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What Are Perturbed Control Systems ?

These are triply parameterized families of ODEs of the form

Y ′(t) = F
(
t,Y (t), u(t,Y (t)), Γ, δ(t)

)
, Y (t) ∈ Y. (1)

Y ⊆ Rn. We have freedom to choose the control function u.
The functions δ : [0,∞)→ D represent uncertainty. D ⊆ Rm.
The vector Γ is constant but unknown.

Specify u to get a doubly parameterized closed loop family

Y ′(t) = G(t,Y (t), Γ, δ(t)), Y (t) ∈ Y, (2)

where G(t,Y , Γ, d) = F(t,Y , u(t,Y ), Γ, d).

Typically we construct u such that all trajectories of (2) for all
possible choices of δ satisfy some control objective.
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What is One Possible Control Objective ?

Input-to-state stability generalizes global asymptotic stability.

Y ′(t) = G(t,Y (t), Γ), Y (t) ∈ Y (Σ)

|Y (t)| ≤ γ1

(
et0−tγ2(|Y (t0)|)

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Y ′(t) = G
(
t,Y (t), Γ, δ(t)

)
, Y (t) ∈ Y (Σpert)

|Y (t)| ≤ γ1

(
et0−tγ2(|Y (t0)|)

)
+ γ3(|δ|[t0,t]) (ISS)

Find γi ’s by building special strict LFs for Y ′(t) = G(t,Y (t), Γ, 0).

Ex : Σpert is ISS iff it has an ISS Lyapunov function (Sontag-Wang)
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Adaptive Tracking and Parameter Identification

Consider a perturbed control system

ξ̇ = J (t, ξ, Γ, u, δ) (3)

with a smooth reference trajectory ξR for a reference control uR .
That means ξ′R(t) = J (t, ξR(t), Γ, uR(t), 0) ∀t ≥ 0.

Problem: Find a dynamic feedback and a parameter estimator

u(t, ξ, Γ̂) and
·
Γ̂ = τ(t, ξ, Γ̂) (4)

that makes the Y = (ξ̃, Γ̃) = (ξ − ξR , Γ̂− Γ) dynamics ISS.

Flight control, electrical and mechanical engineering, etc.
Persistent excitation. Annaswamy, Narendra, Teel,..

We proved a general theorem about how this can be solved.
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Application: 2D Curve Tracking for Marine Robots

Motivation: Search for pollutants from Deepwater Horizon disaster.

ρ = |r2 − r1|, φ = angle between x1 and x2, cos(φ) = x1 · x2
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Adaptive Robust Curve Tracking

{
ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ + Γ[u + δ]

(ρ, φ) ∈
state space︷ ︸︸ ︷

(0,∞)× (−π/2, π/2) (Σc)

h(ρ) = α
{
ρ+

ρ2
0
ρ − 2ρ0

}
, ρ0 = desired value for ρ (5)

Control : u(ρ, φ, Γ̂) = − 1
Γ̂

(
κ cos(φ)

1+κρ − h′(ρ) cos(φ) + µ sin(φ)
)

(6)

Estimator :
˙̂
Γ = (Γ̂− cmin)(cmax − Γ̂)∂V

](ρ,φ)
∂φ u(ρ, φ, Γ̂) (7)

V ](ρ, φ) = − h′(ρ) sin(φ) +

∫ V (ρ,φ)

0
γ(m)dm (8)

γ(q) = 1
µ

(
2

α2ρ4
0
(q + 2αρ0)3 + 1

)
+ µ

2 + 2 + 18α
ρ0

+ 576
ρ4

0α
2 q3 (9)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (10)
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Robustly Forwardly Invariant Hexagonal Regions

We must restrict the suprema of the perturbations δ(t) to keep
(ρ, φ) from exiting the required state space (0,∞)× (−π/2, π/2).

View the state space (0,∞)× (−π/2, π/2)
as a union of compact hexagonally
shaped regions H1 ⊆ H2 ⊆ . . . ⊆ Hi ⊆ . . ..
For each i , all trajectories of (Σc) starting
in Hi for all δ : [0,∞)→ [−δ∗i , δ∗i ] stay
in Hi . The tilted legs have slope cminµ/cmax.

For each index i , we take δ∗i to be the largest allowable
disturbance bound to maintain forward invariance of Hi .

Then we can prove ISS of the tracking and parameter identification
dynamics for each set Hi for the disturbance set D = [−δ∗i , δ∗i ].
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Summary (M. and Zhang, Automatica, 2013)

Theorem

Let κ > 0 and ρ0 > 0 be any constants. Let cmin and cmax be any
positive constants such that cmin < Γ < cmax. Let i ∈ N, and let
Hi and δ∗i satisfy the above requirements. Then the augmented
perturbed 2D tracking and parameter identification dynamics

Ẏ1 = − sin(Y2)

Ẏ2 = κ cos(Y2)
1+κ(Y1+ρ0) + Γu

(
Y1 + ρ0,Y2, Γ̂

)
+ Γδ

˙̃
Γ = u

(
Y1 + ρ0,Y2, Γ̂

)(
Γ̂− cmin

)(
cmax − Γ̂

)∂V ](Y1+ρ0,Y2)
∂Y2

for Y = (Y1,Y2, Γ̃) = (ρ− ρ0, φ, Γ̂− Γ) is ISS on the state space
Y = (Hi − {(ρ0, 0)})× (cmin − Γ, cmax − Γ) for D = [−δ∗i , δ∗i ].
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Conclusions

It is important but complicated to design controllers when
there are unknown parameters that we must identify.

We overcame this challenge for an interesting large class of
dynamics, including 2D curve tracking dynamics.

Our robust forward invariance approach leads to input-to-state
stability under maximal perturbation bounds.

We can also cover time delayed perturbed systems which
model intermittent communication in marine environments.

We can generalize our work to 3D curve tracking and we plan
extensions to cases with other obstacles.
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