Systems and Control: An Introduction and a Marine Robotics Application

Michael Malisoff, Roy P. Daniels Professor of Mathematics at Louisiana State University

Sponsor: NSF Energy, Power, and Adaptive Systems Joint with Fumin Zhang’s Team at Georgia Tech

Georgia State University Mathematics Colloquium
30 Pryor St. SW #796 – April 23, 2015
What Do We Mean By Control Systems?

These are triply parameterized families of ODEs of the form

\[Y'(t) = F(t, Y(t), u(t, Y(t - \tau)), \Gamma, \delta(t)) \],

\[Y(t) \in Y \].

(1)

\[Y \subseteq \mathbb{R}^n \].

\[\delta: [0, \infty) \to D \] represents uncertainty.

\[D \subseteq \mathbb{R}^m \].

The vector \(\Gamma \) is constant but unknown.

\(\tau \) is a constant delay.

Specify \(u \) to get a doubly parameterized closed loop family

\[Y'(t) = G(t, Y(t), Y(t - \tau), \Gamma, \delta) \],

\[Y(t) \in Y \],

(2)

where \(G(t, Y(t), Y(t - \tau), \Gamma, \delta) = F(t, Y(t), u(t, Y(t - \tau)), \Gamma, \delta) \).

Problem: Given a desired reference trajectory \(Y_r \), specify \(u \) and an estimate \(\hat{\Gamma} \) of \(\Gamma \) such that the augmented error \(E(t) = (Y(t) - Y_r(t), \Gamma - \hat{\Gamma}(t)) \) satisfies ISS with respect to \(\delta \).
What Do We Mean By Control Systems?

These are *triply* parameterized families of ODEs of the form

\[Y'(t) = \mathcal{F}(t, Y(t), u(t, Y(t - \tau)), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}. \quad (1) \]
What Do We Mean By Control Systems?

These are *triply* parameterized families of ODEs of the form

\[Y'(t) = \mathcal{F}(t, Y(t), u(t, Y(t - \tau)), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}. \]

(1)

\[\mathcal{Y} \subseteq \mathbb{R}^n. \]
What Do We Mean By Control Systems?

These are *triply* parameterized families of ODEs of the form

$$Y'(t) = \mathcal{F}(t, Y(t), u(t, Y(t - \tau)), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}. \quad (1)$$

$\mathcal{Y} \subseteq \mathbb{R}^n$. $\delta : [0, \infty) \rightarrow \mathcal{D}$ represents uncertainty.
What Do We Mean By Control Systems?

These are *triply* parameterized families of ODEs of the form

\[Y'(t) = \mathcal{F}(t, Y(t), u(t, Y(t - \tau)), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}. \]
(1)

\(\mathcal{Y} \subseteq \mathbb{R}^n. \) \(\delta : [0, \infty) \rightarrow \mathcal{D} \) represents uncertainty. \(\mathcal{D} \subseteq \mathbb{R}^m. \)
What Do We Mean By Control Systems?

These are *triply* parameterized families of ODEs of the form

\[Y'(t) = F(t, Y(t), u(t, Y(t - \tau)), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}. \]

(1)

\[\mathcal{Y} \subseteq \mathbb{R}^n. \quad \delta : [0, \infty) \rightarrow \mathcal{D} \text{ represents uncertainty.} \quad \mathcal{D} \subseteq \mathbb{R}^m. \]

The vector \(\Gamma \) is constant but unknown.
What Do We Mean By Control Systems?

These are *triply* parameterized families of ODEs of the form

$$Y'(t) = F(t, Y(t), u(t, Y(t - \tau)), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}. \quad (1)$$

$\mathcal{Y} \subseteq \mathbb{R}^n$. $\delta : [0, \infty) \rightarrow \mathcal{D}$ represents uncertainty. $\mathcal{D} \subseteq \mathbb{R}^m$.

The vector Γ is constant but unknown. τ is a constant delay.
What Do We Mean By Control Systems?

These are *triply* parameterized families of ODEs of the form

$$Y'(t) = \mathcal{F}(t, Y(t), u(t, Y(t - \tau)), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}. \quad (1)$$

$\mathcal{Y} \subseteq \mathbb{R}^n$. $\delta : [0, \infty) \rightarrow \mathcal{D}$ represents uncertainty. $\mathcal{D} \subseteq \mathbb{R}^m$. The vector Γ is constant but unknown. τ is a constant delay.

Specify u to get a *doubly* parameterized closed loop family

$$Y'(t) = \mathcal{G}(t, Y(t), Y(t - \tau), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}, \quad (2)$$

where $\mathcal{G}(t, Y(t), Y(t - \tau), \Gamma, d) = \mathcal{F}(t, Y(t), u(t, Y(t - \tau)), \Gamma, d)$.

What Do We Mean By Control Systems?

These are *triply* parameterized families of ODEs of the form

$$Y'(t) = F(t, Y(t), u(t, Y(t - \tau)), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}. \quad (1)$$

$\mathcal{Y} \subseteq \mathbb{R}^n$. $\delta : [0, \infty) \rightarrow \mathcal{D}$ represents uncertainty. $\mathcal{D} \subseteq \mathbb{R}^m$. The vector Γ is constant but unknown. τ is a constant delay.

Specify u to get a *doubly* parameterized closed loop family

$$Y'(t) = G(t, Y(t), Y(t - \tau), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}, \quad (2)$$

where $G(t, Y(t), Y(t - \tau), \Gamma, d) = F(t, Y(t), u(t, Y(t - \tau)), \Gamma, d)$.

Problem: Given a desired reference trajectory Y_r, specify u and a dynamics for an estimate $\hat{\Gamma}$ of Γ such that the augmented error $\mathcal{E}(t) = (Y(t) - Y_r(t), \Gamma - \hat{\Gamma}(t))$ satisfies ISS with respect to δ.
What is Input-to-State Stability (or ISS)?
What is Input-to-State Stability (or ISS)?

