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Background on Chemostats

B Chemostat: Laboratory apparatus for continuous culture of
microorganisms, with many biotechnological applications..

B Models: Represent cell or microorganism growth, wastewater
treatment, or natural environments like lakes..

B States: Microorganism and substrate concentrations, prone
to model uncertainties..

B Our goals: Input-to-state stabilization of equilibria that allow
co-existence of species with one limiting nutrient
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Our Models and Theorem

 ṡ(t) = D[sin−s(t)]−
n∑

i=1
µi(s(t))xi(t) + δ0(t)

ẋi(t) = xi(t)µi(s(t−τi)) + D[x0
i −xi(t)] + δi(t), 1 ≤ i ≤ n

(M)

µi(s) = mi s
ai +s . Equilibria: E∗ = (s∗, x1∗, . . . , xn∗) ∈ (0,∞)×[0,∞)n.

Assumptions. The equilibria and disturbance bounds satisfy:

1) maxi µi(s∗)<D<µn(sin), sin =s∗+
n∑

i=1

µi (s∗)x0
i

D−µi (s∗) , xi∗=
Dx0

i
D−µi (s∗)

2) δi(t) ∈ [d i , d̄i ] for all i where Dsin + d0 > 0, d̄0 < 0.5Ds∗,
Dx0

i + d i > 0 for all indices i ∈ P, and d i = 0 for all indices
i ∈ {1,2, . . . ,n} \ P, where P = {i ∈ {1,2, . . . ,n} : x0

i > 0}.

Assumption 2) maintains forward invariance of (0,∞)n+1 for (M).
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ẋi(t) = xi(t)µi(s(t−τi)) + D[x0
i −xi(t)] + δi(t), 1 ≤ i ≤ n

(M)

µi(s) = mi s
ai +s . Equilibria: E∗ = (s∗, x1∗, . . . , xn∗) ∈ (0,∞)×[0,∞)n.

Assumptions. The equilibria and disturbance bounds satisfy:

1) maxi µi(s∗)<D<µn(sin), sin =s∗+
n∑

i=1

µi (s∗)x0
i

D−µi (s∗) , xi∗=
Dx0

i
D−µi (s∗)

2) δi(t) ∈ [d i , d̄i ] for all i where Dsin + d0 > 0, d̄0 < 0.5Ds∗,
Dx0

i + d i > 0 for all indices i ∈ P, and d i = 0 for all indices
i ∈ {1,2, . . . ,n} \ P, where P = {i ∈ {1,2, . . . ,n} : x0

i > 0}.

Assumption 2) maintains forward invariance of (0,∞)n+1 for (M).

2/6



Our Models and Theorem ṡ(t) = D[sin−s(t)]−
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Controls: x0
i and sin. x0

i : substrate inputs from other chemostats.
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We also have an Assumption 3) with a bound τ̄ on the delays τi .
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n∑

i=1
µi(s(t))xi(t) + δ0(t)
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n∑

i=1
µi(s(t))xi(t) + δ0(t)
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Significance: Uniform persistence of all species for which
x0

i > 0. ISS for arbitrarily large upper bounds d̄i on δi(t) for i ≥ 1.
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Main Idea of Proof: Undelayed Case

Construct a function T ∈ K∞ and constants ci > 0 and ki > 0
such that the time derivative of

V (E) = s̃ − s∗ ln
(

s̃+s∗
s∗

)
+

n∑
i=1

1
ci

Ψi(x̃i), where

Ψi(x̃i) = x̃i − xi∗ ln
(

x̃i +xi∗
xi∗

)
for all i ∈ P

and Ψi(x̃i) = xi for all i ∈ {1,2, . . . ,n} \ P

along all solutions of (M) starting in S with delays τi = 0 satisfies

d
dt V (E(t)) ≤ −k1

(
s̃2(t)
s(t) +

n∑
i=1

x̃2
i (t)

xi (t)

)
+ k2|δ|[0,t] (1)

for all t ≥ T (|E(0)|), where x̃i = xi − xi∗ for all i and s̃ = s − s∗.
Extend this to ISS estimate on [0,∞) by a trajectory analysis.
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Simulations

n = 2, D = 0.4, s∗ = 0.5, x0
1 = 1, x0

2 = 0.55, sin = 1.34412,
µ1(s) = s

5+s , µ2(s) = s
2+s , x1∗ = 1.29412, x2∗ = 1.1, τ = (0.14,0)

δ(t) = (δ0(t), δ1(t), δ2(t)) = (0,−0.1 sin(t),0.1 cos(t)).

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x1(t) and x2(t) are Green and Red Curves, Respectively. s(t) is
Blue Curve. Initial State (s(0), x1(0), x2(0)) = (0.2,0.1,1).
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x1(t) and x2(t) are Green and Red Curves, Respectively. s(t) is
Blue Curve. Initial State (s(0), x1(0), x2(0)) = (1.3,0.2,0.1).
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Conclusions

B Chemostats play a central role in microbial ecology.

B Persistence and asymptotic stability of equilibria are desirable.

B Gouze-Robledo showed coexistence by constant inputs x0
i .

B This arises in chains of chemostats with multiple substrates.

BWe generalized their work to prove ISS and added delays.

Mazenc, F., G. Robledo, and M. Malisoff. Stability and
robustness analysis for a multispecies chemostat model with
delays in the growth rates and uncertainties. Discrete and
Continuous Dynamical Systems Series B.

Thank you for your attention!
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