Adaptive Tracking and Parameter Identification

Michael Malisoff
Basic Problem Formulation

Consider a system of differential equations

\[\dot{\xi} = f(\xi, P, u) \] \hspace{1cm} (1)

with a vector \(P \) of unknown constant parameters and functions \(\xi_R \) and \(u_R \) such that \(\dot{\xi}_R(t) = f(\xi_R(t), P, u_R(t)) \) for all \(t \geq 0 \).
Basic Problem Formulation

Consider a system of differential equations

\[\dot{\xi} = f(\xi, P, u) \] \hspace{1cm} (1)

with a vector \(P \) of unknown constant parameters and functions \(\xi_R \) and \(u_R \) such that \(\dot{\xi}_R(t) = f(\xi_R(t), P, u_R(t)) \) for all \(t \geq 0 \).

Problem:
Basic Problem Formulation

Consider a system of differential equations

\[\dot{\xi} = f(\xi, P, u) \] \hspace{1cm} (1)

with a vector \(P \) of unknown constant parameters and functions \(\xi_R \) and \(u_R \) such that \(\dot{\xi}_R(t) = f(\xi_R(t), P, u_R(t)) \) for all \(t \geq 0 \).

Problem: Find \(u(\xi, \hat{P}) \) and a system of differential equations

\[\dot{\hat{P}} = g(\xi, \hat{P}) \] \hspace{1cm} (2)

such that with the control choice \(u(\xi, \hat{P}) \) in (1), all solutions \(Y = (\tilde{\xi}, \tilde{P}) = (\xi - \xi_R, P - \hat{P}) \) converge to 0 as \(t \to +\infty \).
Basic Problem Formulation

Consider a system of differential equations

\[\dot{\xi} = f(\xi, P, u) \] \hspace{1cm} (1)

with a vector P of unknown constant parameters and functions ξ_R and u_R such that $\dot{\xi}_R(t) = f(\xi_R(t), P, u_R(t))$ for all $t \geq 0$.

Problem: Find $u(\xi, \hat{P})$ and a system of differential equations

\[\dot{\hat{P}} = g(\xi, \hat{P}) \] \hspace{1cm} (2)

such that with the control choice $u(\xi, \hat{P})$ in (1), all solutions $Y = (\tilde{\xi}, \tilde{\hat{P}}) = (\xi - \xi_R, P - \hat{P})$ converge to 0 as $t \to +\infty$.

Lavretsky-Wise, Narendra-Annaswamy, Sastry-Bodson,...
Basic Problem Formulation

Consider a system of differential equations

\[\dot{\xi} = f(\xi, P, u) \] \hspace{1cm} (1)

with a vector \(P \) of unknown constant parameters and functions \(\xi_R \) and \(u_R \) such that \(\dot{\xi}_R(t) = f(\xi_R(t), P, u_R(t)) \) for all \(t \geq 0 \).

Problem: Find \(u(\xi, \hat{P}) \) and a system of differential equations

\[\dot{\hat{P}} = g(\xi, \hat{P}) \] \hspace{1cm} (2)

such that with the control choice \(u(\xi, \hat{P}) \) in (1), all solutions \(Y = (\tilde{\xi}, \tilde{P}) = (\xi - \xi_R, P - \hat{P}) \) converge to 0 as \(t \to +\infty \).

Basar, Cortes, Dixon, Duncan, Krstic, Morse, Ortega, Yucelen,...
Basic Problem Formulation

Consider a system of differential equations

\[\dot{\xi} = f(\xi, P, u) \]

(1)

with a vector \(P \) of unknown constant parameters and functions \(\xi_R \) and \(u_R \) such that \(\dot{\xi}_R(t) = f(\xi_R(t), P, u_R(t)) \) for all \(t \geq 0 \).

Problem: Find \(u(\xi, \hat{P}) \) and a system of differential equations

\[\dot{\hat{P}} = g(\xi, \hat{P}) \]

(2)

such that with the control choice \(u(\xi, \hat{P}) \) in (1), all solutions \(Y = (\tilde{\xi}, \tilde{P}) = (\xi - \xi_R, P - \hat{P}) \) converge to 0 as \(t \to +\infty \).