ISS (Sontag, ’89) generalizes global asymptotic stability.

\[Y'(t) = G(t, Y(t), Y(t-\tau), \Gamma), \quad Y(t) \in Y(\Sigma) \]

\[|Y(t)| \leq \gamma_1(e^{t_0-t} - t \gamma_2(|Y|_{[t_0-\tau, t_0]}) \] (UGAS)

Our \(\gamma_i \)'s are 0 at 0, strictly increasing, and unbounded. \(\gamma_i \in K_\infty \).

\[Y'(t) = G(t, Y(t), Y(t-\tau), \Gamma, \delta(t)), \quad Y(t) \in Y(\Sigma_{\text{pert}}) \]

\[|Y(t)| \leq \gamma_1(e^{t_0-t} - t \gamma_2(|Y|_{[t_0-\tau, t_0]}) + \gamma_3(|\delta|_{[t_0, t]})) \] (ISS)

Find \(\gamma_i \)'s by building special strict Lyapunov functions (LFs).

When \(\tau = 0 \), a system is ISS iff it has an ISS LF (Sontag-Wang).
What is Input-to-State Stability (or ISS)?

ISS (Sontag, '89) generalizes global asymptotic stability.

\[Y'(t) = G(t, Y(t), Y(t - \tau), \Gamma), \quad Y(t) \in \mathcal{Y} \quad (\Sigma) \]
What is Input-to-State Stability (or ISS)?

ISS (Sontag, ’89) generalizes global asymptotic stability.

\[Y'(t) = G(t, Y(t), Y(t - \tau), \Gamma), \quad Y(t) \in Y \quad \text{(Σ)} \]

\[|Y(t)| \leq \gamma_1 (e^{t_0-t} \gamma_2(|Y|_{[t_0-\tau, t_0]})) \quad \text{(UGAS)} \]
What is Input-to-State Stability (or ISS)?

ISS (Sontag, ’89) generalizes global asymptotic stability.

\[Y'(t) = G(t, Y(t), Y(t - \tau), \Gamma), \quad Y(t) \in Y \quad (\Sigma) \]

\[|Y(t)| \leq \gamma_1 \left(e^{t_0 - t} \gamma_2 (|Y|_{[t_0-\tau,t_0]}) \right) \quad (UGAS) \]

Our \(\gamma_i \)'s are 0 at 0, strictly increasing, and unbounded.
What is Input-to-State Stability (or ISS)?

ISS (Sontag, ’89) generalizes global asymptotic stability.

\[Y'(t) = G(t, Y(t), Y(t - \tau), \Gamma), \quad Y(t) \in Y \quad (\Sigma) \]

\[|Y(t)| \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y|_{[t_0 - \tau, t_0]}) \right) \quad (\text{UGAS}) \]

Our \(\gamma_i \)'s are 0 at 0, strictly increasing, and unbounded. \(\gamma_i \in K_\infty \).
What is Input-to-State Stability (or ISS)?

ISS (Sontag, ’89) generalizes global asymptotic stability.

\[
Y'(t) = G(t, Y(t), Y(t - \tau), \Gamma), \quad Y(t) \in \mathcal{Y} \quad (\Sigma)
\]

\[
|Y(t)| \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y|_{[t_0 - \tau, t_0]}) \right) \quad (\text{UGAS})
\]

Our \(\gamma_i\)'s are 0 at 0, strictly increasing, and unbounded. \(\gamma_i \in \mathcal{K}_\infty\).

\[
Y'(t) = G(t, Y(t), Y(t - \tau), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y} \quad (\Sigma_{\text{pert}})
\]
What is Input-to-State Stability (or ISS)?

ISS (Sontag, ’89) generalizes global asymptotic stability.

$$Y'(t) = G(t, Y(t), Y(t - \tau), \Gamma), \quad Y(t) \in \mathcal{Y}$$ \hspace{1cm} (\Sigma)

$$|Y(t)| \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y|_{[t_0 - \tau, t_0]}) \right)$$ \hspace{1cm} (UGAS)

Our γ_i’s are 0 at 0, strictly increasing, and unbounded. $\gamma_i \in \mathcal{K}_\infty$.

$$Y'(t) = G(t, Y(t), Y(t - \tau), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y}$$ \hspace{1cm} (\Sigma_{pert})

$$|Y(t)| \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y|_{[t_0 - \tau, t_0]}) \right) + \gamma_3(|\delta|_{[t_0, t]})$$ \hspace{1cm} (ISS)
What is Input-to-State Stability (or ISS)?

ISS (Sontag, ’89) generalizes global asymptotic stability.

\[
Y'(t) = G(t, Y(t), Y(t - \tau), \Gamma), \quad Y(t) \in \mathcal{Y} \quad (\Sigma)
\]

\[
|Y(t)| \leq \gamma_1 (e^{t_0 - t} \gamma_2 (|Y|_{[t_0 - \tau, t_0]})) \quad (\text{UGAS})
\]

Our \(\gamma_i\)’s are 0 at 0, strictly increasing, and unbounded. \(\gamma_i \in \mathcal{K}_\infty\).

\[
Y'(t) = G(t, Y(t), Y(t - \tau), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y} \quad (\Sigma_{\text{pert}})
\]

\[
|Y(t)| \leq \gamma_1 (e^{t_0 - t} \gamma_2 (|Y|_{[t_0 - \tau, t_0]})) + \gamma_3 (|\delta|_{[t_0, t]}) \quad (\text{ISS})
\]

Find \(\gamma_i\)’s by building special strict Lyapunov functions (LFs).
What is Input-to-State Stability (or ISS)?

