omega(v) K^{\prime}(v)}{K^{2}(v)}+k_{\ell-1}^{\prime}(v) \frac{\omega(v)}{K(v)}\right|
$$

for all $v \geq 0$.

Idea of Proof of Thm 1, Part 3/3

$$
V^{\sharp}(t, x)=V(t, x) S_{3}(t, x)+\kappa(V(t, x)) V(t, x)
$$

Idea of Proof of Thm 1, Part 3/3

$$
\begin{aligned}
& V(t, x)=V(t, x) S_{3}(t, x)+\kappa(V(t, x)) V(t, x), \\
& \text { where } S_{3}(t, x)=S_{1}(t, x)+S_{2}(t, x)
\end{aligned}
$$

Idea of Proof of Thm 1, Part 3/3

$$
\begin{aligned}
& V^{\sharp}(t, x)=V(t, x) S_{3}(t, x)+\kappa(V(t, x)) V(t, x), \\
& \text { where } S_{3}(t, x)=S_{1}(t, x)+S_{2}(t, x), \\
& S_{1}(t, x)=\sum_{p=1}^{\ell-1} k_{p}(V(t, x)) M_{p}(t, x)+k_{0}(V(t, x)) V(t, x)
\end{aligned}
$$

Idea of Proof of Thm 1, Part 3/3

$$
\begin{aligned}
& V^{\sharp}(t, x)=V(t, x) S_{3}(t, x)+\kappa(V(t, x)) V(t, x), \\
& \text { where } S_{3}(t, x)=S_{1}(t, x)+S_{2}(t, x), \\
& S_{1}(t, x)=\sum_{p=1}^{\ell-1} k_{p}(V(t, x)) M_{p}(t, x)+k_{0}(V(t, x)) V(t, x), \\
& S_{2}(t, x)=G(V(t, x)) \\
& +\frac{1}{T}\left(\int_{t-T}^{t} \int_{s}^{t} q(r) \mathrm{d} r \mathrm{~d} s\right) k_{\ell-1}(V(t, x)) \frac{\omega(V(t, x))}{K(V(t, x))}
\end{aligned}
$$

Idea of Proof of Thm 1, Part 3/3

$$
\begin{aligned}
& V^{\sharp}(t, x)=V(t, x) S_{3}(t, x)+\kappa(V(t, x)) V(t, x), \\
& \text { where } S_{3}(t, x)=S_{1}(t, x)+S_{2}(t, x), \\
& \begin{aligned}
S_{1}(t, x) & =\sum_{p=1}^{\ell-1} k_{p}(V(t, x)) M_{p}(t, x)+k_{0}(V(t, x)) V(t, x), \\
S_{2}(t, x) & =G(V(t, x)) \\
& \quad+\frac{1}{T}\left(\int_{t-T}^{t} \int_{s}^{t} q(r) \mathrm{d} r \mathrm{~d} s\right) k_{\ell-1}(V(t, x)) \frac{\omega(V(t, x))}{K(V(t, x))},
\end{aligned}
\end{aligned}
$$

and $\kappa \in C^{1}$ is any increasing function such that $\kappa(V(t, x)) \geq\left|S_{3}(t, x)\right|+1$ everywhere.

Second Construction for $\dot{x}=f(x), x \in \mathcal{X}$

Second Construction for $\dot{x}=f(x), x \in \mathcal{X}$

Assumptions 1

There exist a storage function $V_{1}: \mathcal{X} \rightarrow[0, \infty)$; functions h_{1}, \ldots, h_{m} such that $h_{j}(0)=0$ for all j; everywhere positive functions r_{1}, \ldots, r_{m} and ρ; and an integer $N>0$ for which

$$
\begin{equation*}
\nabla V_{1}(x) f(x) \leq-r_{1}(x) h_{1}^{2}(x)-\ldots-r_{m}(x) h_{m}^{2}(x) \forall x \in \mathcal{X} \tag{33}
\end{equation*}
$$

Second Construction for $\dot{x}=f(x), x \in \mathcal{X}$

Assumptions 1

There exist a storage function $V_{1}: \mathcal{X} \rightarrow[0, \infty)$; functions h_{1}, \ldots, h_{m} such that $h_{j}(0)=0$ for all j; everywhere positive functions r_{1}, \ldots, r_{m} and ρ; and an integer $N>0$ for which

$$
\begin{align*}
& \nabla V_{1}(x) f(x) \leq-r_{1}(x) h_{1}^{2}(x)-\ldots-r_{m}(x) h_{m}^{2}(x) \forall x \in \mathcal{X} \tag{33}\\
& \text { and } \quad \sum_{k=0}^{N-1} \sum_{j=1}^{m}\left[L_{f}^{k} h_{j}(x)\right]^{2} \geq \rho\left(V_{1}(x)\right) V_{1}(x) \forall x \in \mathcal{X} . \tag{34}
\end{align*}
$$

Second Construction for $\dot{x}=f(x), x \in \mathcal{X}$

Assumptions 1

There exist a storage function $V_{1}: \mathcal{X} \rightarrow[0, \infty)$; functions h_{1}, \ldots, h_{m} such that $h_{j}(0)=0$ for all j; everywhere positive functions r_{1}, \ldots, r_{m} and ρ; and an integer $N>0$ for which

$$
\begin{align*}
& \nabla V_{1}(x) f(x) \leq-r_{1}(x) h_{1}^{2}(x)-\ldots-r_{m}(x) h_{m}^{2}(x) \forall x \in \mathcal{X} \tag{33}\\
& \text { and } \sum_{k=0}^{N-1} \sum_{j=1}^{m}\left[L_{f}^{k} h_{j}(x)\right]^{2} \geq \rho\left(V_{1}(x)\right) V_{1}(x) \forall x \in \mathcal{X} . \tag{34}
\end{align*}
$$

Also, $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$, and V_{1} has a positive definite quadratic lower bound in some neighborhood of $0 \in \mathbb{R}^{n}$.

