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Background on Backstepping

B We study control systems, i.e., systems of ODEs having a
state- and time-dependent parameter called a control.

B We choose the control to ensure global asymptotic stability of
the systems and to depend on current and past state values.

B We require the control to satisfy certain boundedness
conditions and certain partially linear cascade structures.

B Many engineering applications yield the dynamic structures
from our theorem, resulting in a large literature.

B R. Freeman, H. Khalil, M. Krstic, F. Mazenc, J. Tsinias, ....
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Class of Dynamics and 3 Assumptions


ẋ(t) = F(t , x(t), z1(t))

żi(t) = zi+1(t), i ∈ {1, . . . , k − 1}

żk (t) = u(t) +
k∑

j=1
vjzj(t)

(1)

Assumption 1: There is a bounded locally Lipschitz ϑ such that
żi(t) = zi+1(t), i ∈ {1, . . . , k − 1}

żk (t) = ϑ(z(t)) +
k∑

i=1
vizi(t)

(2)

is globally asymptotically and locally exponentially stable to 0.

Assumption 2: The function F in (1) is continuous in t and
globally Lipschitz in (x , z1) and F(t ,0,0) = 0 for all t ≥ 0.
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k∑
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(1)

Assumption 3: (CICS) There is a globally Lipschitz bounded ω
such that ω(0) = 0, and constants T > 0 and q > 0, such that for
each continuous δ : [0,+∞)→ R that exponentially converges
to 0, the following is true: All solutions ξ : [0,+∞)→ Rn of

ξ̇(t) = F
(

t , ξ(t),
∫ t

t−T

eq(`−t)Q(t ,`,`+T )ω(ξ(`))∫ 0
−T eqr r k−1(r+T )k−1dr

d`+ δ(t)
)

(C)

satisfy limt→+∞ ξ(t) = 0, where Q(t ,a,b) = (t − a)k−1(t − b)k−1.
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Dynamic Extension

ẋ(t) = F(t , x(t), z1(t))

żi(t) = zi+1(t), i ∈ {1, . . . , k − 1}

żk (t) = u(t) +
k∑

j=1
vjzj(t)

Ẏ (t) = J2k−1Y (t) +
e2k−1

T
ω(x(t))

bT
, where

(AUG)

J2k−1 =


−q 1 0 . . . 0
0 −q 1 . . . 0
...

. . . . . . . . .
...

...
. . . −q 1

0 . . . . . . 0 −q

 ∈ R(2k−1)×(2k−1)

and bT =
∫ 0
−T eq``k−1(`+ T )k−1d` with q and T as above.
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Our Theorem

If Assumptions 1-3 hold, then we can construct positive
constants a, b, and c and constant row vectors Ri such that all
maximal solutions (x , z,Y ) of (AUG) with the choices

u(t) = sata (R0Ψ(Yt ))

+bω(x(t))bT
+ c ω(x(t−T ))

bT
+ ϑ(z?(t)),

Ψ(Yt ) = Y (t)− eTJ2k−1Y (t − T )

z∗(t) = (z1(t) + R1Ψ(Yt ), . . . , zk (t) + Rk Ψ(Yt ))

(2)

satisfy limt→+∞(x , z,Y )(t) = 0. �

Here sata(r) = r if |r | ≤ a and a sign(r) otherwise.

Benefit: Bounded u(t) under mild checkable (CICS) condition.
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Sufficient Conditions for (CICS) for Small T

There exist f and g that are uniformly globally Lipschitz in x and
continuous such that F(t , x ,p) = f (t , x) + g(t , x)p holds for all
t ≥ 0, x ∈ Rn, and p ∈ R.

Also, there exist a C1 uniformly proper
and positive definite function V ; a uniformly continuous positive
definite function W ; positive constants r0, r1, and r3; and a
constant r2 ≥ 0 such that for all (t , x) ∈ [0,+∞)× Rn, we have

Vt (t , x) + Vx (t , x)
(
f (t , x) + g(t , x)ω(x)

)
≤−W (x),

|Vx (t , x)g(t , x)| ≤ r0
√

W (x), |ω(x)| ≤ r1
√

W (x),

|f (t , x)| ≤ r2
√

W (x), and |g(t , x)| ≤ r3,

(DB)

where ω is bounded, globally Lipschitz, and satisfies ω(0) = 0.
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Conclusions

B Backstepping is an essential technique in control theory.

B It is challenging when there are control bounds.

BWe overcame this under our general (CICS) condition.

B Sufficient conditions tell us how to choose artificial delay T .

BWe can cover F(t , x , z), measurement delay and uncertainty.

Mazenc, F., M. Malisoff, and L. Burlion. Bounded backstepping
through a dynamic extension with delays. In Proceedings of the
56th IEEE Conference on Decision and Control (Melbourne,
Australia, 12-15 December 2017).

Thank you for your attention!
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