ISS (Sontag, ’89) generalizes global asymptotic stability.

\[
Y'(t) = G(t, Y(t), Y(t - \tau), \Gamma), \quad Y(t) \in \mathcal{Y} \quad (\Sigma)
\]

\[
|Y(t)| \leq \gamma_1 \left(e^{t_0-t} \gamma_2(|Y|_{[t_0-\tau,t_0]}) \right) \quad (\text{UGAS})
\]

Our \(\gamma_i\)'s are 0 at 0, strictly increasing, and unbounded. \(\gamma_i \in \mathcal{K}_\infty\).

\[
Y'(t) = G(t, Y(t), Y(t - \tau), \Gamma, \delta(t)), \quad Y(t) \in \mathcal{Y} \quad (\Sigma_{\text{pert}})
\]

\[
|Y(t)| \leq \gamma_1 \left(e^{t_0-t} \gamma_2(|Y|_{[t_0-\tau,t_0]}) \right) + \gamma_3(|\delta|_{[t_0,t]}) \quad (\text{ISS})
\]

Find \(\gamma_i\)'s by building special \textbf{strict} Lyapunov functions (LFs).

When \(\tau = 0\), a system is ISS iff it has an ISS LF (Sontag-Wang).
What is the Value Added by Your Research?
What is the Value Added by Your Research?

Active magnetic bearings, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, neuromuscular electrical stimulation, underactuated ships, unmanned air vehicles,..
What is the Value Added by Your Research?

Active magnetic bearings, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, neuromuscular electrical stimulation, underactuated ships, unmanned air vehicles,..

For many systems, we design controls u that ensure ISS under the delays τ and uncertainties δ that prevail in engineering.
What is the Value Added by Your Research?

Active magnetic bearings, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, neuromuscular electrical stimulation, underactuated ships, unmanned air vehicles,..

For many systems, we design controls u that ensure ISS under the delays τ and uncertainties δ that prevail in engineering.

We combine the plants with dynamics for parameter estimators $\hat{\Gamma}(t)$ that converge to Γ, and then use $\hat{\Gamma}(t)$ in u, instead of Γ.
What is the Value Added by Your Research?

Active magnetic bearings, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, neuromuscular electrical stimulation, underactuated ships, unmanned air vehicles,..

For many systems, we design controls u that ensure ISS under the delays τ and uncertainties δ that prevail in engineering.

We combine the plants with dynamics for parameter estimators $\hat{\Gamma}(t)$ that converge to Γ, and then use $\hat{\Gamma}(t)$ in u, instead of Γ.

For state constrained systems, we choose \mathcal{Y} to find maximal perturbation sets \mathcal{D} the system can tolerate without leaving \mathcal{Y}.
What is the Value Added by Your Research?

Active magnetic bearings, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, neuromuscular electrical stimulation, underactuated ships, unmanned air vehicles,..

For many systems, we design controls u that ensure ISS under the delays τ and uncertainties δ that prevail in engineering.

We combine the plants with dynamics for parameter estimators $\hat{\Gamma}(t)$ that converge to Γ, and then use $\hat{\Gamma}(t)$ in u, instead of Γ.

For state constrained systems, we choose \mathcal{Y} to find maximal perturbation sets \mathcal{D} the system can tolerate without leaving \mathcal{Y}.

To handle delays τ, we transform nonstrict Lyapunov functions into strict ones, and then into Lyapunov-Krasovskii functionals.
What is the Value Added by Your Research?

Active magnetic bearings, bioreactors, brushless DC motors, heart rate controllers, marine robots, microelectromechanical relays, neuromuscular electrical stimulation, underactuated ships, unmanned air vehicles,..

For many systems, we design controls u that ensure ISS under the delays τ and uncertainties δ that prevail in engineering.

We combine the plants with dynamics for parameter estimators $\hat{\Gamma}(t)$ that converge to Γ, and then use $\hat{\Gamma}(t)$ in u, instead of Γ.

For state constrained systems, we choose \mathcal{Y} to find maximal perturbation sets \mathcal{D} the system can tolerate without leaving \mathcal{Y}.

To handle delays τ, we transform nonstrict Lyapunov functions into strict ones, and then into Lyapunov-Krasovskii functionals.
2D Curve Tracking for Marine Robots

\[\rho = |r_2 - r_1|, \quad \phi = \text{angle between } x_1 \text{ and } x_2, \quad \cos(\phi) = \frac{x_1 \cdot x_2}{\|x_1\| \|x_2\|} \]
2D Curve Tracking for Marine Robots

Motivation: Pollutants from Deepwater Horizon oil spill.
Motivation: Pollutants from Deepwater Horizon oil spill.

\[\rho = |r_2 - r_1|, \quad \phi = \text{angle between } x_1 \text{ and } x_2, \quad \cos(\phi) = x_1 \cdot x_2 \]
2D Curve Tracking for Marine Robots

Motivation: Pollutants from Deepwater Horizon oil spill.

\[\rho = |r_2 - r_1|, \quad \phi = \text{angle between } x_1 \text{ and } x_2, \quad \cos(\phi) = x_1 \cdot x_2 \]
Two-Dimensional Curve Tracking Model

\[\dot{\rho} = -\sin \phi, \quad \dot{\phi} = \kappa \cos \phi + \kappa \rho - u, \]

\[X = (\rho, \phi) \in \Omega. \]

\[\rho = \text{relative distance}, \quad \phi = \text{bearing}, \quad X = (0, +\infty) \times (-\pi/2, \pi/2). \]

\[\kappa = \text{positive curvature at the closest point}, \quad u = \text{steering control}. \]

Control Objectives in Undelayed Nonadaptive Case:

(A) Construct \(u \) to get UGAS of an equilibrium \(X_0 = (\rho_0, 0) \).

(B) Prove ISS properties under actuator errors \(\delta \) added to \(u \).