Second Construction for $\dot{x}=f(x), x \in \mathcal{X}$ (MM-FM)

Second Construction for $\dot{x}=f(x), x \in \mathcal{X}$ (MM-FM)

Theorem 2
Assume that $\dot{x}=f(x)$ satisfies Assumptions 1.

Second Construction for $\dot{x}=f(x), x \in \mathcal{X}$ (MM-FM)

Theorem 2
Assume that $\dot{x}=f(x)$ satisfies Assumptions 1. Set

$$
\begin{equation*}
V_{i}(x)=-\sum_{\ell=1}^{m} L_{f}^{i-2} h_{\ell}(x) L_{f}^{i-1} h_{\ell}(x), \quad i=2, \ldots, N \tag{35}
\end{equation*}
$$

Second Construction for $\dot{x}=f(x), x \in \mathcal{X}$ (MM-FM)

Theorem 2
Assume that $\dot{x}=f(x)$ satisfies Assumptions 1. Set

$$
\begin{equation*}
V_{i}(x)=-\sum_{\ell=1}^{m} L_{f}^{i-2} h_{\ell}(x) L_{f}^{i-1} h_{\ell}(x), \quad i=2, \ldots, N . \tag{35}
\end{equation*}
$$

One can determine explicit functions $k_{\ell}, \Omega_{\ell} \in \mathcal{K}_{\infty} \cap C^{1}$ such that

$$
\begin{equation*}
S(x)=\sum_{\ell=1}^{N} \Omega_{\ell}\left(k_{\ell}\left(V_{1}(x)\right)+V_{\ell}(x)\right) \tag{36}
\end{equation*}
$$

is a strict Lyapunov function on \mathcal{X} satisfying $S(x) \geq V_{1}(x)$ on \mathcal{X}.

Second Construction for $\dot{x}=f(x), x \in \mathcal{X}$ (MM-FM)

Theorem 2
Assume that $\dot{x}=f(x)$ satisfies Assumptions 1. Set

$$
\begin{equation*}
V_{i}(x)=-\sum_{\ell=1}^{m} L_{f}^{i-2} h_{\ell}(x) L_{f}^{i-1} h_{\ell}(x), \quad i=2, \ldots, N . \tag{35}
\end{equation*}
$$

One can determine explicit functions $k_{\ell}, \Omega_{\ell} \in \mathcal{K}_{\infty} \cap C^{1}$ such that

$$
\begin{equation*}
S(x)=\sum_{\ell=1}^{N} \Omega_{\ell}\left(k_{\ell}\left(V_{1}(x)\right)+V_{\ell}(x)\right) \tag{36}
\end{equation*}
$$

is a strict Lyapunov function on \mathcal{X} satisfying $S(x) \geq V_{1}(x)$ on \mathcal{X}.
Significance:

Second Construction for $\dot{x}=f(x), x \in \mathcal{X}$ (MM-FM)

Theorem 2
Assume that $\dot{x}=f(x)$ satisfies Assumptions 1. Set

$$
\begin{equation*}
V_{i}(x)=-\sum_{\ell=1}^{m} L_{f}^{i-2} h_{\ell}(x) L_{f}^{i-1} h_{\ell}(x), \quad i=2, \ldots, N . \tag{35}
\end{equation*}
$$

One can determine explicit functions $k_{\ell}, \Omega_{\ell} \in \mathcal{K}_{\infty} \cap C^{1}$ such that

$$
\begin{equation*}
S(x)=\sum_{\ell=1}^{N} \Omega_{\ell}\left(k_{\ell}\left(V_{1}(x)\right)+V_{\ell}(x)\right) \tag{36}
\end{equation*}
$$

is a strict Lyapunov function on \mathcal{X} satisfying $S(x) \geq V_{1}(x)$ on \mathcal{X}.
Significance: New theorem says which functions V_{i} to pick.

Second Construction for $\dot{x}=f(x), x \in \mathcal{X}$ (MM-FM)

Theorem 2
Assume that $\dot{x}=f(x)$ satisfies Assumptions 1. Set

$$
\begin{equation*}
V_{i}(x)=-\sum_{\ell=1}^{m} L_{f}^{i-2} h_{\ell}(x) L_{f}^{i-1} h_{\ell}(x), \quad i=2, \ldots, N . \tag{35}
\end{equation*}
$$

One can determine explicit functions $k_{\ell}, \Omega_{\ell} \in \mathcal{K}_{\infty} \cap C^{1}$ such that

$$
\begin{equation*}
S(x)=\sum_{\ell=1}^{N} \Omega_{\ell}\left(k_{\ell}\left(V_{1}(x)\right)+V_{\ell}(x)\right) \tag{36}
\end{equation*}
$$

is a strict Lyapunov function on \mathcal{X} satisfying $S(x) \geq V_{1}(x)$ on \mathcal{X}.
Significance: Allows any open state space \mathcal{X} containing $0 \in \mathbb{R}^{n}$.

