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What Do We Mean By Control Systems?

These are triply parameterized families of ODEs of the form

Y ′(t) = F
(
t ,Y (t),u(t ,Y (t − τ)), Γ, δ(t)

)
, Y (t) ∈ Y. (1)

Y ⊆ Rn. δ : [0,∞)→ D represents uncertainty. D ⊆ Rm.
The vector Γ is constant but unknown. τ is a constant delay.

Specify u to get a doubly parameterized closed loop family

Y ′(t) = G(t ,Y (t),Y (t − τ), Γ, δ(t)), Y (t) ∈ Y, (2)

where G(t ,Y (t),Y (t − τ), Γ,d) = F(t ,Y (t),u(t ,Y (t − τ)), Γ,d).

Problem: Given a desired reference trajectory Yr , specify u and
a dynamics for an estimate Γ̂ of Γ such that the augmented error
E(t) = (Y (t)− Yr (t), Γ− Γ̂(t)) satisfies ISS with respect to δ.
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What is Input-to-State Stability (or ISS)?

ISS (Sontag, ’89) generalizes global asymptotic stability.

Y ′(t) = G(t ,Y (t),Y (t − τ), Γ), Y (t) ∈ Y (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y |[t0−τ,t0])

)
(UGAS)

Our γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Y ′(t) = G
(
t ,Y (t),Y (t − τ), Γ, δ(t)

)
, Y (t) ∈ Y (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y |[t0−τ ,t0])

)
+ γ3(|δ|[t0,t]) (ISS)

Find γi ’s by building special strict Lyapunov functions (LFs).

When τ = 0, a system is ISS iff it has an ISS LF (Sontag-Wang).
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What is the Value Added by Your Research?

Active magnetic bearings, bioreactors, brushless DC motors,
heart rate controllers, marine robots, microelectromechanical
relays, neuromuscular electrical stimulation, underactuated
ships, unmanned air vehicles,..

For many systems, we design controls u that ensure ISS under
the delays τ and uncertainties δ that prevail in engineering.

We combine the plants with dynamics for parameter estimators
Γ̂(t) that converge to Γ, and then use Γ̂(t) in u, instead of Γ.

For state constrained systems, we choose Y to find maximal
perturbation sets D the system can tolerate without leaving Y.

To handle delays τ , we transform nonstrict Lyapunov functions
into strict ones, and then into Lyapunov-Krasovskii functionals.
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2D Curve Tracking for Marine Robots

Motivation: Pollutants from Deepwater Horizon oil spill.

ρ = |r2 − r1|, φ = angle between x1 and x2, cos(φ) = x1 · x2
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Two-Dimensional Curve Tracking Model

Interaction of a unit speed robot and its projection on the curve.

ρ̇ = − sinφ, φ̇ = κ cosφ
1+κρ − u , X = (ρ, φ) ∈ X . (Σ)

ρ = relative distance. φ = bearing. X = (0,+∞)× (−π/2, π/2).
κ = positive curvature at the closest point. u = steering control.

Lumelsky-Stepanov. Micaelli-Samson. Morin-Samson. Zhang..

Control Objectives in Undelayed Nonadaptive Case:
(A) Construct u to get UGAS of an equilibrium X0 = (ρ0,0).
(B) Prove ISS properties under actuator errors δ added to u.

ISS: |(ρ, φ)(t)|X0 ≤ γ1
(
γ2(|(ρ, φ)(0)|X0)e−ct)+ γ3(|δ|[0,t]).

Feedback linearization with z = sin(φ) cannot be applied.
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Why Can’t We Apply Feedback Linearization?

In the new variables ρ and z = sin(φ), the system (Σ) becomes

ρ̇ = −z, ż = κ(1−z2)
1+κρ − u

√
1− z2 (Σc)

on the new state space Xc = (0,∞)× (−1,1). The control

ufl =
1√

1− z2

(
κ(1− z2)

1 + κρ
− K1(ρ− ρ0) + K2z

)
for any constants Ki > 0 gives the closed loop dynamics

ρ̇ = −z, ż = K1(ρ− ρ0)− K2z . (3)

Proposition: There do not exist constants K1 > 0 and K2 > 0
such that Xc = (0,∞)× (−1,1) is forward invariant for (3).
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Review of Zhang-Justh-Krishnaprasad CDC’04

They realized the nonadaptive UGAS objective using

u = κ cos(φ)
1+κρ − h′(ρ) cos(φ) + µ sin(φ). (4)

Assumption 1: h : (0,+∞)→ [0,∞) is C1, h′ has only finitely
many zeros, limρ→0+ h(ρ) = limρ→∞ h(ρ) =∞, and h ∈ PD(ρ0).