ISS:

\[|(\rho, \phi)(t)|_{X_0} \leq \gamma_1 (\gamma_2 (|(\rho, \phi)(0)|_{X_0}) e^{-ct} + \gamma_3 (|\delta|_{[0, t]})). \]

Feedback linearization with \(z = \sin(\phi) \) cannot be applied.
Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.
Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[\dot{\rho} = -\sin \phi, \quad \dot{\phi} = \frac{\kappa \cos \phi}{1 + \kappa \rho} - u, \quad X = (\rho, \phi) \in \mathcal{X}. \quad (\Sigma) \]
Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[
\begin{align*}
\dot{\rho} &= -\sin \phi, \\
\dot{\phi} &= \frac{\kappa \cos \phi}{1+\kappa \rho} - u, \\
X &= (\rho, \phi) \in \mathcal{X} .
\end{align*}
\]

(Σ)

\(\rho = \) relative distance.
Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[
\dot{\rho} = -\sin \phi, \quad \dot{\phi} = \frac{\kappa \cos \phi}{1 + \kappa \rho} - u, \quad X = (\rho, \phi) \in \mathcal{X}. \quad (\Sigma)
\]

\(\rho = \) relative distance. \(\phi = \) bearing.
Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[\dot{\rho} = -\sin \phi, \quad \dot{\phi} = \frac{\kappa \cos \phi}{1 + \kappa \rho} - u, \quad X = (\rho, \phi) \in \mathcal{X}. \quad (\Sigma) \]

\(\rho = \) relative distance. \(\phi = \) bearing. \(\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2). \)
Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[\dot{\rho} = -\sin \phi, \quad \dot{\phi} = \frac{\kappa \cos \phi}{1 + \kappa \rho} - u, \quad X = (\rho, \phi) \in \mathcal{X} \] \hspace{1cm} (\Sigma)

\(\rho = \) relative distance. \(\phi = \) bearing. \(\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2). \)
\(\kappa = \) positive curvature at the closest point.
Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[
\ddot{\rho} = -\sin \phi, \quad \dot{\phi} = \frac{\kappa \cos \phi}{1 + \kappa \rho} - u, \quad X = (\rho, \phi) \in \mathcal{X}.
\]

(Σ)

\(\rho\) = relative distance. \(\phi\) = bearing. \(\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2)\).
\(\kappa\) = positive curvature at the closest point. \(u\) = steering control.
Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[
\begin{align*}
\dot{\rho} & = -\sin \phi, \\
\dot{\phi} & = \frac{\kappa \cos \phi}{1 + \kappa \rho} - u, \\
X & = (\rho, \phi) \in \mathcal{X}. \\
\end{align*}
\]

(\Sigma)

\(\rho\) = relative distance. \(\phi\) = bearing. \(\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2)\).

\(\kappa\) = positive curvature at the closest point. \(u\) = steering control.

Lumelsky-Stepanov.
Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[\dot{\rho} = -\sin \phi, \quad \dot{\phi} = \frac{\kappa \cos \phi}{1 + \kappa \rho} - u, \quad X = (\rho, \phi) \in \mathcal{X}. \quad (\Sigma)\]

\(\rho\) = relative distance. \(\phi\) = bearing. \(\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2)\).
\(\kappa\) = positive curvature at the closest point. \(u\) = steering control.

Lumelsky-Stepanov. Micaelli-Samson.
Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[\begin{align*}
\dot{\rho} &= -\sin \phi, \\
\dot{\phi} &= \frac{\kappa \cos \phi}{1 + \kappa \rho} - u, \\
X &= (\rho, \phi) \in \mathcal{X}.
\end{align*} \] \hspace{1cm} (\Sigma)

\(\rho \) = relative distance. \(\phi \) = bearing. \(\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2) \).
\(\kappa \) = positive curvature at the closest point. \(u \) = steering control.

Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[\dot{\rho} = -\sin \phi, \quad \dot{\phi} = \frac{\kappa \cos \phi}{1+\kappa \rho} - u, \quad X = (\rho, \phi) \in \mathcal{X}. \quad (\Sigma) \]

\(\rho \) = relative distance. \(\phi \) = bearing. \(\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2) \).
\(\kappa \) = positive curvature at the closest point. \(u \) = steering control.

Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[\dot{\rho} = -\sin \phi, \quad \dot{\phi} = \frac{\kappa \cos \phi}{1 + \kappa \rho} - u, \quad X = (\rho, \phi) \in X. \quad (\Sigma) \]

\(\rho = \) relative distance. \(\phi = \) bearing. \(X = (0, +\infty) \times (-\pi/2, \pi/2). \)
\(\kappa = \) positive curvature at the closest point. \(u = \) steering control.

Control Objectives in Undelayed Nonadaptive Case:
Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[\dot{\rho} = -\sin \phi, \quad \dot{\phi} = \frac{\kappa \cos \phi}{1 + \kappa \rho} - u, \quad X = (\rho, \phi) \in \mathcal{X}. \] \hfill (\Sigma)

\(\rho \) = relative distance. \(\phi \) = bearing. \(\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2) \).
\(\kappa \) = positive curvature at the closest point. \(u \) = steering control.

Control Objectives in Undelayed Nonadaptive Case:
(A) Construct \(u \) to get UGAS of an equilibrium \(X_0 = (\rho_0, 0) \).
Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[\dot{\rho} = -\sin \phi, \quad \dot{\phi} = \frac{\kappa \cos \phi}{1 + \kappa \rho} - u, \quad X = (\rho, \phi) \in \mathcal{X}. \quad (\Sigma) \]

\(\rho \) = relative distance. \(\phi \) = bearing. \(\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2) \).
\(\kappa \) = positive curvature at the closest point. \(u \) = steering control.

Control Objectives in Undelayed Nonadaptive Case:
(A) Construct \(u \) to get UGAS of an equilibrium \(X_0 = (\rho_0, 0) \).
(B) Prove ISS properties under actuator errors \(\delta \) added to \(u \).
Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[\dot{\rho} = -\sin \phi, \quad \dot{\phi} = \frac{\kappa \cos \phi}{1 + \kappa \rho} - u, \quad X = (\rho, \phi) \in \mathcal{X}. \quad (\Sigma) \]

\(\rho = \) relative distance. \(\phi = \) bearing. \(\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2). \)
\(\kappa = \) positive curvature at the closest point. \(u = \) steering control.