Flight control, mechanical systems, robotics,...
Adaptive Robotic Curve Tracking
Adaptive Robotic Curve Tracking

Our more general settings: Perturbations and state constraints, motivated by our robotics field work at Grand Isle, Louisiana.
Adaptive Robotic Curve Tracking

Our more general settings: Perturbations and state constraints, motivated by our robotics field work at Grand Isle, Louisiana.

Gyroscopic models: Steering command control for convergence to parallel motion to, but positive distance from, curve.
Adaptive Robotic Curve Tracking

Our more general settings: Perturbations and state constraints, motivated by our robotics field work at Grand Isle, Louisiana.

Gyroscopic models: Steering command control for convergence to parallel motion to, but positive distance from, curve.

Lyapunov function: Needed because of nonlinearities and uncertainties preclude solving for explicit flow maps...
Adaptive Robotic Curve Tracking

Our more general settings: Perturbations and state constraints, motivated by our robotics field work at Grand Isle, Louisiana.

Gyrosopic models: Steering command control for convergence to parallel motion to, but positive distance from, curve.

Lyapunov function: Needed because of nonlinearities and uncertainties preclude solving for explicit flow maps...

Adaptive control: We identified control gains and curvatures under input delays, perturbations, and state constraints...
Adaptive Robotic Curve Tracking

Our more general settings: Perturbations and state constraints, motivated by our robotics field work at Grand Isle, Louisiana.

Gyroscopic models: Steering command control for convergence to parallel motion to, but positive distance from, curve.

Lyapunov function: Needed because of nonlinearities and uncertainties preclude solving for explicit flow maps...

Adaptive control: We identified control gains and curvatures under input delays, perturbations, and state constraints...

ZP. Jiang, E. Justh, P. Krishnaprasad, V. Lumelsky, A. Stepanov
We use Lyapunov functions for systems of the form \(\dot{Y} = G(Y) \).

Nonstrict (resp., strict) Lyapunov functions are continuously differentiable proper positive definite \(V \)'s that satisfy the nonstrict (resp., strict) decay condition along all solutions of the systems.

Positive definiteness:
\[V(E) = 0, \quad V(Y) > 0 \quad \text{for all} \quad Y \neq E. \]

Properness:
\[V(Y) \to +\infty \quad \text{as} \quad |Y| \to +\infty \quad \text{or as} \quad Y \text{ converges to the boundary of the state space while staying in the state space.} \]

Nonstrict decay:
\[\frac{d}{dt} V(Y(t)) \leq 0 \quad \text{along all solutions of system.} \]

Strict decay: there is a continuous positive definite \(\alpha \) such that
\[\frac{d}{dt} V(Y(t)) \leq -\alpha(Y(t)) \quad \text{along all solutions of system.} \]
Terminology for the Presentation for Equilibria \mathcal{E}

We use Lyapunov functions for systems of the form $\dot{Y} = G(Y)$.

- **Nonstrict (resp., strict) Lyapunov functions** are continuously differentiable proper positive definite V's that satisfy the nonstrict (resp., strict) decay condition along all solutions of the systems.

- **Positive definiteness**: $V(E) = 0$, $V(Y) > 0$ for all $Y \neq E$.

- **Properness**: $V(Y) \to +\infty$ as $|Y| \to +\infty$ or as Y converges to the boundary of the state space while staying in the state space.

- **Nonstrict decay**: $\frac{d}{dt} V(Y(t)) \leq 0$ along all solutions of system.

- **Strict decay**: there is a continuous positive definite α such that $\frac{d}{dt} V(Y(t)) \leq -\alpha(Y(t))$ along all solutions of system.
Terminology for the Presentation for Equilibria \mathcal{E}

We use Lyapunov functions for systems of the form $\dot{Y} = G(Y)$.

