Adaptive Tracking and Parameter Estimation with Unknown High-Frequency Control Gains: A Case Study in Strictification

Michael Malisoff, Louisiana State University Joint with Frédéric Mazenc and Marcio de Queiroz Sponsored by AFOSR, NSF/DMS, and NSF/ECCS

SIAM Conference on Control and Its Applications Baltimore, MD - July 25, 2011

Adaptive Tracking and Estimation Problem

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Gamma, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters.

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Gamma, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters. $\dot{\xi}_{R}=\mathcal{J}\left(t, \xi_{R}, \Gamma, u_{R}\right) \forall t \geq 0$.

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Gamma, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters. $\xi_{R}=\mathcal{J}\left(t, \xi_{R}, \Gamma, u_{R}\right) \forall t \geq 0$.

- Problem:

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi, \Gamma, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters. $\dot{\xi}_{R}=\mathcal{J}\left(t, \xi_{R}, \Gamma, u_{R}\right) \forall t \geq 0$.

- Problem: Design a dynamic feedback with estimator

$$
\begin{equation*}
u=u(t, \xi, \hat{\Gamma}), \quad \hat{\Gamma}=\tau(t, \xi, \hat{\Gamma}) \tag{2}
\end{equation*}
$$

that makes the $Y=(\tilde{\Gamma}, \tilde{\xi})=\left(\Gamma-\hat{\Gamma}, \xi-\xi_{R}\right)$ system UGAS.

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi,\ulcorner, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters. $\xi_{R}=\mathcal{J}\left(t, \xi_{R}, \Gamma, u_{R}\right) \forall t \geq 0$.

- Problem: Design a dynamic feedback with estimator

$$
\begin{equation*}
u=u(t, \xi, \hat{\Gamma}), \quad \hat{\Gamma}=\tau(t, \xi, \hat{\Gamma}) \tag{2}
\end{equation*}
$$

that makes the $Y=(\tilde{\Gamma}, \tilde{\xi})=\left(\Gamma-\hat{\Gamma}, \xi-\xi_{R}\right)$ system UGAS.

- Flight control, electrical and mechanical engineering, etc.

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi,\ulcorner, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters. $\xi_{R}=\mathcal{J}\left(t, \xi_{R}, \Gamma, u_{R}\right) \forall t \geq 0$.

- Problem: Design a dynamic feedback with estimator

$$
\begin{equation*}
u=u(t, \xi, \hat{\Gamma}), \quad \hat{\Gamma}=\tau(t, \xi, \hat{\Gamma}) \tag{2}
\end{equation*}
$$

that makes the $Y=(\tilde{\Gamma}, \tilde{\xi})=\left(\Gamma-\hat{\Gamma}, \xi-\xi_{R}\right)$ system UGAS.

- Flight control, electrical and mechanical engineering, etc. Persistent excitation.

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi,\ulcorner, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters. $\xi_{R}=\mathcal{J}\left(t, \xi_{R}, \Gamma, u_{R}\right) \forall t \geq 0$.

- Problem: Design a dynamic feedback with estimator

$$
\begin{equation*}
u=u(t, \xi, \hat{\Gamma}), \quad \hat{\Gamma}=\tau(t, \xi, \hat{\Gamma}) \tag{2}
\end{equation*}
$$

that makes the $Y=(\tilde{\Gamma}, \tilde{\xi})=\left(\Gamma-\hat{\Gamma}, \xi-\xi_{R}\right)$ system UGAS.

- Flight control, electrical and mechanical engineering, etc. Persistent excitation. Annaswamy, Narendra, Teel..

Adaptive Tracking and Estimation Problem

- Consider a suitably regular nonlinear system

$$
\begin{equation*}
\dot{\xi}=\mathcal{J}(t, \xi,\ulcorner, u) \tag{1}
\end{equation*}
$$

with a smooth reference trajectory ξ_{R} and a vector Γ of unknown constant parameters. $\xi_{R}=\mathcal{J}\left(t, \xi_{R}, \Gamma, u_{R}\right) \forall t \geq 0$.

- Problem: Design a dynamic feedback with estimator

$$
\begin{equation*}
u=u(t, \xi, \hat{\Gamma}), \quad \hat{\Gamma}=\tau(t, \xi, \hat{\Gamma}) \tag{2}
\end{equation*}
$$

that makes the $Y=(\tilde{\Gamma}, \tilde{\xi})=\left(\Gamma-\hat{\Gamma}, \xi-\xi_{R}\right)$ system UGAS.