Control Objectives in Undelayed Nonadaptive Case:
(A) Construct \(u \) to get UGAS of an equilibrium \(X_0 = (\rho_0, 0). \)
(B) Prove ISS properties under actuator errors \(\delta \) added to \(u \).

ISS:
\[|(\rho, \phi)(t)|_{X_0} \leq \gamma_1 (\gamma_2(|(\rho, \phi)(0)|_{X_0})e^{-ct}) + \gamma_3 (|\delta|_{[0,t]}). \]
Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

\[\dot{\rho} = -\sin \phi, \quad \dot{\phi} = \frac{\kappa \cos \phi}{1 + \kappa \rho} - u, \quad X = (\rho, \phi) \in \mathcal{X}. \quad (\Sigma) \]

\(\rho \) = relative distance. \(\phi \) = bearing. \(\mathcal{X} = (0, +\infty) \times (-\pi/2, \pi/2) \).
\(\kappa \) = positive curvature at the closest point. \(u \) = steering control.

Control Objectives in Undelayed Nonadaptive Case:
(A) Construct \(u \) to get UGAS of an equilibrium \(X_0 = (\rho_0, 0) \).
(B) Prove ISS properties under actuator errors \(\delta \) added to \(u \).

ISS: \(|(\rho, \phi)(t)|_{X_0} \leq \gamma_1 (\gamma_2 (|(\rho, \phi)(0)|_{X_0}) e^{-ct}) + \gamma_3 (|\delta|_{[0,t]}) \).

Feedback linearization with \(z = \sin(\phi) \) cannot be applied.
Why Can’t We Apply Feedback Linearization?

In the new variables ρ and $z = \sin(\phi)$, the system \(\Sigma\) becomes

\[
\dot{\rho} = -z, \\
\dot{z} = \kappa (1 - z^2)^{1/2} + \kappa \rho - u \sqrt{1 - z^2} \quad (\Sigma_c)
\]

on the new state space \(X_c = (0, \infty) \times (-1, 1)\).

The control \(u_{fl} = \frac{1}{\sqrt{1 - z^2}} (\kappa (1 - z^2)^{1/2} + \kappa \rho - K_1 (\rho - \rho_0)) + K_2 z)\) for any constants \(K_i > 0\) gives the closed loop dynamics

\[
\dot{\rho} = -z, \\
\dot{z} = K_1 (\rho - \rho_0) - K_2 z. \\
(3)
\]

Proposition: There do not exist constants \(K_1 > 0\) and \(K_2 > 0\) such that \(X_c = (0, \infty) \times (-1, 1)\) is forward invariant for (3).
Why Can’t We Apply Feedback Linearization?

In the new variables ρ and $z = \sin(\phi)$, the system (Σ) becomes

$$
\dot{\rho} = -z, \quad \dot{z} = \frac{\kappa(1-z^2)}{1+\kappa\rho} - u\sqrt{1-z^2} \quad (\Sigma_c)
$$

on the new state space $\mathcal{X}_c = (0, \infty) \times (-1, 1)$.
Why Can’t We Apply Feedback Linearization?

In the new variables ρ and $z = \sin(\phi)$, the system Σ becomes

$$\begin{align*}
\dot{\rho} &= -z, \\
\dot{z} &= \frac{\kappa(1-z^2)}{1+\kappa\rho} - u\sqrt{1-z^2}
\end{align*}$$

on the new state space $X_c = (0, \infty) \times (-1, 1)$. The control

$$u_{fl} = \frac{1}{\sqrt{1-z^2}} \left(\frac{\kappa(1-z^2)}{1+\kappa\rho} - K_1(\rho - \rho_0) + K_2z \right)$$

for any constants $K_i > 0$ gives the closed loop dynamics

$$\begin{align*}
\dot{\rho} &= -z, \\
\dot{z} &= K_1(\rho - \rho_0) - K_2z.
\end{align*}$$

(3)
Why Can’t We Apply Feedback Linearization?

In the new variables ρ and $z = \sin(\phi)$, the system (Σ) becomes

$$\dot{\rho} = -z, \quad \dot{z} = \frac{\kappa(1-z^2)}{1+\kappa\rho} - u\sqrt{1-z^2} \quad (\Sigma_c)$$

on the new state space $\mathcal{X}_c = (0, \infty) \times (-1, 1)$. The control

$$u_{fl} = \frac{1}{\sqrt{1-z^2}} \left(\frac{\kappa(1-z^2)}{1+\kappa\rho} - K_1(\rho - \rho_0) + K_2z \right)$$

for any constants $K_i > 0$ gives the closed loop dynamics

$$\dot{\rho} = -z, \quad \dot{z} = K_1(\rho - \rho_0) - K_2z \quad (3)$$

Proposition: There do not exist constants $K_1 > 0$ and $K_2 > 0$ such that $\mathcal{X}_c = (0, \infty) \times (-1, 1)$ is forward invariant for (3).
They realized the nonadaptive UGAS objective using
\[u = \kappa \cos(\phi) + \kappa \rho - h'(\rho) \cos(\phi) + \mu \sin(\phi). \]

Assumption 1:
\[h : (0, +\infty) \rightarrow [0, \infty) \] is \(C^1 \), \(h' \) has only finitely many zeros, \(\lim_{\rho \to 0^+} h(\rho) = \lim_{\rho \to \infty} h(\rho) = \infty \), and \(h \in \text{PD}(\rho_0) \).

