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> R. Freeman, H. Khalil, M. Krstic, F. Mazenc, J. Tsinias, ....
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Assumption 2: The function F in (1) is continuous in f and
globally Lipschitz in (x, zy) and F(¢,0,0) = 0 for all t > 0.
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x(t) = F(t,x(1), z(t))

zi(t) = zi(t), ie{l,....k—1} (1)
K

z(t) = “(f)+z1‘//zj(t)
]:

Assumption 3: (CICS) There is a globally Lipschitz bounded w
such that w(0) = 0, and constants T > 0 and g > 0, such that for
each continuous ¢ : [0, +00) — R that exponentially converges
to 0, the following is true: All solutions ¢ : [0, +00) — R" of

t
) = 9D QL+ T)w(E(0))
() = f<r, (1), /t | naet ey 6(t)> ©)

satisfy lim;_, | o £(t) = 0, where Q(t, a, b) = (t — a)*'(t — b)*".




Dynamic Extension

x(t) = F(t,x(1),z:(1))
Z(t) = zig(t), ie{l,... k-1

2l = u)+ 3 v
j:

Y(t) = Jok_1 Y(t)+eLT“%g)), where

(AUG)

-q 1 o ... 0

0O —g 1 ... O

: . —q 1
0 ... ... 0 -—qg]

and br = [°, e9¢k=1(¢ + T)k~1d¢ with g and T as above.
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Here sat;(r) = rif |[r] < a and asign(r) otherwise.

Benefit: Bounded u(t) under mild checkable (CICS) condition.
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Thank you for your attention!