- Flight control, electrical and mechanical engineering, etc. Persistent excitation. Annaswamy, Narendra, Teel.. Used nonstrict Lyapunov functions (LFs), Barbalat, LaSalle..

UGAS and Two of Sontag's Important Extensions

UGAS and Two of Sontag's Important Extensions

$$
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{X} .
$$

UGAS and Two of Sontag's Important Extensions

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{X} . \\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)
\end{gather*}
$$

(UGAS)

UGAS and Two of Sontag's Important Extensions

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{X} . \\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)
\end{gather*}
$$

(UGAS)
Show UGAS using nonstrict LFs, LaSalle,..

UGAS and Two of Sontag's Important Extensions

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{X} . \\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)
\end{gather*}
$$

(UGAS)
Show UGAS using nonstrict LFs, LaSalle,..

$$
\dot{Y}=\mathcal{G}(t, Y, \delta(t)), \quad Y \in \mathcal{X}
$$

($\Sigma_{\text {pert }}$)

UGAS and Two of Sontag's Important Extensions

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{X} . \\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)
\end{gather*}
$$

(UGAS)
Show UGAS using nonstrict LFs, LaSalle,..

$$
\begin{gathered}
\dot{Y}=\mathcal{G}(t, Y, \delta(t)), \quad Y \in \mathcal{X} . \\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\gamma_{3}\left(|\delta|_{\left[t_{0}, t\right]}\right)
\end{gathered}
$$

($\Sigma_{\text {pert }}$)
(ISS)

UGAS and Two of Sontag's Important Extensions

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{X} \\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)
\end{gather*}
$$

(UGAS)
Show UGAS using nonstrict LFs, LaSalle,..

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y, \delta(t)), \quad Y \in \mathcal{X} . \tag{pert}\\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\gamma_{3}\left(|\delta|_{\left[t_{0}, t\right]}\right) \tag{ISS}\\
\gamma_{0}(|Y(t)|) \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\int_{t_{0}}^{t} \gamma_{3}(|\delta(r)|) \mathrm{d} r
\end{gather*}
$$

(iISS)

UGAS and Two of Sontag's Important Extensions

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y), \quad Y \in \mathcal{X} \\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right) \tag{UGAS}
\end{gather*}
$$

Show UGAS using nonstrict LFs, LaSalle,..

$$
\begin{gather*}
\dot{Y}=\mathcal{G}(t, Y, \delta(t)), \quad Y \in \mathcal{X} \tag{pert}\\
|Y(t)| \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\gamma_{3}\left(|\delta|_{\left[t_{0}, t\right]}\right) \tag{ISS}\\
\gamma_{0}(|Y(t)|) \leq \gamma_{1}\left(e^{t_{0}-t} \gamma_{2}\left(\left|Y\left(t_{0}\right)\right|\right)\right)+\int_{t_{0}}^{t} \gamma_{3}(|\delta(r)|) \mathrm{d} r
\end{gather*}
$$

(iISS)
Find γ_{i} 's by building certain strict LFs for $\dot{Y}=\mathcal{G}(t, Y, 0)$.

Our Work (Nonlinear Analysis TMA, '11)

Our Work (Nonlinear Analysis TMA, '11)

- We solved the adaptive tracking and estimation problem for

$$
\left\{\begin{align*}
\dot{x} & =f(\xi) \tag{3}\\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s
\end{align*}\right.
$$

Our Work (Nonlinear Analysis TMA, '11)

- We solved the adaptive tracking and estimation problem for

$$
\begin{gather*}
\left\{\begin{array}{c}
\dot{x}=f(\xi) \\
\dot{z}_{i}=g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s . \\
\Gamma=(\theta, \psi)=\left(\theta_{1}, \ldots, \theta_{s}, \psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{p_{1}+\ldots+p_{s}+s} .
\end{array}\right. \tag{3}
\end{gather*}
$$

Our Work (Nonlinear Analysis TMA, '11)

- We solved the adaptive tracking and estimation problem for

$$
\begin{align*}
& \left\{\begin{aligned}
\dot{x} & =f(\xi) \\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s .
\end{aligned}\right. \tag{3}\\
& \Gamma=(\theta, \psi)=\left(\theta_{1}, \ldots, \theta_{s}, \psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{p_{1}+\ldots+p_{s}+s} .
\end{align*}
$$

- The $C^{2} T$-periodic reference trajectory $\xi_{R}=\left(x_{R}, z_{R}\right)$ to be tracked is assumed to satisfy $\dot{x}_{R}(t)=f\left(\xi_{R}(t)\right) \forall t \geq 0$.