Strategy:
Use the Lyapunov function candidate
\[V(\rho, \phi) = -\ln(\cos(\phi)) + h(\rho). \]

Along
\[\dot{\rho} = -\sin(\phi), \quad \dot{\phi} = h'(\rho) \cos(\phi) - \mu \sin(\phi), \]
we get
\[\dot{V} = -\mu \sin^2(\phi) \cos(\phi) \leq 0. \]
This gives UGAS, using LaSalle Invariance.
They realized the nonadaptive UGAS objective using

\[u = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi). \]

(4)
They realized the nonadaptive UGAS objective using

\[u = \frac{\kappa \cos(\phi)}{1+\kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi). \]

(4)

Assumption 1:

Assumption 1:
They realized the nonadaptive UGAS objective using

$$u = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi).$$

(4)

Assumption 1: $h : (0, +\infty) \rightarrow [0, \infty)$ is C^1
They realized the nonadaptive UGAS objective using

\[u = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi). \] \hspace{1cm} (4)

Assumption 1: \(h : (0, +\infty) \rightarrow [0, \infty) \) is \(C^1 \), \(h' \) has only finitely many zeros
They realized the nonadaptive UGAS objective using

\[u = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi). \] \hspace{1cm} (4)

Assumption 1: \(h : (0, +\infty) \to [0, \infty) \) is \(C^1 \), \(h' \) has only finitely many zeros, \(\lim_{\rho \to 0^+} h(\rho) = \lim_{\rho \to \infty} h(\rho) = \infty \)
Review of Zhang-Justh-Krishnaprasad CDC’04

They realized the nonadaptive UGAS objective using

$$u = \frac{\kappa \cos(\phi)}{1+\kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi).$$ \hspace{1cm} (4)

Assumption 1: $h : (0, +\infty) \rightarrow [0, \infty)$ is C^1, h' has only finitely many zeros, $\lim_{\rho \rightarrow 0^+} h(\rho) = \lim_{\rho \rightarrow \infty} h(\rho) = \infty$, and $h \in PD(\rho_0)$.

Strategic: Use the Lyapunov function candidate

$$V(\rho, \phi) = -\ln(\cos(\phi)) + h(\rho).$$ \hspace{1cm} (5)

Along $\dot{\rho} = -\sin(\phi), \dot{\phi} = h'(\rho) \cos(\phi) - \mu \sin(\phi)$, we get

$$\dot{V} = -\mu \sin(\phi)^2 \cos(\phi) \leq 0.$$ \hspace{1cm} (6)

This gives UGAS, using LaSalle Invariance.
Review of Zhang-Justh-Krishnaprasad CDC’04

They realized the nonadaptive UGAS objective using

$$u = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi).$$ \hspace{1cm} (4)

Assumption 1: $h : (0, +\infty) \rightarrow [0, \infty)$ is C^1, h' has only finitely many zeros, $\lim_{\rho \rightarrow 0^+} h(\rho) = \lim_{\rho \rightarrow \infty} h(\rho) = \infty$, and $h \in PD(\rho_0)$.

Strategy:
They realized the nonadaptive UGAS objective using

\[u = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi). \]

Assumption 1: \(h : (0, +\infty) \rightarrow [0, \infty) \) is \(C^1 \), \(h' \) has only finitely many zeros, \(\lim_{\rho \rightarrow 0^+} h(\rho) = \lim_{\rho \rightarrow \infty} h(\rho) = \infty \), and \(h \in \mathcal{PD}(\rho_0) \).

Strategy: Use the Lyapunov function candidate

\[V(\rho, \phi) = -\ln \left(\cos(\phi) \right) + h(\rho). \]
They realized the nonadaptive UGAS objective using

\[u = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi). \]

(4)

Assumption 1: \(h : (0, +\infty) \rightarrow [0, \infty) \) is \(C^1 \), \(h' \) has only finitely many zeros, \(\lim_{\rho \rightarrow 0^+} h(\rho) = \lim_{\rho \rightarrow \infty} h(\rho) = \infty \), and \(h \in \mathcal{P}D(\rho_0). \)

Strategy: Use the Lyapunov function candidate

\[V(\rho, \phi) = -\ln \left(\cos(\phi) \right) + h(\rho). \]

(5)

Along \(\dot{\rho} = -\sin(\phi), \dot{\phi} = h'(\rho) \cos(\phi) - \mu \sin(\phi) \), we get

\[\dot{V} = -\mu \frac{\sin^2(\phi)}{\cos(\phi)} \leq 0. \]

(6)
Review of Zhang-Justh-Krishnaprasad CDC’04

They realized the nonadaptive UGAS objective using

\[u = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi). \] \hspace{1cm} (4)

Assumption 1: \(h : (0, +\infty) \rightarrow [0, \infty) \) is \(C^1 \), \(h' \) has only finitely many zeros, \(\lim_{\rho \rightarrow 0^+} h(\rho) = \lim_{\rho \rightarrow \infty} h(\rho) = \infty \), and \(h \in \mathcal{PD}(\rho_0) \).

Strategy: Use the Lyapunov function candidate

\[V(\rho, \phi) = -\ln(\cos(\phi)) + h(\rho). \] \hspace{1cm} (5)

Along \(\dot{\rho} = -\sin(\phi) \), \(\dot{\phi} = h'(\rho) \cos(\phi) - \mu \sin(\phi) \), we get

\[\dot{V} = -\mu \frac{\sin^2(\phi)}{\cos(\phi)} \leq 0. \] \hspace{1cm} (6)

This gives UGAS, using LaSalle Invariance.
Extra Properties to Achieve All Of Our Goals

To realize our goals, we added assumptions on which hold for

\[h(\rho) = \alpha(\rho + \rho_o/\rho - 2\rho_o) \]

See my Automatica and TAC papers with Fumin Zhang.
Extra Properties to Achieve All Of Our Goals

