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Background and Motivation

Delay compensating controllers are needed because of
destabilizing effects of potentially long input delays.

The linear matrix inequalities used to study time-invariant linear
delayed systems are inadequate for nonlinear systems.

Traditional Lyapunov functions are replaced by Razumikhin
functions or Lyapunov-Krasovskii functionals.

Lyapunov-Krasovskii functionals can often be built from
Lyapunov functions for corresponding undelayed systems.
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Stability Definitions

Input-to-state stability (ISS, Sontag, ’89) generalizes uniform
global asymptotic stability by quantifying effects of uncertainties.

x ′(t) = G(t , x(t), x(t − τ)), x(t) ∈ X (Σ)

|x(t)| ≤ γ1
(
et0−tγ2(|x |[t0−τ ,t0])

)
(UGAS)

γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

x ′(t) = G
(
t , x(t), x(t − τ), δ(t)

)
, x(t) ∈ X (Σpert)

|x(t)| ≤ γ1
(
et0−tγ2(|x |[t0−τ ,t0])

)
+ γ3(|δ|[t0,t]) (ISS)

Find γi ’s by building Lyapunov-Krasovskii functionals (LKFs).
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Definition in Control-Affine Case

ẋ(t) = f (t , x(t)) + g(t , x(t))[us(t , x(t − τ)) + δ(t)]. (Σd)

Assume: f and g are locally Lipschitz and grow linearly in x ,
us ∈ C1, |(∂us/∂x)(t , x)| bounded. xt (s) = x(t + s), −τ ≤ s ≤ 0.

Definition: A function U : [0,∞)× Cn([−τ ,0])→ [0,∞) is an
ISS-LKF for (Σd ) provided there are αi ∈ K∞ such that for all
solutions x(t) of (Σd ), U(t , xt ) is absolutely continuous in t and

(i) α1(|φ(0)|) ≤ U(t , φ) ≤ α2(|φ|[−τ ,0]) and

(ii) d
dt

(
U(t , xt )

)
≤ −α3(U(t , xt )) + α4(|δ|[to,t])

hold for all φ ∈ Cn([−τ ,0]) and almost all t ≥ to and all t0 ≥ 0.
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Ways We Built Delay-Tolerant Feedback Controls

First Approach: Emulation

1. Solve the stabilization problem with the delays set to zero,
by building a strict LF for the undelayed closed-loop system.

2. Transform the LF into a Lyapunov-Krasovkii functional (LKF)
for the delayed system by adding double integrals.

3. Use the LKF to compute upper bounds on the delays that
the feedback can tolerate, and use strictness to prove ISS.

Mazenc, F., M. Malisoff, and Z. Lin, “Further results on
input-to-state stability for nonlinear systems with delayed
feedbacks,” Automatica, 44(9):2415-2421, 2008.
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First Approach: Emulation

Assumption L: There are σ ∈ K∞ such that σ(r) ≤ r for all
r ≥ 0; constants K1 ≥ 1 and Ki ≥ 0 for i = 2,3,4; and a C1

uniformly proper and positive definite V : [0,∞)× Rn → [0,∞)
such that for all x ∈ Rn, q ∈ Rn, l ≥ 0, and t ≥ 0, we have

H1 Vt (t , x) + Vx (t , x)[f (t , x) + g(t , x)us(t , x)]≤−σ2(|x |);

H2 |Vx (t , x)g(t , x)| ≤ K1σ(|x |),
∣∣∂us
∂x (t , x)f (l , x)

∣∣2 ≤ K2σ(|x |)2;

H3
∣∣∂us
∂x (t , x)g(l , x)

∣∣2 ≤ K3(σ(|x |) + 1); and

H4
[∣∣∂us
∂x (t , x)g(l , x)

∣∣ |us(l ,q)|
]2 ≤ K4[σ2(|x |) + σ2(|q|)].

Exponentially stable ẋ(t) = (A(t) + B(t)K (t))x(t) with σ(s) = s
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First Approach: Emulation

Thm 1: (M-Mazenc-Lin, ’08) If Assumption L holds, then

ẋ(t) = f (t , x(t)) + g(t , x(t))[us(t , x(t − τ)) + δ(t)] (Σd)

with any constant feedback delay τ ∈ (0, τ̄ ] where

τ̄ = 1
4K1
√

3K2+3K4+1

admits the ISS-LKF

U(t , xt ) = V (t , x(t)) + 1
8τ̄

∫ t
t−2τ̄

(∫ t
r σ

2(|x(p)|)dp
)

dr

and therefore is ISS. �

Delay need not be known. Can drop delay bound in many cases
using reduction or prediction or scaling of controls.
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Ways We Built Delay-Tolerant Feedback Controls

Second Approach: Reduction Model

1. Find controls depending on inputs along a continuum of
times by solving integral equations, for any constant delay.

2. They globally stabilize linear time-varying systems, which
can arise from linearizing along a reference trajectory.

3. We can also prove local stabilization for time-varying
nonlinear systems with basin of attraction computations.

Mazenc, F., M. Malisoff, and S.-I. Niculescu, “Reduction model
approach for linear time-varying systems with delays,” IEEE
Transactions on Automatic Control, 59(8):2068-2082, 2014.
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Second Approach: Reduction Model