Nonstrict (resp., strict) Lyapunov functions are continuously differentiable proper positive definite V's that satisfy the nonstrict (resp., strict) decay condition along all solutions of the systems.

Positive definiteness: $V(E) = 0$, $V(Y) > 0$ for all $Y \neq E$.

Properness: $V(Y) \to +\infty$ as $|Y| \to +\infty$ or as Y converges to the boundary of the state space while staying in the state space.

Nonstrict decay: $\frac{d}{dt} V(Y(t)) \leq 0$ along all solutions of system.

Strict decay: there is a continuous positive definite α such that $\frac{d}{dt} V(Y(t)) \leq -\alpha(Y(t))$ along all solutions of the system.
We use Lyapunov functions for systems of the form $\dot{Y} = G(Y)$.

Nonstrict (resp., strict) Lyapunov functions are continuously differentiable proper positive definite V’s that satisfy the nonstrict (resp., strict) decay condition along all solutions of the systems.

Positive definiteness: $V(\mathcal{E}) = 0$, $V(Y) > 0$ for all $Y \neq \mathcal{E}$.
Terminology for the Presentation for Equilibria \mathcal{E}

We use Lyapunov functions for systems of the form $\dot{Y} = G(Y)$.

Nonstrict (resp., strict) Lyapunov functions are continuously differentiable proper positive definite V’s that satisfy the nonstrict (resp., strict) decay condition along all solutions of the systems.

Positive definiteness: $V(\mathcal{E}) = 0$, $V(Y) > 0$ for all $Y \neq \mathcal{E}$.

Properness: $V(Y) \rightarrow +\infty$ as $|Y| \rightarrow +\infty$ or as Y converges to the boundary of the state space while staying in the state space.
Terminology for the Presentation for Equilibria \mathcal{E}

We use Lyapunov functions for systems of the form $\dot{Y} = G(Y)$.

Nonstrict (resp., strict) Lyapunov functions are continuously differentiable proper positive definite V’s that satisfy the nonstrict (resp., strict) decay condition along all solutions of the systems.

Positive definiteness: $V(\mathcal{E}) = 0$, $V(Y) > 0$ for all $Y \neq \mathcal{E}$.

Properness: $V(Y) \to +\infty$ as $|Y| \to +\infty$ or as Y converges to the boundary of the state space while staying in the state space.

Nonstrict decay: $\frac{d}{dt} V(Y(t)) \leq 0$ along all solutions of system.
Terminology for the Presentation for Equilibria \(\mathcal{E} \)

We use Lyapunov functions for systems of the form \(\dot{Y} = G(Y) \).

Nonstrict (resp., strict) Lyapunov functions are continuously differentiable proper positive definite \(V \)'s that satisfy the nonstrict (resp., strict) decay condition along all solutions of the systems.

Positive definiteness: \(V(\mathcal{E}) = 0, \ V(Y) > 0 \) for all \(Y \neq \mathcal{E} \).

Properness: \(V(Y) \rightarrow +\infty \) as \(|Y| \rightarrow +\infty \) or as \(Y \) converges to the boundary of the state space while staying in the state space.

Nonstrict decay: \(\frac{d}{dt} V(Y(t)) \leq 0 \) along all solutions of system.

Strict decay: there is a continuous positive definite \(\alpha \) such that \(\frac{d}{dt} V(Y(t)) \leq -\alpha(Y(t)) \) along all solutions of system.
Gyroscopic Model (with Georgia Tech)

\[\rho = |r_2 - r_1|, \quad \phi = \text{angle between } x_1 \text{ and } x_2, \quad \cos(\phi) = \frac{x_1 \cdot x_2}{4/10} \]
Gyroscopic Model (with Georgia Tech)

Simpler 2D case: Boundary following with gyroscopic control.

\[\rho = |r_2 - r_1|, \quad \phi = \text{angle between } x_1 \text{ and } x_2, \quad \cos(\phi) = \frac{x_1 \cdot x_2}{4/10} \]
Gyroscopic Model (with Georgia Tech)

Simpler 2D case: Boundary following with gyroscopic control.