Second Construction for $\dot{x}=f(x), x \in \mathcal{X}$ (MM-FM)

Theorem 2
Assume that $\dot{x}=f(x)$ satisfies Assumptions 1. Set

$$
\begin{equation*}
V_{i}(x)=-\sum_{\ell=1}^{m} L_{f}^{i-2} h_{\ell}(x) L_{f}^{i-1} h_{\ell}(x), \quad i=2, \ldots, N . \tag{35}
\end{equation*}
$$

One can determine explicit functions $k_{\ell}, \Omega_{\ell} \in \mathcal{K}_{\infty} \cap C^{1}$ such that

$$
\begin{equation*}
S(x)=\sum_{\ell=1}^{N} \Omega_{\ell}\left(k_{\ell}\left(V_{1}(x)\right)+V_{\ell}(x)\right) \tag{36}
\end{equation*}
$$

is a strict Lyapunov function on \mathcal{X} satisfying $S(x) \geq V_{1}(x)$ on \mathcal{X}.
Significance: Readily extends to time periodic t-v systems.

Idea of Proof-Part 1/3

Idea of Proof-Part 1/3

Find everywhere positive C^{1} increasing ϕ_{1} and p_{1} s.t.

$$
\begin{equation*}
\nabla V_{i}(x) f(x) \leq-\mathcal{N}_{i}(x)+\phi_{1}\left(V_{1}(x)\right) \sqrt{\mathcal{N}_{i-1}(x)} \sqrt{V_{1}(x)} \tag{37}
\end{equation*}
$$

Idea of Proof-Part 1/3

Find everywhere positive C^{1} increasing ϕ_{1} and p_{1} s.t.

$$
\begin{gather*}
\nabla V_{i}(x) f(x) \leq-\mathcal{N}_{i}(x)+\phi_{1}\left(V_{1}(x)\right) \sqrt{\mathcal{N}_{i-1}(x)} \sqrt{V_{1}(x)} \tag{37}\\
\text { and }\left|V_{i}(x)\right| \leq p_{1}\left(V_{1}(x)\right) V_{1}(x) \tag{38}
\end{gather*}
$$

everywhere when $1 \leq i \leq N$

Idea of Proof-Part 1/3

Find everywhere positive C^{1} increasing ϕ_{1} and p_{1} s.t.

$$
\begin{gather*}
\nabla V_{i}(x) f(x) \leq-\mathcal{N}_{i}(x)+\phi_{1}\left(V_{1}(x)\right) \sqrt{\mathcal{N}_{i-1}(x)} \sqrt{V_{1}(x)} \tag{37}\\
\text { and }\left|V_{i}(x)\right| \leq p_{1}\left(V_{1}(x)\right) V_{1}(x) \tag{38}
\end{gather*}
$$

everywhere when $1 \leq i \leq N$, where

$$
\mathcal{N}_{1}(x)=R(x) \sum_{l=1}^{m} h_{l}^{2}(x)
$$

Idea of Proof-Part 1/3

Find everywhere positive C^{1} increasing ϕ_{1} and p_{1} s.t.

$$
\begin{gather*}
\nabla V_{i}(x) f(x) \leq-\mathcal{N}_{i}(x)+\phi_{1}\left(V_{1}(x)\right) \sqrt{\mathcal{N}_{i-1}(x)} \sqrt{V_{1}(x)} \tag{37}\\
\text { and }\left|V_{i}(x)\right| \leq p_{1}\left(V_{1}(x)\right) V_{1}(x) \tag{38}
\end{gather*}
$$

everywhere when $1 \leq i \leq N$, where

$$
\mathcal{N}_{1}(x)=R(x) \sum_{l=1}^{m} h_{l}^{2}(x), \quad R(x)=\frac{\prod_{i=1}^{m} r_{i}(x)}{\prod_{i=1}^{m}\left[r_{i}(x)+1\right]}
$$

Idea of Proof-Part 1/3

Find everywhere positive C^{1} increasing ϕ_{1} and p_{1} s.t.

$$
\begin{gather*}
\nabla V_{i}(x) f(x) \leq-\mathcal{N}_{i}(x)+\phi_{1}\left(V_{1}(x)\right) \sqrt{\mathcal{N}_{i-1}(x)} \sqrt{V_{1}(x)} \tag{37}\\
\text { and }\left|V_{i}(x)\right| \leq p_{1}\left(V_{1}(x)\right) V_{1}(x) \tag{38}
\end{gather*}
$$

everywhere when $1 \leq i \leq N$, where

$$
\begin{aligned}
& \mathcal{N}_{1}(x)=R(x) \sum_{l=1}^{m} h_{l}^{2}(x), \quad R(x)=\frac{\prod_{i=1}^{m} r_{i}(x)}{\prod_{i=1}^{m}\left[r_{i}(x)+1\right]}, \\
& \text { and } \mathcal{N}_{i}(x)=\sum_{l=1}^{m}\left[L_{f}^{i-1} h_{l}(x)\right]^{2} \forall i \geq 2
\end{aligned}
$$

Idea of Proof-Part 2/3

Find $\underline{\alpha} \in \mathcal{K}_{\infty}$ so that $V_{1}(x) \geq \underline{\alpha}(|x|)$ on \mathcal{X}.

