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Proves input-to-state stability (ISS) of the £ = (s, x) — &, system.

ISS on a set S means there are class K, functions v; such that
[E(D)] < 11 (2(I€(0))e™") +3(|d]jo,n) for all t > 0 if £(0) € S.

K~ is the set of all continuous strictly increasing unbounded
functions v : [0,00) — [0, c0) such that v(0) = 0.
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Reduces to Gouze-Robledo model when uncertainties ¢; and
delays 7; are 0 and usual model when the inputs x? > 0 are zero.

Theorem: Under our assumptions, for all constants x > 0 and
5 > si,, the dynamics for the error vector £ = (s, x) — &, satisfy
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Significance: Since x > 0 and s > s;, are arbitrary, we get ISS
properties on all of (0, 00)™ " under our disturbance bounds.
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Wi(%) = % — X In (Xf“'*) forall iep

and V(X)) =x;forallie {1,2,...,n}\ P
along all solutions of (M) starting in S with delays 7; = 0 satisfies
GVEW) < ki (TS TN rhelilog )

forall t > T(|£(0)|), where X; = x; — x;, for all i and § = s — s,.
Extend this to ISS estimate on [0, o) by a trajectory analysis.
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x1(t) and xo(t) are Green and Red Curves, Respectively. s(t) is
Blue Curve. Initial State (s(0), x1(0), x2(0)) = (1.3,0.2,0.1).
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