$\rho = |r_2 - r_1|$, $\phi = \text{angle between } x_1 \text{ and } x_2$, $\cos(\phi) = \frac{x_1 \cdot x_2}{|x_1||x_2|}$

Gyroscopic Model (with Georgia Tech)

Simpler 2D case: Boundary following with gyroscopic control.

\[\rho = |r_2 - r_1|, \quad \phi = \text{angle between } x_1 \text{ and } x_2, \quad \cos(\phi) = x_1 \cdot x_2 \]

Curve Tracking Dynamics for 2D

\[\dot{\rho} = -\sin(\phi) \]
\[\dot{\phi} = \kappa \cos(\phi) \]
\[V(\rho, \phi) = -\ln(\cos(\phi)) + h(\rho), \text{equilibrium } E = (\rho_0, 0) \]

Along all solutions of (CL) for all \(t \geq 0 \), we have \(dV(\rho, \phi) \leq 0 \).
Curve Tracking Dynamics for 2D

\[
\begin{cases}
\dot{\rho} = -\sin(\phi) \\
\dot{\phi} = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - u_b, \quad (\rho, \phi) \in \mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2)
\end{cases}
\]
Curve Tracking Dynamics for 2D

\[\begin{cases}
\dot{\rho} = -\sin(\phi) \\
\dot{\phi} = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - u_b, \quad (\rho, \phi) \in \mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2)
\end{cases} \tag{3} \]

\[u_b = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi) \tag{4} \]
Curve Tracking Dynamics for 2D

\[
\begin{aligned}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1+\kappa \rho} - u_b, \quad (\rho, \phi) \in \mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2) \\
\end{aligned}
\]
\hspace{2cm} (3)

\[
u_b = \frac{\kappa \cos(\phi)}{1+\kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi)
\hspace{2cm} (4)
\]

\[
h(\rho) = \alpha \left\{ \rho + \frac{\rho_0^2}{\rho} - 2\rho_0 \right\}, \quad \rho_0 = \text{desired value for } \rho
\hspace{2cm} (5)
\]
Curve Tracking Dynamics for 2D

\[
\begin{align*}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1+\kappa \rho} - u_b, \quad (\rho, \phi) \in \mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2)
\end{align*}
\]

(3)

\[
u_b = \frac{\kappa \cos(\phi)}{1+\kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi)
\]

(4)

\[
h(\rho) = \alpha \left\{ \rho + \frac{\rho_0^2}{\rho} - 2\rho_0 \right\}, \quad \rho_0 = \text{desired value for } \rho
\]

(5)

\[
\dot{\rho} = -\sin \phi, \quad \dot{\phi} = h'(\rho) \cos \phi - \mu \sin \phi
\]

(CL)
Curve Tracking Dynamics for 2D

\[
\begin{aligned}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - u_b, \quad (\rho, \phi) \in \mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2)
\end{aligned}
\]

\[u_b = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi)\]

\[h(\rho) = \alpha \left\{ \rho + \frac{\rho_0^2}{\rho} - 2\rho_0 \right\}, \quad \rho_0 = \text{desired value for } \rho\]

\[\dot{\rho} = -\sin \phi, \quad \dot{\phi} = h'(\rho) \cos \phi - \mu \sin \phi \]

\[V(\rho, \phi) = -\ln(\cos(\phi)) + h(\rho), \quad \text{equilibrium } \mathcal{E} = (\rho_0, 0)\]
Curve Tracking Dynamics for 2D

\[
\begin{align*}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - u_b, \quad (\rho, \phi) \in \mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2) \\
\end{align*}
\] \tag{3}

\[
u_b = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi) \tag{4}
\]

\[h(\rho) = \alpha \left\{ \rho + \frac{\rho_0^2}{\rho} - 2\rho_0 \right\}, \quad \rho_0 = \text{desired value for } \rho \tag{5}\]

\[\dot{\rho} = -\sin \phi, \quad \dot{\phi} = h'(\rho) \cos \phi - \mu \sin \phi \tag{CL}\]

\[V(\rho, \phi) = -\ln(\cos(\phi)) + h(\rho), \quad \text{equilibrium } \mathcal{E} = (\rho_0, 0) \tag{6}\]

