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Adaptive Tracking and Estimation Problem

» Consider a suitably regular nonlinear system

£ = J(t&T,u) (1)
with a smooth reference trajectory g and a vector I of
unknown constant parameters. (g = J (¢, &R, I, ug) Vt > 0.

» Problem: Design a dynamic feedback with estimator
u=u(t,&f), =7l (2)
that makes the Y = (7', €) = (I — [, ¢ — ¢R) system UGAS.
» Flight control, electrical and mechanical engineering, etc.

Persistent excitation. Annaswamy, Narendra, Teel..
Used nonstrict Lyapunov functions (LFs), Barbalat, LaSalle..
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UGAS and Two of Sontag’s Important Extensions

Y=G(t,Y), Yex. (X)
YD) <7 (e°M2(Y (1)) (UGAS)

Show UGAS using nonstrict LFs, LaSalle,..
Y =G(t,Y,i(t), YeAX. (Zpert)
Y] < 71 (€2 2(] Y(10)1) +3(10]11.4) (ISS)
(YD) < 71 (62 a(| Y (B))) + f s(15()dr — (iISS)

Find ~,’s by building certain strict LFs for Y = G(t, Y, 0).
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Our Work (Nonlinear Analysis TMA, '11)

» We solved the adaptive tracking and estimation problem for

zi = gi(&)+ k(&) -0+, i=1,2,...,s.

[ = (0,1) = (01, ..., 06,11, . .., 0s) € RPIT-+Psts,

» The C? T-periodic reference trajectory £g = (xg, zg) to be
tracked is assumed to satisfy xg(t) = f(¢g(t)) Vt > 0.

» Main PE Assumption: positive definiteness of the matrices
P TAT (N () dt € RPHFDX(0H) 1 <j<s  (4)
where Xi(f) = (ki(§r(1)), zr,i(t) — gi(¢R(1))) for each .
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Two Other Key Assumptions

» We know v; and a global strict LF V for

{X = f((X,2)+¢r(t) — f(&R(D))

Z = vt X, 2) ®)

such that —V/ and V have positive definite quadratic lower
bounds near 0, and V and v; are T-periodic.

Backstepping.. See Sontag text, Chap. 5.

» There are known positive constants 6y, 1> and 1 such that
Y < Yp < ¢ and |0 < Oy (6)
foreach i€ {1,2,...,s}. Known directions for the ¢’s.
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{@:A/ = wij, 1<i<s,1<j<p )
i = Uj, 1<i<s
Here 6; = (0;1,...,0ip) fori=1,2,...,s,
wij = —92(tE)ki(€+¢r(t) and @®)
Ui o= =St ui(t,§0,9).
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Dynamic Feedback

The estimator evolves on {[]7_;(—6m, Om)P'} x (¢, )"

{é:/ = wij, 1<i<s,1<j<p -
Vi = Ui, 1<i<s
Here 6; = (Bi1,...,0ip) fori=1,2,...,s
wij = —92(tE)ki(€+¢r(t) and -
Ui = =%t Hu(t,E0,9).
Ut €6, ) = ‘8- (@;}_&@)éﬂ,mn ©)

The estimator and feedback can only depend on things we know.
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(% = KE +enlt) - F(a(t)
Zi = Vi i(t,€) + ki€ + €r(L)) - 0;

+u(t,€,0,0), 1<i<s (10)
0 = — wij, 1<i1<8,1<j<p;
{;i:_ U;, 1<i<s.

Tracking error: £ = (X,2) =& —ép = (X — Xg, Z — ZR)
Parameter estimation errors: 6; = 6; — §; and ¢; = 1; — 1);
Estimators: 8; = (0;1,...,0ip) and ¢ = ({1, ..., 1s)
X = RM*Sx (H}S:1 {Hf’:1 (9,"/ — HM, 9,'7]' + 9/\”})
(T (01 ¥ - ) S ROHesmr s,
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Stabilization Analysis

» We build a global strict LF for the augmented error
Y = (gaevw) = (§ - 5:‘?79 - 971/) - w) eEX dynamiCS.
» We start with this nonstrict barrier type LF on X':

0i

s pi
(t&0.0) = vitd 3> [ o am
1,

i=1 j=1

ZS: /‘{/;l m
+ dm.
= Jo (Vi Vi

» On X, V; < —W(&) for some positive definite function W.

» This is insufficient for robustness analysis because /s could
be zero outside 0. Therefore, we transform
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Transformation from Our Paper

Theorem: We can construct K € Ko, N C' such that
Vﬁ(t7 ga 577;5) = K( (ta Ea é/‘;))"’ZTI(L 57 57 12;) )
i=1
where Ti(té‘: 571;) = _ZI ( ) ( val)
Td, :(9/7%) () '(eiﬂ/)i) )
Ni(t) = (ki(¢r(1)), zri(t) — gi(¢R(1)))

A i — i
ai(0j,¥i) = [91/)1; v

ft Tfm dem ’

is a global strict LF for the Y dynamics on X'.

],and
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Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.
o=y
Vo = —pys— msin(yr) + K [KpCr + 116 (15)
G = Hily,Q)Bi+iu, i=1,2
Hi(y, Q) = (=C1,¥2¢2). Ha(y,C) = (—Ca, —Y2C1, —Y2).
> Y1, ¥» = load position and velocity. {; = winding currents.

» B =viscous friction coefficient. M = mechanical inertia.
N =related to the load mass and gravitational constant.
K, Ky =torque transmission coefficients.

» The unknown vectors (1 € R? and 3, € R® and unknown
scalars 1 and -, are the motor electric parameters.
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Conclusions

» Adaptive tracking and estimation is a central problem with
applications in many branches of engineering.

» Standard adaptive control treatments based on nonstrict
Lyapunov functions only give tracking and are not robust.

» Our strict Lyapunov functions gave robustness to additive
uncertainties on the parameters using the ISS paradigm.

» We covered systems with unknown control gains including
brushless DC motors turning mechanical loads.

» It would be useful to extend to cover models that are not
affine in I', feedback delays, and output feedbacks.