Idea of Proof-Part 2/3

Find $\underline{\alpha} \in \mathcal{K}_{\infty}$ so that $V_{1}(x) \geq \underline{\alpha}(|x|)$ on \mathcal{X}.
Find a decreasing everywhere positive function $\underline{\rho}$ so that

$$
R(x) \geq \underline{\rho}(\underline{\alpha}(|x|)) \geq \underline{\rho}\left(V_{1}(x)\right) \forall x \in \mathcal{X} .
$$

Idea of Proof-Part 2/3

Find $\underline{\alpha} \in \mathcal{K}_{\infty}$ so that $V_{1}(x) \geq \underline{\alpha}(|x|)$ on \mathcal{X}.
Find a decreasing everywhere positive function $\underline{\rho}$ so that

$$
R(x) \geq \underline{\rho}(\underline{\alpha}(|x|)) \geq \underline{\rho}\left(V_{1}(x)\right) \quad \forall x \in \mathcal{X} .
$$

Finally, find a continuous everywhere positive $\tilde{\rho}$ so that

$$
\begin{equation*}
\sum_{i=1}^{N} \mathcal{N}_{i}(x) \geq \tilde{\rho}\left(V_{1}(x)\right) V_{1}(x) \tag{39}
\end{equation*}
$$

everywhere.

Idea of Proof-Part 3/3

Use our Matrosov construction from ACC'08.

Idea of Proof-Part 3/3

Use our Matrosov construction from ACC'08.

$$
S(x)=\Omega_{1}\left(2 V_{1}(x)\right)+\sum_{i=2}^{N} \Omega_{i}\left(U_{i}(x)\right)
$$

Idea of Proof-Part 3/3

Use our Matrosov construction from ACC'08.

$$
\begin{gather*}
S(x)=\Omega_{1}\left(2 V_{1}(x)\right)+\sum_{i=2}^{N} \Omega_{i}\left(U_{i}(x)\right), \text { where } \tag{40}\\
U_{i}(x)=V_{i}(x)+V_{1}(x)\left[1+p_{1}\left(V_{1}(x)\right)\right]
\end{gather*}
$$

Idea of Proof-Part 3/3

Use our Matrosov construction from ACC'08.

$$
\begin{gather*}
S(x)=\Omega_{1}\left(2 V_{1}(x)\right)+\sum_{i=2}^{N} \Omega_{i}\left(U_{i}(x)\right), \text { where } \tag{40}\\
U_{i}(x)=V_{i}(x)+V_{1}(x)\left[1+p_{1}\left(V_{1}(x)\right)\right] \tag{41}
\end{gather*}
$$

$\Omega_{N}(r)=r$,

Idea of Proof-Part 3/3

Use our Matrosov construction from ACC'08.

$$
\begin{gather*}
S(x)=\Omega_{1}\left(2 V_{1}(x)\right)+\sum_{i=2}^{N} \Omega_{i}\left(U_{i}(x)\right), \text { where } \tag{40}\\
U_{i}(x)=V_{i}(x)+V_{1}(x)\left[1+p_{1}\left(V_{1}(x)\right)\right] \tag{41}
\end{gather*}
$$

$\Omega_{N}(r)=r$, and $\left\{\Omega_{i}\right\}_{i=1}^{N-1}$ satisfy

$$
\begin{equation*}
\Omega_{i}^{\prime}\left(U_{i}\right) \geq(N-1)^{2} \frac{8 \phi_{1}^{2}\left(V_{1}\right)}{\tilde{\rho}\left(V_{1}\right)} \sum_{r=1+i}^{N} \Omega_{r}^{\prime}\left(U_{r}\right)^{2} \tag{42}
\end{equation*}
$$

with $\Omega_{i}^{\prime}:[0, \infty) \rightarrow[1, \infty)$ continuous and increasing for each i.

Another Matrosov Construction

Another Matrosov Construction

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \tag{43}\\
\dot{x}_{2}=-x_{1}-x_{2}^{3}
\end{array}\right.
$$

Another Matrosov Construction

$$
\begin{gather*}
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}-x_{2}^{3} .
\end{array}\right. \tag{43}\\
V_{1}(x)=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}\right)^{2}, \quad \mathcal{N}_{1}(x)=\left(x_{1}^{2}+x_{2}^{2}\right) x_{2}^{4}, \\
V_{2}(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right), \quad \mathcal{N}_{2}(x)=x_{2}^{4}, \\
V_{3}(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) x_{1} x_{2}, \quad \text { and } \quad \mathcal{N}_{3}(x)=\frac{1}{2}\left[x_{1}^{2}+x_{2}^{2}\right] x_{1}^{2} .
\end{gather*}
$$

Another Matrosov Construction

$$
\begin{gather*}
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}-x_{2}^{3}
\end{array}\right. \tag{43}\\
V_{1}(x)=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}\right)^{2}, \quad \mathcal{N}_{1}(x)=\left(x_{1}^{2}+x_{2}^{2}\right) x_{2}^{4} \\
V_{2}(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right), \quad \mathcal{N}_{2}(x)=x_{2}^{4} \\
V_{3}(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) x_{1} x_{2}, \quad \text { and } \mathcal{N}_{3}(x)=\frac{1}{2}\left[x_{1}^{2}+x_{2}^{2}\right] x_{1}^{2} . \\
U_{2}(x)=V_{1}(x)+V_{2}(x)
\end{gather*}
$$