Along all solutions of (CL) for all \(t \geq 0 \), we have \(\frac{d}{dt} V(\rho, \phi) \leq 0 \).
Strict Lyapunov Function (Mazenc-M-Z, TAC)

Theorem 1: The closed loop system (CL) has the strict Lyapunov function

\[U(Y) = -h'(\rho) \sin(\phi) + \frac{1}{\mu} \int_0^{V(\rho,\phi)} \gamma(m) dm + \Gamma(V(\rho,\phi)) + V(\rho,\phi), \]

where \(\gamma(q) = \frac{2(q+2\rho_0)^3}{\rho_0^4} + 1 + 0.5\mu^2 + \mu, \) \(Y = (\rho - \rho_0, \phi), \)

\[\Gamma(q) = \frac{18}{\rho_0} q + 9 \left(\frac{2}{\rho_0} \right)^4 q^4, \text{ and } V(\rho,\phi) = -\ln \left(\frac{\cos(\phi)}{\rho_0} \right) + h(\rho) \]

on its state space \(\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2). \) \(\blacksquare \)
Theorem 1: The closed loop system (CL) has the strict Lyapunov function

\[U(Y) = -h'(\rho) \sin(\phi) + \frac{1}{\mu} \int_0^{V(\rho,\phi)} \gamma(m)dm + \Gamma(V(\rho,\phi)) + V(\rho,\phi), \]

where \(\gamma(q) = \frac{2(q+2\rho_0)^3}{\rho_0^4} + 1 + 0.5\mu^2 + \mu, \ Y = (\rho - \rho_0, \phi), \)

\[\Gamma(q) = \frac{18}{\rho_0} q + 9 \left(\frac{2}{\rho_0} \right)^4 q^4, \text{ and } V(\rho, \phi) = -\ln(\cos(\phi)) + h(\rho) \]
on its state space \(\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2). \)

\[U(Y(t)) \geq V(\rho(t), \phi(t)) \quad \text{(PD)} \]

\[\frac{d}{dt} U(Y(t)) \leq -0.5[h'(\rho(t)) \cos(\phi(t))]^2 - \sin^2(\phi(t)) \quad \text{(SD)} \]
Unknown Control Gains (M-Zhang)

\[
\begin{align*}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1+\kappa \rho} + Ku, \quad K \in (c_{\text{min}}, c_{\text{max}}) \subseteq (0, \infty) \\
\dot{\hat{K}} &= (\hat{K} - c_{\text{min}})(c_{\text{max}} - \hat{K}) \frac{\partial U}{\partial \phi} u, \quad \hat{K} \in (c_{\text{min}}, c_{\text{max}})
\end{align*}
\]
Unknown Control Gains (M-Zhang)

\[
\begin{aligned}
\dot{\rho} & = -\sin(\phi) \\
\dot{\phi} & = \frac{\kappa \cos(\phi)}{1+\kappa \rho} + K u, \quad K \in (c_{\text{min}}, c_{\text{max}}) \subseteq (0, \infty) \\
\dot{\hat{K}} & = (\hat{K} - c_{\text{min}})(c_{\text{max}} - \hat{K}) \frac{\partial u}{\partial \phi} u, \quad \hat{K} \in (c_{\text{min}}, c_{\text{max}})
\end{aligned}
\]

\[u(\rho, \phi, \hat{K}) = -u_b(\rho, \phi) / \hat{K}.
\]
Unknown Control Gains (M-Zhang)

\[
\begin{align*}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1 + \kappa \rho} + K u, \quad K \in (c_{\min}, c_{\max}) \subseteq (0, \infty) \\
\dot{\hat{K}} &= (\hat{K} - c_{\min})(c_{\max} - \hat{K}) \frac{\partial U}{\partial \phi} u, \quad \hat{K} \in (c_{\min}, c_{\max}) \\
u(\rho, \phi, \hat{K}) &= -u_b(\rho, \phi)/\hat{K}.
\end{align*}
\]