To realize our goals, we added assumptions on h which hold for

$$h(\rho) = \alpha \left(\rho + \frac{\rho_o^2}{\rho} - 2\rho_o \right)$$
To realize our goals, we added assumptions on h which hold for

$$h(\rho) = \alpha \left(\rho + \frac{\rho_0^2}{\rho} - 2\rho_0 \right)$$

See my Automatica and TAC papers with Fumin Zhang.
Our Adaptive Robust Curve Tracking Controller

\[\dot{\rho} = -\sin(\phi) \]

\[\dot{\phi} = \kappa \cos(\phi) \]

\[1 + \kappa \rho \left(\Gamma[\hat{u} + \delta] \right) \]

\[\rho, \phi \in \text{full state space} \]

\[u(\rho, \phi, \hat{\Gamma}) = -\frac{1}{\hat{\Gamma}} \left(\kappa \cos(\phi) \right) \]

\[\hat{\Gamma} = (\hat{\Gamma} - c_{\text{min}}) \left(c_{\text{max}} - \hat{\Gamma} \right) \]

\[V^\#(\rho, \phi) = -h'(\rho) \sin(\phi) + \int_0^V(\rho, \phi) \gamma(m) \, dm \]

\[\gamma(q) = \frac{1}{\mu} \left(\frac{2}{\alpha^2 \rho^4} \right)^{\frac{3}{2}} + \frac{1}{\mu^2} + \frac{2}{\alpha^2 \rho^4} + \frac{576}{\alpha^2 q^3} \]

\[V(\rho, \phi) = -\ln(\cos(\phi)) + h(\rho) \]
Our Adaptive Robust Curve Tracking Controller

\[
\begin{align*}
\dot{\rho} &= -\sin(\phi) \\
\dot{\phi} &= \frac{\kappa \cos(\phi)}{1 + \kappa \rho} + \Gamma[u + \delta]
\end{align*}
\]

\((\rho, \phi) \in (0, \infty) \times (-\pi/2, \pi/2) \) (\(\Sigma_c \))
Our Adaptive Robust Curve Tracking Controller

\[
\begin{cases}
\dot{\rho} = -\sin(\phi) \\
\dot{\phi} = \frac{\kappa \cos(\phi)}{1 + \kappa \rho} + \Gamma [u + \delta]
\end{cases}
\]

full state space \((\rho, \phi) \in (0, \infty) \times (-\pi/2, \pi/2) \) \((\Sigma_c)\)

Control: \(u(\rho, \phi, \hat{\Gamma}) = -\frac{1}{\hat{\Gamma}} \left(\frac{\kappa \cos(\phi)}{1 + \kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi) \right) \) \((7)\)

Estimator: \(\dot{\hat{\Gamma}} = (\hat{\Gamma} - c_{\min})(c_{\max} - \hat{\Gamma}) \frac{\partial V^\sharp(\rho, \phi)}{\partial \phi} u(\rho, \phi, \hat{\Gamma}) \) \((8)\)
Our Adaptive Robust Curve Tracking Controller

\[
\left\{ \begin{array}{l}
\dot{\rho} = -\sin(\phi) \\
\dot{\phi} = \frac{\kappa \cos(\phi)}{1+\kappa \rho} + \Gamma [u + \delta]
\end{array} \right. \quad (\rho, \phi) \in \mathcal{S}_c \quad \text{full state space}
\]

Control: \quad u(\rho, \phi, \hat{\Gamma}) = -\frac{1}{\hat{\Gamma}} \left(\frac{\kappa \cos(\phi)}{1+\kappa \rho} - h'(\rho) \cos(\phi) + \mu \sin(\phi) \right) \quad (7)

Estimator: \quad \dot{\hat{\Gamma}} = (\hat{\Gamma} - \hat{\kappa}_{\text{min}})(\hat{\kappa}_{\text{max}} - \hat{\Gamma}) \frac{\partial V^\#(\rho, \phi)}{\partial \phi} u(\rho, \phi, \hat{\Gamma}) \quad (8)

\[V^\#(\rho, \phi) = -h'(\rho) \sin(\phi) + \int_0^{V(\rho, \phi)} \gamma(m) \, dm \quad (9) \]

\[\gamma(q) = \frac{1}{\mu} \left(-\frac{2}{\alpha^2 \rho_0^4} (q + 2\alpha \rho_0)^3 + 1 \right) + \frac{\mu}{2} + 2 + \frac{18\alpha}{\rho_0} + \frac{576}{\rho_0^4 \alpha^2} q^3 \quad (10) \]

\[V(\rho, \phi) = -\ln(\cos(\phi)) + h(\rho) \quad (11) \]
Robustly Forwardly Invariant Hexagonal Regions

Restrict the perturbations $\delta(t)$ to keep the state $X = (\rho, \phi)$ from leaving the state space $X = (0, \infty) \times (-\pi/2, \pi/2)$.

View the state space $(0, \infty) \times (-\pi/2, \pi/2)$ as a nested union of compact hexagonally shaped regions $H_1 \subseteq H_2 \subseteq ... \subseteq H_i \subseteq ...$.

For each i, all trajectories of (Σ_c) starting in H_i for all $\delta : [0, \infty) \rightarrow [-\delta^*_i, \delta^*_i]$ stay in H_i.

The tilted legs have slope $c_{\min} \mu/c_{\max}$.

For each index i, we take δ^*_i to be the largest allowable disturbance bound to maintain forward invariance of H_i.

Then we prove ISS of the tracking and parameter identification system on each set H_i, with the disturbance set $D = [-\delta^*_i, \delta^*_i]$.
Robustly Forwardly Invariant Hexagonal Regions

Restrict the perturbations $\delta(t)$ to keep the state $X = (\rho, \phi)$ from leaving the state space $\mathcal{X} = (0, \infty) \times (-\pi/2, \pi/2)$.
Robustly Forwardly Invariant Hexagonal Regions

Restrict the perturbations $\delta(t)$ to keep the state $X = (\rho, \phi)$ from leaving the state space $\mathcal{X} = (0, \infty) \times (-\pi/2, \pi/2)$.