Another Matrosov Construction

$$
\begin{gather*}
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}-x_{2}^{3}
\end{array}\right. \tag{43}\\
V_{1}(x)=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}\right)^{2}, \quad \mathcal{N}_{1}(x)=\left(x_{1}^{2}+x_{2}^{2}\right) x_{2}^{4} \\
V_{2}(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right), \quad \mathcal{N}_{2}(x)=x_{2}^{4} \\
V_{3}(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) x_{1} x_{2}, \quad \text { and } \mathcal{N}_{3}(x)=\frac{1}{2}\left[x_{1}^{2}+x_{2}^{2}\right] x_{1}^{2} \\
U_{2}(x)=V_{1}(x)+V_{2}(x) \tag{44}\\
U_{3}(x)=2 V_{1}(x)+V_{3}(x)
\end{gather*}
$$

Another Matrosov Construction

$$
\begin{gather*}
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}-x_{2}^{3}
\end{array}\right. \tag{43}\\
V_{1}(x)=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}\right)^{2}, \quad \mathcal{N}_{1}(x)=\left(x_{1}^{2}+x_{2}^{2}\right) x_{2}^{4} \\
V_{2}(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right), \quad \mathcal{N}_{2}(x)=x_{2}^{4} \\
V_{3}(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) x_{1} x_{2}, \quad \text { and } \mathcal{N}_{3}(x)=\frac{1}{2}\left[x_{1}^{2}+x_{2}^{2}\right] x_{1}^{2} \\
U_{2}(x)=V_{1}(x)+V_{2}(x) \tag{44}\\
U_{3}(x)=2 V_{1}(x)+V_{3}(x) \\
\bar{S}(x)=2 U_{2}(x)+8 U_{2}^{2}(x)+U_{3}(x) \tag{45}
\end{gather*}
$$

Another Matrosov Construction

$$
\begin{gather*}
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}-x_{2}^{3}
\end{array}\right. \tag{43}\\
V_{1}(x)=\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}\right)^{2}, \quad \mathcal{N}_{1}(x)=\left(x_{1}^{2}+x_{2}^{2}\right) x_{2}^{4} \\
V_{2}(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right), \quad \mathcal{N}_{2}(x)=x_{2}^{4} \\
V_{3}(x)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) x_{1} x_{2}, \quad \text { and } \mathcal{N}_{3}(x)=\frac{1}{2}\left[x_{1}^{2}+x_{2}^{2}\right] x_{1}^{2} \\
U_{2}(x)=V_{1}(x)+V_{2}(x) \tag{44}\\
U_{3}(x)=2 V_{1}(x)+V_{3}(x) \\
\bar{S}(x)=2 U_{2}(x)+8 U_{2}^{2}(x)+U_{3}(x) \tag{45}\\
\dot{\bar{S}}(x) \leq-\frac{1}{2} V_{1}(x) \tag{46}
\end{gather*}
$$

Statement of Problem

Statement of Problem

Lotka-Volterra predator-prey dynamics:

Statement of Problem

Lotka-Volterra predator-prey dynamics:

$$
\left\{\begin{align*}
\dot{\chi} & =\gamma \chi\left(1-\frac{\chi}{L}\right)-a \chi \zeta \tag{47}\\
\dot{\zeta} & =\beta \chi \zeta-\Delta \zeta
\end{align*}\right.
$$

Statement of Problem

Lotka-Volterra predator-prey dynamics:

$$
\left\{\begin{array}{l}
\dot{\chi}=\gamma \chi\left(1-\frac{\chi}{L}\right)-a \chi \zeta \tag{47}\\
\dot{\zeta}=\beta \chi \zeta-\Delta \zeta
\end{array}\right.
$$

$\zeta=$ predator. $\chi=$ prey.

Statement of Problem

Lotka-Volterra predator-prey dynamics:

$$
\left\{\begin{array}{l}
\dot{\chi}=\gamma \chi\left(1-\frac{\chi}{L}\right)-a \chi \zeta \tag{47}\\
\dot{\zeta}=\beta \chi \zeta-\Delta \zeta
\end{array}\right.
$$

$\zeta=$ predator. $\chi=$ prey. $a, \beta, \gamma, \Delta, L=$ positive constants.

Statement of Problem

Lotka-Volterra predator-prey dynamics:

$$
\left\{\begin{align*}
\dot{\chi} & =\gamma \chi\left(1-\frac{\chi}{L}\right)-a \chi \zeta \tag{47}\\
\dot{\zeta} & =\beta \chi \zeta-\Delta \zeta
\end{align*}\right.
$$

$\zeta=$ predator. $\chi=$ prey. a, $\beta, \gamma, \Delta, L=$ positive constants.
Change coordinates and rescale to get the error dynamics

Statement of Problem

Lotka-Volterra predator-prey dynamics:

$$
\left\{\begin{align*}
\dot{\chi} & =\gamma \chi\left(1-\frac{\chi}{L}\right)-a \chi \zeta \tag{47}\\
\dot{\zeta} & =\beta \chi \zeta-\Delta \zeta
\end{align*}\right.
$$

$\zeta=$ predator. $\chi=$ prey. a, $\beta, \gamma, \Delta, L=$ positive constants.
Change coordinates and rescale to get the error dynamics

$$
\left\{\begin{align*}
\dot{\tilde{x}} & =-[\tilde{x}+\alpha \tilde{y}]\left(\tilde{x}+x_{*}\right) \tag{48}\\
\dot{\tilde{y}} & =\alpha \tilde{x}\left(\tilde{y}+y_{*}\right)
\end{align*}\right.
$$