Strategy: Use the Lyapunov function candidate

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) . (5)

Along ρ̇ = − sin(φ), φ̇ = h′(ρ) cos(φ)− µ sin(φ), we get

V̇ = −µ sin2(φ)
cos(φ) ≤ 0 . (6)

This gives UGAS, using LaSalle Invariance.
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Extra Properties to Achieve All Of Our Goals

To realize our goals, we added assumptions on h which hold for

h(ρ) = α
(
ρ+ ρ2

o/ρ− 2ρo
)

See my Automatica and TAC papers with Fumin Zhang.
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Our Adaptive Robust Curve Tracking Controller

{
ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ + Γ[u + δ]

(ρ, φ) ∈
full state space︷ ︸︸ ︷

(0,∞)× (−π/2, π/2) (Σc)

Control : u(ρ, φ, Γ̂) = −1
Γ̂

(
κ cos(φ)

1+κρ − h′(ρ) cos(φ) + µ sin(φ)
)

(7)

Estimator : ˙̂
Γ = (Γ̂− cmin)(cmax − Γ̂)∂V ](ρ,φ)

∂φ u(ρ, φ, Γ̂) (8)

V ](ρ, φ) = −h′(ρ) sin(φ) +

∫ V (ρ,φ)

0
γ(m)dm (9)

γ(q) = 1
µ

(
2

α2ρ4
0
(q + 2αρ0)3 + 1

)
+ µ

2 + 2 + 18α
ρ0

+ 576
ρ4

0α
2 q3 (10)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (11)



Our Adaptive Robust Curve Tracking Controller

{
ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ + Γ[u + δ]

(ρ, φ) ∈
full state space︷ ︸︸ ︷

(0,∞)× (−π/2, π/2) (Σc)

Control : u(ρ, φ, Γ̂) = −1
Γ̂

(
κ cos(φ)

1+κρ − h′(ρ) cos(φ) + µ sin(φ)
)

(7)

Estimator : ˙̂
Γ = (Γ̂− cmin)(cmax − Γ̂)∂V ](ρ,φ)

∂φ u(ρ, φ, Γ̂) (8)

V ](ρ, φ) = −h′(ρ) sin(φ) +

∫ V (ρ,φ)

0
γ(m)dm (9)

γ(q) = 1
µ

(
2

α2ρ4
0
(q + 2αρ0)3 + 1

)
+ µ

2 + 2 + 18α
ρ0

+ 576
ρ4

0α
2 q3 (10)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (11)



Our Adaptive Robust Curve Tracking Controller

{
ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ + Γ[u + δ]

(ρ, φ) ∈
full state space︷ ︸︸ ︷

(0,∞)× (−π/2, π/2) (Σc)

Control : u(ρ, φ, Γ̂) = −1
Γ̂

(
κ cos(φ)

1+κρ − h′(ρ) cos(φ) + µ sin(φ)
)

(7)

Estimator : ˙̂
Γ = (Γ̂− cmin)(cmax − Γ̂)∂V ](ρ,φ)

∂φ u(ρ, φ, Γ̂) (8)

V ](ρ, φ) = −h′(ρ) sin(φ) +

∫ V (ρ,φ)

0
γ(m)dm (9)

γ(q) = 1
µ

(
2

α2ρ4
0
(q + 2αρ0)3 + 1

)
+ µ

2 + 2 + 18α
ρ0

+ 576
ρ4

0α
2 q3 (10)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (11)



Our Adaptive Robust Curve Tracking Controller

{
ρ̇ = − sin(φ)

φ̇ = κ cos(φ)
1+κρ + Γ[u + δ]

(ρ, φ) ∈
full state space︷ ︸︸ ︷

(0,∞)× (−π/2, π/2) (Σc)

Control : u(ρ, φ, Γ̂) = −1
Γ̂

(
κ cos(φ)

1+κρ − h′(ρ) cos(φ) + µ sin(φ)
)

(7)

Estimator : ˙̂
Γ = (Γ̂− cmin)(cmax − Γ̂)∂V ](ρ,φ)

∂φ u(ρ, φ, Γ̂) (8)

V ](ρ, φ) = −h′(ρ) sin(φ) +

∫ V (ρ,φ)

0
γ(m)dm (9)

γ(q) = 1
µ

(
2

α2ρ4
0
(q + 2αρ0)3 + 1

)
+ µ

2 + 2 + 18α
ρ0

+ 576
ρ4

0α
2 q3 (10)

V (ρ, φ) = − ln
(

cos(φ)
)

+ h(ρ) (11)



Robustly Forwardly Invariant Hexagonal Regions

Restrict the perturbations δ(t) to keep the state X = (ρ, φ) from
leaving the state space X = (0,∞)× (−π/2, π/2).

View the state space (0,∞)× (−π/2, π/2)
as a nested union of compact hexagonally
shaped regions H1 ⊆ H2 ⊆ . . . ⊆ Hi ⊆ . . ..
[For each i , all trajectories of (Σc) starting
in Hi for all δ : [0,∞)→ [−δ∗i , δ∗i ] stay in
Hi .] The tilted legs have slope cminµ/cmax.

For each index i , we take δ∗i to be the largest allowable
disturbance bound to maintain forward invariance of Hi .

Then we prove ISS of the tracking and parameter identification
system on each set Hi , with the disturbance set D = [−δ∗i , δ∗i ].
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Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants.
Georgia Tech Savannah Robotics Team (led by Fumin Zhang).
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Crude Oil Concentration Maps



Conclusions

Adaptive nonlinear controllers are useful for many engineering
control systems with delays and uncertainties.

Curve tracking controllers for autonomous marine vehicles are
important for monitoring water quality, especially after oil spills.

Our controls identify parameters and are adaptive and robust to
the perturbations and delays that arise in field work.

We can prove these properties using input-to-state stability,
dynamic extensions, and Lyapunov-Krasovskii functionals.

We used our controls on student built marine robots to map
residual crude oil from the Deepwater Horizon spill.

In our future work, we will study adaptive robust control for
heterogeneous fleets of autonomous marine vehicles.
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