Our Work (Nonlinear Analysis TMA, '11)

- We solved the adaptive tracking and estimation problem for

$$
\begin{align*}
\left\{\begin{array}{c}
\dot{x} \\
\dot{z}_{i}
\end{array}=f(\xi)\right. \tag{3}\\
g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s .
\end{aligned} \begin{aligned}
& \Gamma=(\theta, \psi)=\left(\theta_{1}, \ldots, \theta_{s}, \psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{p_{1}+\ldots+p_{s}+s} .
\end{align*}
$$

- The $C^{2} T$-periodic reference trajectory $\xi_{R}=\left(x_{R}, z_{R}\right)$ to be tracked is assumed to satisfy $\dot{x}_{R}(t)=f\left(\xi_{R}(t)\right) \forall t \geq 0$.
- Main PE Assumption:

Our Work (Nonlinear Analysis TMA, '11)

- We solved the adaptive tracking and estimation problem for

$$
\begin{align*}
&\left\{\begin{aligned}
\dot{x} & =f(\xi) \\
\dot{z}_{i} & =g_{i}(\xi)+k_{i}(\xi) \cdot \theta_{i}+\psi_{i} u_{i}, \quad i=1,2, \ldots, s .
\end{aligned}\right. \tag{3}\\
& \Gamma=(\theta, \psi)=\left(\theta_{1}, \ldots, \theta_{s}, \psi_{1}, \ldots, \psi_{s}\right) \in \mathbb{R}^{p_{1}+\ldots+p_{s}+s} .
\end{align*}
$$

- The $C^{2} T$-periodic reference trajectory $\xi_{R}=\left(x_{R}, z_{R}\right)$ to be tracked is assumed to satisfy $\dot{x}_{R}(t)=f\left(\xi_{R}(t)\right) \forall t \geq 0$.
- Main PE Assumption: positive definiteness of the matrices

$$
\begin{equation*}
\mathcal{P}_{i} \stackrel{\text { def }}{=} \int_{0}^{T} \lambda_{i}^{\top}(t) \lambda_{i}(t) \mathrm{d} t \in \mathbb{R}^{\left(p_{i}+1\right) \times\left(p_{i}+1\right)}, 1 \leq i \leq s \tag{4}
\end{equation*}
$$

where $\lambda_{i}(t)=\left(k_{i}\left(\xi_{R}(t)\right), \dot{z}_{R, i}(t)-g_{i}\left(\xi_{R}(t)\right)\right)$ for each i.

Two Other Key Assumptions

Two Other Key Assumptions

- We know v_{f} and a global strict LF V for

$$
\left\{\begin{array}{l}
\dot{X}=f\left((X, Z)+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{5}\\
\dot{Z}=v_{f}(t, X, Z)
\end{array}\right.
$$

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 ,

Two Other Key Assumptions

- We know v_{f} and a global strict LF V for

$$
\left\{\begin{align*}
\dot{X} & =f\left((X, Z)+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{5}\\
\dot{Z} & =v_{f}(t, X, Z)
\end{align*}\right.
$$

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 , and V and v_{f} are T-periodic.

Two Other Key Assumptions

- We know v_{f} and a global strict LF V for

$$
\left\{\begin{align*}
\dot{X} & =f\left((X, Z)+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{5}\\
\dot{Z} & =v_{f}(t, X, Z)
\end{align*}\right.
$$

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 , and V and v_{f} are T-periodic.

Backstepping..

Two Other Key Assumptions

- We know v_{f} and a global strict LF V for

$$
\left\{\begin{align*}
\dot{X} & =f\left((X, Z)+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{5}\\
\dot{Z} & =v_{f}(t, X, Z)
\end{align*}\right.
$$

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 , and V and v_{f} are T-periodic.

Backstepping.. See Sontag text, Chap. 5.

Two Other Key Assumptions

- We know v_{f} and a global strict LF V for

$$
\left\{\begin{align*}
\dot{X} & =f\left((X, Z)+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{5}\\
\dot{Z} & =v_{f}(t, X, Z)
\end{align*}\right.
$$

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 , and V and v_{f} are T-periodic.

Backstepping.. See Sontag text, Chap. 5.