Statement of Problem

Lotka-Volterra predator-prey dynamics:

$$
\left\{\begin{align*}
\dot{\chi} & =\gamma \chi\left(1-\frac{\chi}{L}\right)-a \chi \zeta \tag{47}\\
\dot{\zeta} & =\beta \chi \zeta-\Delta \zeta
\end{align*}\right.
$$

$\zeta=$ predator. $\chi=$ prey. a, $\beta, \gamma, \Delta, L=$ positive constants.
Change coordinates and rescale to get the error dynamics

$$
\left\{\begin{align*}
\dot{\tilde{x}} & =-[\tilde{x}+\alpha \tilde{y}]\left(\tilde{x}+x_{*}\right) \tag{48}\\
\dot{\tilde{y}} & =\alpha \tilde{x}\left(\tilde{y}+y_{*}\right)
\end{align*}\right.
$$

with state space $\mathcal{X}=\left(-x_{*},+\infty\right) \times\left(-y_{*},+\infty\right)$,

Statement of Problem

Lotka-Volterra predator-prey dynamics:

$$
\left\{\begin{align*}
\dot{\chi} & =\gamma \chi\left(1-\frac{\chi}{L}\right)-a \chi \zeta \tag{47}\\
\dot{\zeta} & =\beta \chi \zeta-\Delta \zeta
\end{align*}\right.
$$

$\zeta=$ predator. $\chi=$ prey. $a, \beta, \gamma, \Delta, L=$ positive constants.
Change coordinates and rescale to get the error dynamics

$$
\left\{\begin{align*}
\dot{\tilde{x}} & =-[\tilde{x}+\alpha \tilde{y}]\left(\tilde{x}+x_{*}\right) \tag{48}\\
\dot{\tilde{y}} & =\alpha \tilde{x}\left(\tilde{y}+y_{*}\right)
\end{align*}\right.
$$

with state space $\mathcal{X}=\left(-x_{*},+\infty\right) \times\left(-y_{*},+\infty\right)$,

$$
\begin{equation*}
\alpha=\frac{\beta L}{\gamma}, \quad d=\frac{\Delta}{\gamma}, \quad x_{*}=\frac{d}{\alpha} \quad \text { and } \quad y_{*}=\frac{1}{\alpha}-\frac{d}{\alpha^{2}} . \tag{49}
\end{equation*}
$$

Statement of Problem

Lotka-Volterra predator-prey dynamics:

$$
\left\{\begin{align*}
\dot{\chi} & =\gamma \chi\left(1-\frac{\chi}{L}\right)-a \chi \zeta \tag{47}\\
\dot{\zeta} & =\beta \chi \zeta-\Delta \zeta
\end{align*}\right.
$$

$\zeta=$ predator. $\chi=$ prey. a, $\beta, \gamma, \Delta, L=$ positive constants.
Change coordinates and rescale to get the error dynamics

$$
\left\{\begin{align*}
\dot{\tilde{x}} & =-[\tilde{x}+\alpha \tilde{y}]\left(\tilde{x}+x_{*}\right) \tag{48}\\
\dot{\tilde{y}} & =\alpha \tilde{x}\left(\tilde{y}+y_{*}\right)
\end{align*}\right.
$$

with state space $\mathcal{X}=\left(-x_{*},+\infty\right) \times\left(-y_{*},+\infty\right)$,

$$
\begin{equation*}
\alpha=\frac{\beta L}{\gamma}, \quad d=\frac{\Delta}{\gamma}, \quad x_{*}=\frac{d}{\alpha} \quad \text { and } \quad y_{*}=\frac{1}{\alpha}-\frac{d}{\alpha^{2}} . \tag{49}
\end{equation*}
$$

Assume $\alpha>d$.

Statement of Problem

Lotka-Volterra predator-prey dynamics:

$$
\left\{\begin{array}{l}
\dot{\chi}=\gamma \chi\left(1-\frac{\chi}{L}\right)-a \chi \zeta \tag{47}\\
\dot{\zeta}=\beta \chi \zeta-\Delta \zeta
\end{array}\right.
$$

$\zeta=$ predator. $\chi=$ prey. a, $\beta, \gamma, \Delta, L=$ positive constants.
Change coordinates and rescale to get the error dynamics

$$
\left\{\begin{align*}
\dot{\tilde{x}} & =-[\tilde{x}+\alpha \tilde{y}]\left(\tilde{x}+x_{*}\right) \tag{48}\\
\dot{\tilde{y}} & =\alpha \tilde{x}\left(\tilde{y}+y_{*}\right)
\end{align*}\right.
$$

with state space $\mathcal{X}=\left(-x_{*},+\infty\right) \times\left(-y_{*},+\infty\right)$,

$$
\begin{equation*}
\alpha=\frac{\beta L}{\gamma}, \quad d=\frac{\Delta}{\gamma}, \quad x_{*}=\frac{d}{\alpha} \quad \text { and } \quad y_{*}=\frac{1}{\alpha}-\frac{d}{\alpha^{2}} . \tag{49}
\end{equation*}
$$

Assume $\alpha>d$. Want a global strict Lyapunov function for (48).

Use of Theorem 2

Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set.

Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set.

Our result is original and significant because we provide a global strict Lyapunov function.

Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set.

Our result is original and significant because we provide a global strict Lyapunov function.

$$
\begin{equation*}
V_{1}(\tilde{x}, \tilde{y})=\tilde{x}-x_{*} \ln \left(1+\frac{\tilde{x}}{x_{*}}\right)+\tilde{y}-y_{*} \ln \left(1+\frac{\tilde{y}}{y_{*}}\right) \tag{50}
\end{equation*}
$$

Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set.