Built strict Lyapunov functions for

\[
\begin{align*}
\dot{\tilde{q}}_1 &= -\sin(\tilde{q}_2) \\
\dot{\tilde{q}}_2 &= \frac{\kappa \cos(\tilde{q}_2)}{1 + \kappa (\tilde{q}_1 + \rho_0)} - \frac{K}{\hat{K} + K} u_b \\
\dot{\tilde{K}} &= -(\tilde{K} + K - c_{\min})(c_{\max} - \tilde{K} - K) \frac{\partial U}{\partial \phi} \frac{u_b}{\hat{K} + K}
\end{align*}
\]

i.e., the dynamics for \(Y = (\tilde{q}_1, \tilde{q}_2, \tilde{K}) = (\rho - \rho_0, \phi, \hat{K} - K) \).
Unknown Control Gains (M-Zhang)

\[
\begin{aligned}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1+\kappa \rho} + Ku, \quad K \in (c_{\text{min}}, c_{\text{max}}) \subseteq (0, \infty) \\
\dot{\hat{K}} &= (\hat{K} - c_{\text{min}})(c_{\text{max}} - \hat{K}) \frac{\partial U}{\partial \phi} u, \quad \hat{K} \in (c_{\text{min}}, c_{\text{max}})
\end{aligned}
\]

\(u(\rho, \phi, \hat{K}) = -u_b(\rho, \phi)/\hat{K}\). Built strict Lyapunov functions for

\[
\begin{aligned}
\dot{\tilde{q}}_1 &= -\sin(\tilde{q}_2) \\
\dot{\tilde{q}}_2 &= \frac{\kappa \cos(\tilde{q}_2)}{1+\kappa(\tilde{q}_1+\rho_0)} - \frac{K}{\hat{K}+K} u_b \\
\dot{\hat{K}} &= -(\hat{K} + K - c_{\text{min}})(c_{\text{max}} - \hat{K} - K) \frac{\partial U}{\partial \phi} \frac{u_b}{\hat{K}+K}
\end{aligned}
\]

i.e., the dynamics for \(Y = (\tilde{q}_1, \tilde{q}_2, \hat{K}) = (\rho - \rho_0, \phi, \hat{K} - K)\).

\(\xi_R = (\rho_0, 0)\).
Unknown Control Gains (M-Zhang)

\[
\begin{align*}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1+\kappa \rho} + K u, \quad K \in (c_{\text{min}}, c_{\text{max}}) \subseteq (0, \infty) \\
\dot{\hat{K}} &= (\hat{K} - c_{\text{min}})(c_{\text{max}} - \hat{K}) \frac{\partial U}{\partial \phi} u, \quad \hat{K} \in (c_{\text{min}}, c_{\text{max}})
\end{align*}
\] (7)

\[u(\rho, \phi, \hat{K}) = -u_b(\rho, \phi)/\hat{K}.\] Built strict Lyapunov functions for

\[
\begin{align*}
\dot{\tilde{q}}_1 &= -\sin(\tilde{q}_2) \\
\dot{\tilde{q}}_2 &= \frac{\kappa \cos(\tilde{q}_2)}{1+\kappa(\tilde{q}_1+\rho_0)} - \frac{K}{\hat{K}+K} u_b \\
\dot{\hat{K}} &= -(\hat{K} + K - c_{\text{min}})(c_{\text{max}} - \hat{K} - K) \frac{\partial U}{\partial \phi} \frac{u_b}{\hat{K}+K}
\end{align*}
\] (8)

i.e., the dynamics for \(Y = (\tilde{q}_1, \tilde{q}_2, \hat{K}) = (\rho - \rho_0, \phi, \hat{K} - K)\).
\(\xi_R = (\rho_0, 0)\). Strictness allowed a robustness analysis to satisfy performance and safety bounds under other uncertainties.
Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants. Georgia Tech Savannah Robotics (co-led by Fumin Zhang)
Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants. Georgia Tech Savannah Robotics (co-led by Fumin Zhang)
Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants. Georgia Tech Savannah Robotics (co-led by Fumin Zhang)
Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants. Georgia Tech Savannah Robotics (co-led by Fumin Zhang)
Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants. Georgia Tech Savannah Robotics (co-led by Fumin Zhang)
20 days of field work off Grand Isle. Search for oil spill remnants. Georgia Tech Savannah Robotics (co-led by Fumin Zhang)
Hyperlinked Related References