ẋ(t) = M(t)x(t) + N(t)u(t − τ) + δ(t). (1)

Thm 2: (MMN’14) If there is a bounded continuous K such that

ż(t) =
[
M(t) + λ(t , t + τ)N(t + τ)K (t)

]
z(t) (2)

is UGAS, where λ is the fundamental matrix for M, then there
are functions γi ∈ K∞ such that all trajectories of (1) with

u(t) = K (t)
[
x(t) +

∫ t
t−τ λ(t , r + τ)N(r + τ)u(r)dr

]
(3)

satisfy

|x(t)|+|u|[t−τ,t] ≤ γ1

(
γ2
(
|x(t0)|+|u|[t0−τ,t0]

)
et0−t

)
+ γ3(|δ|[t0,t])

for all initial times t0 ≥ 0 and all t ≥ t0.
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)
et0−t

)
+ γ3(|δ|[t0,t])

for all initial times t0 ≥ 0 and all t ≥ t0.
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Ways We Built Delay-Tolerant Feedback Controls

Third Approach: Sequential Predictors

1. They allow arbitrarily long time-varying delays and provide
controls that are free of distributed terms.

2. They use dynamic ODE controllers that include copies of
the original system running at different time scales.

3. They apply under input and measurement delays, sampling,
outputs, and uncertainties in the plant and measurements.

Mazenc, F., and M. Malisoff, “Stabilization and robustness ana-
lysis for time-varying systems with time-varying delays using a
sequential predictors approach,” Automatica, 82:118-127, 2017.
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Third Approach: Sequential Predictors

ẋ(t) = A(t)x(t) + B(t)u(t − h(t)), x(t) ∈ Rn. (LTV)

Assumption 1: The functions A and B are bounded and
continuous, and there is a known bounded continuous function
K : [0,∞)→ R`×n such that ẋ(t) = [A(t) + B(t)K (t)]x(t) is
uniformly globally exponentially stable to 0.

Assumption 2: The function h : R→ [0,∞) is C1 and bounded
from above by a constant ch > 0. Also, its derivative ḣ is
bounded from below, and ḣ is bounded from above by a constant
lh ∈ (0,1), and ḣ has a global Lipschitz constant nh > 0.
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Third Approach: Sequential Predictors

Sawtooth wave delay represents sampling in control.

0.5 1.0 1.5 2.0 2.5 3.0

0.2
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0.8

1.0

Gaussian smoothing and interpolation. 1000 interpolation points
and standard deviation 0.2 of smoothing on [0,1]. Scale by 0.98.

Assumption holds with ch = 0.924, lh = 0.98, and nh = 592.72.
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Third Approach: Sequential Predictors

We use an pn-dimensional dynamic extension to build our delay
compensating control for any number of predictors

p > max
{

2,4
(

b1√
2

+ b2

)
ch

1−lh

}
, (LB)

where

b1 =

[
1 +

(
1 + uc

p

)p
|A|∞

](
1 + uc

p

)p
|A|∞,

b2 =

[
1 +

(
1 + uc

p

)p
|A|∞

]2 (
1 + uc

p

)
, and uc = chnh

(1−lh)2 + lh
1−lh

.

p sequential predictors for ẋ(t) = A(t)x(t) + B(t)u(t − h(t))

Ωi(t) = t − (i/p)h(t) and θi(t) = Ω−1
p−i+1(Ωp−i(t)) for i ∈ {0, ...,p}

R1(t) = θ̇1(t), Ri(t) = θ̇i(t)Ri−1(θi(t)) for i > 1.
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Third Approach: Sequential Predictors

Thm 3: (M-Mazenc, ’17) Let Assumptions 1-2 hold and p satisfy
(LB). Then if we use the control u(t) = K (Ω−1

p (t))zp(t) in (LTV),
where zp is the last n components of the system

ż1(t) = R1(t)A(θ1(t))z1(t) + R1(t)B(θ1(t))u(Ωp−1(t))

+ L1(t)[z1(θ1
−1(t))− x(t)]

żi(t) = Ri(t)A(Gi(t))zi(t) + Ri(t)B(Gi(t))u(Ωp−i(t))

+ Li(t)[zi(θi
−1(t))− zi−1(t)], i ∈ {2, . . . ,p}

(4)

where Li(t) = −In − Ri(t)A(Gi(t)) and Gi = Ω−1
p ◦ Ωp−i , then the

dynamics for (x , E) are globally exponentially stable to 0, where
E(t) = (z1(t)−x(θ1(t)), z2(t)−z1(θ2(t)), . . . , zp(t)−zp−1(θp(t))).
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Conclusions

B Delays are prevalent in engineering systems.

B Controls for undelayed systems might not be delay-tolerant.

B Reduction model methods compensate any positive delay.

B Distributed terms can produce implementation challenges.

B They can sometimes be overcome by sequential predictors.

B Sequential predictors allow outputs, sampling and uncertainty.

BWe are developing analogs for ODE-PDE cascades.

Thank you for your attention!
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