Our result is original and significant because we provide a global strict Lyapunov function.

$$
\begin{equation*}
V_{1}(\tilde{x}, \tilde{y})=\tilde{x}-x_{*} \ln \left(1+\frac{\tilde{x}}{x_{*}}\right)+\tilde{y}-y_{*} \ln \left(1+\frac{\tilde{y}}{y_{*}}\right) \tag{50}
\end{equation*}
$$

Nonstrict Lyapunov decay condition:

Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set.

Our result is original and significant because we provide a global strict Lyapunov function.

$$
\begin{equation*}
V_{1}(\tilde{x}, \tilde{y})=\tilde{x}-x_{*} \ln \left(1+\frac{\tilde{x}}{x_{*}}\right)+\tilde{y}-y_{*} \ln \left(1+\frac{\tilde{y}}{y_{*}}\right) \tag{50}
\end{equation*}
$$

Nonstrict Lyapunov decay condition: $\dot{V}_{1}(\tilde{x}, \tilde{y}) \leq-|\tilde{x}|^{2}$.

Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set.

Our result is original and significant because we provide a global strict Lyapunov function.

$$
\begin{equation*}
V_{1}(\tilde{x}, \tilde{y})=\tilde{x}-x_{*} \ln \left(1+\frac{\tilde{x}}{x_{*}}\right)+\tilde{y}-y_{*} \ln \left(1+\frac{\tilde{y}}{y_{*}}\right) \tag{50}
\end{equation*}
$$

Nonstrict Lyapunov decay condition: $\dot{V}_{1}(\tilde{x}, \tilde{y}) \leq-|\tilde{x}|^{2}$.
Auxiliary function from theorem:

Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra models available based on computing the LaSalle invariant set.

Our result is original and significant because we provide a global strict Lyapunov function.

$$
\begin{equation*}
V_{1}(\tilde{x}, \tilde{y})=\tilde{x}-x_{*} \ln \left(1+\frac{\tilde{x}}{x_{*}}\right)+\tilde{y}-y_{*} \ln \left(1+\frac{\tilde{y}}{y_{*}}\right) \tag{50}
\end{equation*}
$$

Nonstrict Lyapunov decay condition: $\dot{V}_{1}(\tilde{x}, \tilde{y}) \leq-|\tilde{x}|^{2}$.
Auxiliary function from theorem: $V_{2}(\tilde{x}, \tilde{y})=\tilde{x}[\tilde{x}+\alpha \tilde{y}]\left(\tilde{x}+x_{*}\right)$.

Strict Lyapunov Function Construction (MM-FM)

Strict Lyapunov Function Construction (MM-FM)

$$
\begin{align*}
S(\tilde{x}, \tilde{y})= & V_{2}(\tilde{x}, \tilde{y})+\int_{0}^{V_{1}(\tilde{x}, \tilde{y})} \phi_{1}(r) \mathrm{d} r \tag{51}\\
& +\left[p_{1}\left(V_{1}(\tilde{x}, \tilde{y})\right)+1\right] V_{1}(\tilde{x}, \tilde{y}),
\end{align*}
$$

Strict Lyapunov Function Construction (MM-FM)

$$
\begin{align*}
S(\tilde{x}, \tilde{y})= & V_{2}(\tilde{x}, \tilde{y})+\int_{0}^{V_{1}(\tilde{x}, \tilde{y})} \phi_{1}(r) \mathrm{d} r \tag{51}\\
& +\left[p_{1}\left(V_{1}(\tilde{x}, \tilde{y})\right)+1\right] V_{1}(\tilde{x}, \tilde{y}),
\end{align*}
$$

where

$$
\phi_{1}(r)=2\left[\left(289 x_{*}+144 \alpha y_{*}\right)^{2}+144 \alpha^{2} x_{*} y_{*}\right] e^{2\left(\frac{1}{x_{*}}+\frac{1}{y_{*}}\right) r}
$$

Strict Lyapunov Function Construction (MM-FM)

$$
\begin{align*}
S(\tilde{x}, \tilde{y})= & V_{2}(\tilde{x}, \tilde{y})+\int_{0}^{V_{1}(\tilde{x}, \tilde{y})} \phi_{1}(r) \mathrm{d} r \tag{51}\\
& +\left[p_{1}\left(V_{1}(\tilde{x}, \tilde{y})\right)+1\right] V_{1}(\tilde{x}, \tilde{y}),
\end{align*}
$$

where

$$
\phi_{1}(r)=2\left[\left(289 x_{*}+144 \alpha y_{*}\right)^{2}+144 \alpha^{2} x_{*} y_{*}\right] e^{2\left(\frac{1}{x_{*}}+\frac{1}{y_{*}}\right) r}
$$

and

$$
p_{1}(r)=1536\left(x_{*}+1\right)(\alpha+1)\left(1+x_{*}+y_{*}\right)^{4}(1+r)^{3} .
$$

Strict Lyapunov Function Construction (MM-FM)

$$
\begin{align*}
S(\tilde{x}, \tilde{y})= & V_{2}(\tilde{x}, \tilde{y})+\int_{0}^{V_{1}(\tilde{x}, \tilde{y})} \phi_{1}(r) \mathrm{d} r \tag{51}\\
& +\left[p_{1}\left(V_{1}(\tilde{x}, \tilde{y})\right)+1\right] V_{1}(\tilde{x}, \tilde{y}),
\end{align*}
$$

where

$$
\phi_{1}(r)=2\left[\left(289 x_{*}+144 \alpha y_{*}\right)^{2}+144 \alpha^{2} x_{*} y_{*}\right] e^{2\left(\frac{1}{x_{*}}+\frac{1}{y_{*}}\right) r}
$$

and

$$
p_{1}(r)=1536\left(x_{*}+1\right)(\alpha+1)\left(1+x_{*}+y_{*}\right)^{4}(1+r)^{3} .
$$