View the state space $(0, \infty) \times (-\pi/2, \pi/2)$ as a nested union of compact hexagonally shaped regions $H_1 \subseteq H_2 \subseteq \ldots \subseteq H_i \subseteq \ldots$.
Robustly Forwardly Invariant Hexagonal Regions

Restrict the perturbations $\delta(t)$ to keep the state $X = (\rho, \phi)$ from leaving the state space $\mathcal{X} = (0, \infty) \times (-\pi/2, \pi/2)$.

View the state space $(0, \infty) \times (-\pi/2, \pi/2)$ as a nested union of compact hexagonally shaped regions $H_1 \subseteq H_2 \subseteq \ldots \subseteq H_i \subseteq \ldots$. [For each i, all trajectories of (Σ_c) starting in H_i for all $\delta : [0, \infty) \rightarrow [-\delta_{\ast i}, \delta_{\ast i}]$ stay in H_i.] The tilted legs have slope $c_{\min} \mu / c_{\max}$.
Robustly Forwardly Invariant Hexagonal Regions

Restrict the perturbations $\delta(t)$ to keep the state $X = (\rho, \phi)$ from leaving the state space $\mathcal{X} = (0, \infty) \times (-\pi/2, \pi/2)$.

View the state space $(0, \infty) \times (-\pi/2, \pi/2)$ as a nested union of compact hexagonally shaped regions $H_1 \subseteq H_2 \subseteq \ldots \subseteq H_i \subseteq \ldots$. [For each i, all trajectories of (Σ_c) starting in H_i for all $\delta : [0, \infty) \to [-\delta_{*i}, \delta_{*i}]$ stay in H_i.] The tilted legs have slope $c_{\text{min}} \mu/c_{\text{max}}$.

For each index i, we take δ_{*i} to be the largest allowable disturbance bound to maintain forward invariance of H_i.
Robustly Forwardly Invariant Hexagonal Regions

Restrict the perturbations $\delta(t)$ to keep the state $X = (\rho, \phi)$ from leaving the state space $\mathcal{X} = (0, \infty) \times (-\pi/2, \pi/2)$.

View the state space $(0, \infty) \times (-\pi/2, \pi/2)$ as a nested union of compact hexagonally shaped regions $H_1 \subseteq H_2 \subseteq \ldots \subseteq H_i \subseteq \ldots$. [For each i, all trajectories of (Σ_c) starting in H_i for all $\delta : [0, \infty) \rightarrow [-\delta_*i, \delta_*i]$ stay in H_i.] The tilted legs have slope $c_{\min} \mu / c_{\max}$.

For each index i, we take δ_*i to be the largest allowable disturbance bound to maintain forward invariance of H_i.

Then we prove ISS of the tracking and parameter identification system on each set H_i, with the disturbance set $\mathcal{D} = [-\delta_*i, \delta_*i]$.
Field Work at Grand Isle, LA

20 days of field work off Grand Isle.

Search for oil spill remnants.

Georgia Tech Savannah Robotics Team (led by Fumin Zhang).
Field Work at Grand Isle, LA

20 days of field work off Grand Isle.

Search for oil spill remnants.

Georgia Tech Savannah Robotics Team (led by Fumin Zhang).
Field Work at Grand Isle, LA

20 days of field work off Grand Isle.
Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants.
Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants. Georgia Tech Savannah Robotics Team (led by Fumin Zhang).
Field Work at Grand Isle, LA
Field Work at Grand Isle, LA
Circle Tracking by ASV Victoria
Line Tracking by ASV Victoria
Crude Oil Concentration Maps
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems with delays and uncertainties. Curve tracking controllers for autonomous marine vehicles are important for monitoring water quality, especially after oil spills. Our controls identify parameters and are adaptive and robust to the perturbations and delays that arise in field work. We can prove these properties using input-to-state stability, dynamic extensions, and Lyapunov-Krasovskii functionals. We used our controls on student built marine robots to map residual crude oil from the Deepwater Horizon spill. In our future work, we will study adaptive robust control for heterogeneous fleets of autonomous marine vehicles.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems with delays and uncertainties.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems with delays and uncertainties.

Curve tracking controllers for autonomous marine vehicles are important for monitoring water quality, especially after oil spills.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems with delays and uncertainties.

Curve tracking controllers for autonomous marine vehicles are important for monitoring water quality, especially after oil spills.

Our controls identify parameters and are adaptive and robust to the perturbations and delays that arise in field work.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems with delays and uncertainties.

Curve tracking controllers for autonomous marine vehicles are important for monitoring water quality, especially after oil spills.

Our controls identify parameters and are adaptive and robust to the perturbations and delays that arise in field work.

We can prove these properties using input-to-state stability, dynamic extensions, and Lyapunov-Krasovskii functionals.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems with delays and uncertainties.

Curve tracking controllers for autonomous marine vehicles are important for monitoring water quality, especially after oil spills.

Our controls identify parameters and are adaptive and robust to the perturbations and delays that arise in field work.

We can prove these properties using input-to-state stability, dynamic extensions, and Lyapunov-Krasovskii functionals.

We used our controls on student built marine robots to map residual crude oil from the Deepwater Horizon spill.
Conclusions

Adaptive nonlinear controllers are useful for many engineering control systems with delays and uncertainties.

Curve tracking controllers for autonomous marine vehicles are important for monitoring water quality, especially after oil spills.

Our controls identify parameters and are adaptive and robust to the perturbations and delays that arise in field work.

We can prove these properties using input-to-state stability, dynamic extensions, and Lyapunov-Krasovskii functionals.

We used our controls on student built marine robots to map residual crude oil from the Deepwater Horizon spill.

In our future work, we will study adaptive robust control for heterogeneous fleets of autonomous marine vehicles.
References for 2D Case with Hyperlinks