- There are known positive constants $\theta_{M}, \underline{\psi}$ and $\bar{\psi}$ such that

$$
\begin{equation*}
\underline{\psi}<\psi_{i}<\bar{\psi} \text { and }\left|\theta_{i}\right|<\theta_{M} \tag{6}
\end{equation*}
$$

for each $i \in\{1,2, \ldots, s\}$.

Two Other Key Assumptions

- We know v_{f} and a global strict LF V for

$$
\left\{\begin{align*}
\dot{X} & =f\left((X, Z)+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{5}\\
\dot{Z} & =v_{f}(t, X, Z)
\end{align*}\right.
$$

such that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 , and V and v_{f} are T-periodic.

Backstepping.. See Sontag text, Chap. 5.

- There are known positive constants $\theta_{M}, \underline{\psi}$ and $\bar{\psi}$ such that

$$
\begin{equation*}
\underline{\psi}<\psi_{i}<\bar{\psi} \text { and }\left|\theta_{i}\right|<\theta_{M} \tag{6}
\end{equation*}
$$

for each $i \in\{1,2, \ldots, s\}$. Known directions for the ψ_{i} 's.

Dynamic Feedback

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{align*}
\dot{\hat{\theta}}_{i, j} & =\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{7}\\
\hat{\psi}_{i} & =\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, \quad 1 \leq i \leq s
\end{align*}\right.
$$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{align*}
\dot{\hat{\theta}}_{i, j} & =\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{7}\\
\hat{\psi}_{i} & =\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, \quad 1 \leq i \leq s
\end{align*}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{array}{c}
\dot{\hat{\theta}}_{i, j}=\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{7}\\
\hat{\psi}_{i}=\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, \quad 1 \leq i \leq s
\end{array}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$,

$$
\varpi_{i, j}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) k_{i, j}\left(\tilde{\xi}+\xi_{R}(t)\right)
$$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{array}{c}
\dot{\hat{\theta}}_{i, j}=\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{7}\\
\hat{\psi}_{i}=\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, \quad 1 \leq i \leq s
\end{array}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$,

$$
\begin{align*}
\varpi_{i, j} & =-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) k_{i, j}\left(\tilde{\xi}+\xi_{R}(t)\right) \text { and } \tag{8}\\
\mho_{i} & =-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi})
\end{align*}
$$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{array}{c}
\dot{\hat{\theta}}_{i, j}=\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{7}\\
\hat{\psi}_{i}=\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, \quad 1 \leq i \leq s
\end{array}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$,

$$
\begin{gather*}
\varpi_{i, j}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) k_{i, j}\left(\tilde{\xi}+\xi_{R}(t)\right) \text { and } \tag{8}\\
\mho_{i}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) \\
u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi})=\frac{v_{f, i}(t, \tilde{\xi})-g_{i}(\xi)-k_{i}(\xi) \cdot \hat{\theta}_{i}+\dot{z}_{R, i}(t)}{\hat{\psi}_{i}} \tag{9}
\end{gather*}
$$

Dynamic Feedback

The estimator evolves on $\left\{\prod_{i=1}^{s}\left(-\theta_{M}, \theta_{M}\right)^{p_{i}}\right\} \times(\underline{\psi}, \bar{\psi})^{s}$.

$$
\left\{\begin{array}{c}
\dot{\hat{\theta}}_{i, j}=\left(\hat{\theta}_{i, j}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \tag{7}\\
\hat{\psi}_{i}=\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, \quad 1 \leq i \leq s
\end{array}\right.
$$

Here $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ for $i=1,2, \ldots, s$,

$$
\begin{gather*}
\varpi_{i, j}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) k_{i, j}\left(\tilde{\xi}+\xi_{R}(t)\right) \text { and } \tag{8}\\
\mho_{i}=-\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi}) u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) \\
u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi})=\frac{v_{f, i}(t, \tilde{\xi})-g_{i}(\xi)-k_{i}(\xi) \cdot \hat{\theta}_{i}+\dot{z}_{R, i}(t)}{\hat{\psi}_{i}} \tag{9}
\end{gather*}
$$

The estimator and feedback can only depend on things we know.