Along the trajectories of the L-V error dynamics,

$$
\begin{equation*}
\dot{S} \leq-\frac{1}{4}\left[\tilde{x}^{2}+\left\{(\tilde{x}+\alpha \tilde{y})\left(\tilde{x}+x_{*}\right)\right\}^{2}\right] . \tag{52}
\end{equation*}
$$

Conclusions

Conclusions

- The point stabilization and strict Lyapunov function construction problems are closely related.

Conclusions

- The point stabilization and strict Lyapunov function construction problems are closely related.
- Even if the system is time invariant, time-varying feedbacks are often required because of Brockett's Condition.

Conclusions

- The point stabilization and strict Lyapunov function construction problems are closely related.
- Even if the system is time invariant, time-varying feedbacks are often required because of Brockett's Condition.
- While UGAS can be established using nonstrict Lyapunov functions, strict Lyapunov functions are much more useful.

Conclusions

- The point stabilization and strict Lyapunov function construction problems are closely related.
- Even if the system is time invariant, time-varying feedbacks are often required because of Brockett's Condition.
- While UGAS can be established using nonstrict Lyapunov functions, strict Lyapunov functions are much more useful.
- For example, strict Lyapunov functions can give ISS, which is a central unifying paradigm in nonlinear control.

Conclusions

- The point stabilization and strict Lyapunov function construction problems are closely related.
- Even if the system is time invariant, time-varying feedbacks are often required because of Brockett's Condition.
- While UGAS can be established using nonstrict Lyapunov functions, strict Lyapunov functions are much more useful.
- For example, strict Lyapunov functions can give ISS, which is a central unifying paradigm in nonlinear control.
- The Jurdjevic-Quinn, LaSalle, and Matrosov approaches transform nonstrict Lyapunov functions into strict ones.

Conclusions

- The point stabilization and strict Lyapunov function construction problems are closely related.
- Even if the system is time invariant, time-varying feedbacks are often required because of Brockett's Condition.
- While UGAS can be established using nonstrict Lyapunov functions, strict Lyapunov functions are much more useful.
- For example, strict Lyapunov functions can give ISS, which is a central unifying paradigm in nonlinear control.
- The Jurdjevic-Quinn, LaSalle, and Matrosov approaches transform nonstrict Lyapunov functions into strict ones.
- Extensions exist for multiple time scales and unknown parameters, e.g., adaptive, delayed, and hybrid systems.

References

References

L. Faubourg and J-B. Pomet. Control Lyapunov functions for homogeneous "Jurdjevic-Quinn" systems. ESAIM: Control, Optimisation and Calculus of Variations, 5:293-311, 2000.

References

L. Faubourg and J-B. Pomet. Control Lyapunov functions for homogeneous "Jurdjevic-Quinn" systems. ESAIM: Control, Optimisation and Calculus of Variations, 5:293-311, 2000.
V. Jurdjevic and J.P. Quinn. Controllability and stability. Journal of Differential Equations, 28(3):381-389, 1978.

References

L. Faubourg and J-B. Pomet. Control Lyapunov functions for homogeneous "Jurdjevic-Quinn" systems. ESAIM: Control, Optimisation and Calculus of Variations, 5:293-311, 2000.
V. Jurdjevic and J.P. Quinn. Controllability and stability. Journal of Differential Equations, 28(3):381-389, 1978.
F. Mazenc and M. Malisoff. Strict Lyapunov function constructions under LaSalle conditions with an application to Lotka-Volterra systems. IEEE TAC, 55(4):841-854, April 2010.

References

L. Faubourg and J-B. Pomet. Control Lyapunov functions for homogeneous "Jurdjevic-Quinn" systems. ESAIM: Control, Optimisation and Calculus of Variations, 5:293-311, 2000.
V. Jurdjevic and J.P. Quinn. Controllability and stability. Journal of Differential Equations, 28(3):381-389, 1978.
F. Mazenc and M. Malisoff. Strict Lyapunov function constructions under LaSalle conditions with an application to Lotka-Volterra systems. IEEE TAC, 55(4):841-854, April 2010.
E.D. Sontag. Smooth stabilization implies coprime factorization. IEEE TAC, 34(4):435-443, April 1989.

References

L. Faubourg and J-B. Pomet. Control Lyapunov functions for homogeneous "Jurdjevic-Quinn" systems. ESAIM: Control, Optimisation and Calculus of Variations, 5:293-311, 2000.
V. Jurdjevic and J.P. Quinn. Controllability and stability. Journal of Differential Equations, 28(3):381-389, 1978.
F. Mazenc and M. Malisoff. Strict Lyapunov function constructions under LaSalle conditions with an application to Lotka-Volterra systems. IEEE TAC, 55(4):841-854, April 2010.
E.D. Sontag. Smooth stabilization implies coprime factorization. IEEE TAC, 34(4):435-443, April 1989.
E.D. Sontag. Comments on integral variants of ISS. Systems and Control Letters, 34(1-2):93-100, 1998.