Hyperlinked Related References

Hyperlinked Related References

Our Other Adaptive Control Applications

- Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.
- Variants for uncertain parameters that enter the system in a nonlinear way for curve tracking with unknown curvatures.
- To also allow delays in state observations in our controls, we convert our strict LF into Lyapunov-Krasovskii functionals.
- We used artificial neural network expansions for extensions to cases where the parameter need not be constant.
- Joint work with J. Muse from AFRL on model reference adaptive control to reduce oscillations, applied to hovering helicopters.
Our Other Adaptive Control Applications

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.

Joint work with J. Muse from AFRL on model reference adaptive control to reduce oscillations, applied to hovering helicopters.
Our Other Adaptive Control Applications

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.

Variants for uncertain parameters P that enter the system in a nonlinear way for curve tracking with unknown curvatures.
Our Other Adaptive Control Applications

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.

Variants for uncertain parameters P that enter the system in a nonlinear way for curve tracking with unknown curvatures.

To also allow delays in state observations in our controls, we convert our strict LF into Lyapunov-Krasovskii functionals.
Our Other Adaptive Control Applications

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.

Variants for uncertain parameters P that enter the system in a nonlinear way for curve tracking with unknown curvatures.

To also allow delays in state observations in our controls, we convert our strict LF into Lyapunov-Krasovskii functionals.

We used artificial neural network expansions for extensions to cases where the P need not be constant.
Our Other Adaptive Control Applications

Brushless DC motors turning a mechanical load with uncertain motor electric parameters including integral ISS analysis.

Variants for uncertain parameters P that enter the system in a nonlinear way for curve tracking with unknown curvatures.

To also allow delays in state observations in our controls, we convert our strict LF into Lyapunov-Krasovskii functionals.

We used artificial neural network expansions for extensions to cases where the P need not be constant.

Joint work with J. Muse from AFRL on model reference adaptive control to reduce oscillations, applied to hovering helicopters.
Conclusions
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems for which parameters need to be identified.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems for which parameters need to be identified.

Curve tracking controllers can be applied in robotics for environmental sensing and other ME applications.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems for which parameters need to be identified.

Curve tracking controllers can be applied in robotics for environmental sensing and other ME applications.

The strictness of our Lyapunov functions provides parameter identifying update laws and robustness to perturbations.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems for which parameters need to be identified.

Curve tracking controllers can be applied in robotics for environmental sensing and other ME applications.

The strictness of our Lyapunov functions provides parameter identifying update laws and robustness to perturbations.

Feedback delay compensation uses Lyapunov-Krasovskii functions, Razumikhin functions, or sequential predictors.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems for which parameters need to be identified.

Curve tracking controllers can be applied in robotics for environmental sensing and other ME applications.

The strictness of our Lyapunov functions provides parameter identifying update laws and robustness to perturbations.

Feedback delay compensation uses Lyapunov-Krasovskii functions, Razumikhin functions, or sequential predictors.

Another promising research direction is to study adaptive robust stochastic or event-triggered control.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems for which parameters need to be identified.

Curve tracking controllers can be applied in robotics for environmental sensing and other ME applications.

The strictness of our Lyapunov functions provides parameter identifying update laws and robustness to perturbations.

Feedback delay compensation uses Lyapunov-Krasovskii functions, Razumikhin functions, or sequential predictors.

Another promising research direction is to study adaptive robust stochastic or event-triggered control.

Thanks for your interest!