Augmented Error Dynamics to be Made UGAS

Augmented Error Dynamics to be Made UGAS

$$
\left\{\begin{align*}
\dot{\tilde{x}}= & f\left(\tilde{\xi}+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{10}\\
\dot{\tilde{z}}_{i}= & v_{t, i}(t, \tilde{,})+k_{i}\left(\tilde{\xi}+\xi_{R}(t)\right) \cdot \widetilde{\theta}_{i} \\
& +\widetilde{\psi}_{i} u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}), \quad 1 \leq i \leq s \\
\dot{\tilde{\theta}}_{i, j}= & -\left(\hat{\theta}_{i, i}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, 1 \leq i \leq s, 1 \leq j \leq p_{i} \\
\dot{\tilde{\psi}}_{i}= & -\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, 1 \leq i \leq s .
\end{align*}\right.
$$

Augmented Error Dynamics to be Made UGAS

$$
\left\{\begin{align*}
\dot{\tilde{x}}= & f\left(\tilde{\xi}+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \tag{10}\\
\dot{\tilde{z}}_{i}= & v_{t, i}(t, \tilde{\xi})+k_{i}\left(\tilde{\xi}+\xi_{R}(t)\right) \cdot \widetilde{\theta}_{i} \\
& +\widetilde{\psi}_{i} u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}), \quad 1 \leq i \leq s \\
\dot{\tilde{\theta}}_{i, j}= & -\left(\hat{\theta}_{\tilde{i}, 2}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, 1 \leq i \leq s, 1 \leq j \leq p_{i} \\
\tilde{\psi}_{i}= & -\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, 1 \leq i \leq s .
\end{align*}\right.
$$

Tracking error: $\tilde{\xi}=(\tilde{x}, \tilde{z})=\xi-\xi_{R}=\left(x-x_{R}, \underset{\sim}{z}-z_{R}\right)$
Parameter estimation errors: $\widetilde{\theta}_{i}=\theta_{i}-\hat{\theta}_{i}$ and $\widetilde{\psi}_{i}=\psi_{i}-\hat{\psi}_{i}$
Estimators: $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ and $\hat{\psi}=\left(\hat{\psi}_{1}, \ldots, \hat{\psi}_{s}\right)$

Augmented Error Dynamics to be Made UGAS

$$
\left\{\begin{align*}
\dot{\tilde{x}}= & f\left(\tilde{\xi}+\xi_{R}(t)\right)-f\left(\xi_{R}(t)\right) \\
\dot{\tilde{z}}_{i}= & v_{t, i}(t, \tilde{\xi})+k_{i}\left(\tilde{\xi}+\xi_{R}(t)\right) \cdot \tilde{\theta}_{i} \\
& +\widetilde{\psi}_{i} u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}), \quad 1 \leq i \leq s \tag{10}\\
\dot{\tilde{\theta}}_{i, j}= & -\left(\hat{\theta}_{\tilde{i}, \hat{S}^{2}}^{2}-\theta_{M}^{2}\right) \varpi_{i, j}, 1 \leq i \leq s, 1 \leq j \leq p_{i} \\
\tilde{\psi}_{i}= & -\left(\hat{\psi}_{i}-\underline{\psi}\right)\left(\hat{\psi}_{i}-\bar{\psi}\right) \mho_{i}, 1 \leq i \leq s .
\end{align*}\right.
$$

Tracking error: $\tilde{\xi}=(\tilde{x}, \tilde{z})=\xi-\xi_{R}=\left(x-x_{R}, z-z_{R}\right)$
Parameter estimation errors: $\widetilde{\theta}_{i}=\theta_{i}-\hat{\theta}_{i}$ and $\widetilde{\psi}_{i}=\psi_{i}-\hat{\psi}_{i}$
Estimators: $\hat{\theta}_{i}=\left(\hat{\theta}_{i, 1}, \ldots, \hat{\theta}_{i, p_{i}}\right)$ and $\hat{\psi}=\left(\hat{\psi}_{1}, \ldots, \hat{\psi}_{s}\right)$

$$
\begin{aligned}
\mathcal{X}= & \mathbb{R}^{r+s} \times\left(\prod_{i=1}^{s}\left\{\prod_{j=1}^{p_{i}}\left(\theta_{i, j}-\theta_{M}, \theta_{i, j}+\theta_{M}\right)\right\}\right) \\
& \times\left(\prod_{i=1}^{s}\left(\psi_{i}-\bar{\psi}, \psi_{i}-\underline{\psi}\right)\right) \subseteq \mathbb{R}^{r+s+p_{1}+\ldots p_{s}+s} .
\end{aligned}
$$

Stabilization Analysis

Stabilization Analysis

- We build a global strict LF for the augmented error $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})=\left(\xi-\xi_{R}, \theta-\hat{\theta}, \psi-\hat{\psi}\right) \in \mathcal{X}$ dynamics.

