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Basic Problem Formulation

Consider a system of differential equations

ξ̇ = f (ξ,P,u) (1)

with a vector P of unknown constant parameters and functions
ξR and uR such that ξ̇R(t) = f (ξR(t),P,uR(t)) for all t ≥ 0.

Problem: Find u(ξ, P̂) and a system of differential equations
·
P̂ = g(ξ, P̂) (2)

such that with the control choice u(ξ, P̂) in (1), all solutions
Y = (ξ̃, P̃) = (ξ − ξR,P − P̂) converge to 0 as t → +∞.

Lavretsky-Wise, Narendra-Annaswamy, Sastry-Bodson,...
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Flight control, mechanical systems, robotics,...
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Adaptive Robotic Curve Tracking

Our more general settings: Perturbations and state constraints,
motivated by our robotics field work at Grand Isle, Louisiana..

Gyroscopic models: Steering command control for convergence
to parallel motion to, but positive distance from, curve..

Lyapunov function: Needed because of nonlinearities and
uncertainties preclude solving for explicit flow maps...

Adaptive control: We identified control gains and curvatures
under input delays, perturbations, and state constraints...

ZP. Jiang, E. Justh, P. Krishnaprasad, V. Lumelsky, A. Stepanov
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Terminology for the Presentation for Equilibria E

We use Lyapunov functions for systems of the form Ẏ = G(Y ).

Nonstrict (resp., strict) Lyapunov functions are continuously
differentiable proper positive definite V ’s that satisfy the nonstrict
(resp., strict) decay condition along all solutions of the systems.

Positive definiteness: V (E) = 0, V (Y ) > 0 for all Y 6= E .

Properness: V (Y )→ +∞ as |Y | → +∞ or as Y converges to
the boundary of the state space while staying in the state space.

Nonstrict decay: d
dt V (Y (t)) ≤ 0 along all solutions of system.

Strict decay: there is a continuous positive definite α such that
d
dt V (Y (t)) ≤ −α(Y (t)) along all solutions of system.
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Nonstrict (resp., strict) Lyapunov functions are continuously
differentiable proper positive definite V ’s that satisfy the nonstrict
(resp., strict) decay condition along all solutions of the systems.

Positive definiteness: V (E) = 0, V (Y ) > 0 for all Y 6= E .

Properness: V (Y )→ +∞ as |Y | → +∞ or as Y converges to
the boundary of the state space while staying in the state space.

Nonstrict decay: d
dt V (Y (t)) ≤ 0 along all solutions of system.

Strict decay: there is a continuous positive definite α such that
d
dt V (Y (t)) ≤ −α(Y (t)) along all solutions of system.

3/10



Terminology for the Presentation for Equilibria E

We use Lyapunov functions for systems of the form Ẏ = G(Y ).
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Gyroscopic Model (with Georgia Tech)

Simpler 2D case: Boundary following with gyroscopic control.

Zhang-Justh-Krishnaprasad, IEEE-CDC’04.

ρ = |r2 − r1|, φ = angle between x1 and x2, cos(φ) = x1 · x2
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Curve Tracking Dynamics for 2D

 ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ − ub, (ρ, φ) ∈ X = (0,+∞)×(−π/2, π/2)

(3)

ub = κ cos(φ)
1+κρ − h′(ρ) cos(φ) + µ sin(φ) (4)

h(ρ) = α
{
ρ+

ρ2
0
ρ − 2ρ0

}
, ρ0 = desired value for ρ (5)

ρ̇ = − sinφ, φ̇ = h′(ρ) cosφ− µ sinφ (CL)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ), equilibrium E = (ρ0,0) (6)

Along all solutions of (CL) for all t ≥ 0, we have d
dt V (ρ, φ) ≤ 0.
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Strict Lyapunov Function (Mazenc-M-Z, TAC)

Theorem 1: The closed loop system (CL) has the strict
Lyapunov function

U(Y ) =

−h′(ρ) sin(φ) + 1
µ

∫ V (ρ,φ)
0 γ(m)dm + Γ(V (ρ, φ)) + V (ρ, φ),

where γ(q) = 2(q+2ρ0)
3

ρ4
0

+ 1 + 0.5µ2 + µ, Y = (ρ− ρ0, φ),

Γ(q) = 18
ρ0

q + 9
(

2
ρ0

)4
q4, and V (ρ, φ) = − ln

(
cos(φ)

)
+ h(ρ)

on its state space X = (0,+∞)× (−π/2, π/2). �

U(Y (t)) ≥ V (ρ(t), φ(t)) (PD)
d
dt U(Y (t)) ≤ −0.5[h′(ρ(t)) cos(φ(t))]2 − sin2(φ(t)) (SD)
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Unknown Control Gains (M-Zhang)
ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ + K u, K ∈ (cmin, cmax) ⊆ (0,∞)

˙̂K = (K̂ − cmin)(cmax − K̂ )∂U
∂φ u, K̂ ∈ (cmin, cmax)

(7)

u(ρ, φ, K̂ ) = −ub(ρ, φ)/K̂ . Built strict Lyapunov functions for
˙̃q1 = − sin(q̃2)

˙̃q2 = κ cos(q̃2)
1+κ(q̃1+ρ0)

− K
K̃+K

ub

˙̃K = −(K̃ + K − cmin)(cmax − K̃ − K )∂U
∂φ

ub
K̃+K

(8)

i.e., the dynamics for Y = (q̃1, q̃2, K̃ ) = (ρ− ρ0, φ, K̂ − K ).
ξR = (ρ0,0). Strictness allowed a robustness analysis to satisfy
performance and safety bounds under other uncertainties.
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˙̃q1 = − sin(q̃2)

˙̃q2 = κ cos(q̃2)
1+κ(q̃1+ρ0)

− K
K̃+K

ub

˙̃K = −(K̃ + K − cmin)(cmax − K̃ − K )∂U
∂φ

ub
K̃+K

(8)

i.e., the dynamics for Y = (q̃1, q̃2, K̃ ) = (ρ− ρ0, φ, K̂ − K ).
ξR = (ρ0,0). Strictness allowed a robustness analysis to satisfy
performance and safety bounds under other uncertainties.
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Our Other Adaptive Control Applications

Brushless DC motors turning a mechanical load with uncertain
motor electric parameters including integral ISS analysis.

Variants for uncertain parameters P that enter the system in a
nonlinear way for curve tracking with unknown curvatures.

To also allow delays in state observations in our controls, we
convert our strict LF into Lyapunov-Krasovskii functionals.

We used artificial neural network expansions for extensions to
cases where the P need not be constant.

Joint work with J. Muse from AFRL on model reference adaptive
control to reduce oscillations, applied to hovering helicopters.
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Conclusions

Adaptive nonlinear controllers are useful for many engineering
control systems for which parameters need to be identified.

Curve tracking controllers can be applied in robotics for
environmental sensing and other ME applications.

The strictness of our Lyapunov functions provides parameter
identifying update laws and robustness to perturbations.

Feedback delay compensation uses Lyapunov-Krasovskii
functions, Razumikhin functions, or sequential predictors.

Another promising research direction is to study adaptive robust
stochastic or event-triggered control.

Thanks for your interest!
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