Stabilization Analysis

- We build a global strict LF for the augmented error $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})=\left(\xi-\xi_{R}, \theta-\hat{\theta}, \psi-\hat{\psi}\right) \in \mathcal{X}$ dynamics.
- We start with this nonstrict barrier type LF on \mathcal{X} :

$$
\begin{aligned}
V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})= & V(t, \tilde{\xi})+\sum_{i=1}^{s} \sum_{j=1}^{p_{i}} \int_{0}^{\tilde{\theta}_{i, j}} \frac{m}{\theta_{M}^{2}-\left(m-\theta_{i, j}\right)^{2}} \mathrm{~d} m \\
& +\sum_{i=1}^{s} \int_{0}^{\widetilde{\psi}_{i}} \frac{m}{\left(\psi_{i}-m-\underline{\psi}\right)\left(\bar{\psi}-\psi_{i}+m\right)} \mathrm{d} m .
\end{aligned}
$$

Stabilization Analysis

- We build a global strict LF for the augmented error $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})=\left(\xi-\xi_{R}, \theta-\hat{\theta}, \psi-\hat{\psi}\right) \in \mathcal{X}$ dynamics.
- We start with this nonstrict barrier type LF on \mathcal{X} :

$$
\begin{aligned}
V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})= & V(t, \tilde{\xi})+\sum_{i=1}^{s} \sum_{j=1}^{p_{i}} \int_{0}^{\tilde{\theta}_{i, j}} \frac{m}{\theta_{M}^{2}-\left(m-\theta_{i, j}\right)^{2}} \mathrm{~d} m \\
& +\sum_{i=1}^{s} \int_{0}^{\widetilde{\psi}_{i}} \frac{m}{\left(\psi_{i}-m-\underline{\psi}\right)\left(\bar{\psi}-\psi_{i}+m\right)} \mathrm{d} m .
\end{aligned}
$$

- On $\mathcal{X}, \dot{V}_{1} \leq-W(\tilde{\xi})$ for some positive definite function W.

Stabilization Analysis

- We build a global strict LF for the augmented error $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})=\left(\xi-\xi_{R}, \theta-\hat{\theta}, \psi-\hat{\psi}\right) \in \mathcal{X}$ dynamics.
- We start with this nonstrict barrier type LF on \mathcal{X} :

$$
\begin{aligned}
V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})= & V(t, \tilde{\xi})+\sum_{i=1}^{s} \sum_{j=1}^{p_{i}} \int_{0}^{\tilde{\theta}_{i, j}} \frac{m}{\theta_{M}^{2}-\left(m-\theta_{i, j}\right)^{2}} \mathrm{~d} m \\
& +\sum_{i=1}^{s} \int_{0}^{\widetilde{\psi}_{i}} \frac{m}{\left(\psi_{i}-m-\underline{\psi}\right)\left(\bar{\psi}-\psi_{i}+m\right)} \mathrm{d} m .
\end{aligned}
$$

- On $\mathcal{X}, \dot{V}_{1} \leq-W(\tilde{\xi})$ for some positive definite function W.
- This is insufficient for robustness analysis because V_{1} could be zero outside 0 .

Stabilization Analysis

- We build a global strict LF for the augmented error $Y=(\tilde{\xi}, \tilde{\theta}, \tilde{\psi})=\left(\xi-\xi_{R}, \theta-\hat{\theta}, \psi-\hat{\psi}\right) \in \mathcal{X}$ dynamics.
- We start with this nonstrict barrier type LF on \mathcal{X} :

$$
\begin{aligned}
V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})= & V(t, \tilde{\xi})+\sum_{i=1}^{s} \sum_{j=1}^{p_{i}} \int_{0}^{\tilde{\theta}_{i, j}} \frac{m}{\theta_{M}^{2}-\left(m-\theta_{i, j}\right)^{2}} \mathrm{~d} m \\
& +\sum_{i=1}^{s} \int_{0}^{\widetilde{\psi}_{i}} \frac{m}{\left(\psi_{i}-m-\underline{\psi}\right)\left(\bar{\psi}-\psi_{i}+m\right)} \mathrm{d} m
\end{aligned}
$$

- On $\mathcal{X}, \dot{V}_{1} \leq-W(\tilde{\xi})$ for some positive definite function W.
- This is insufficient for robustness analysis because V_{1} could be zero outside 0 . Therefore, we transform V_{1}.

Transformation from Our Paper

Transformation from Our Paper

Theorem: We can construct $K \in \mathcal{K}_{\infty} \cap C^{1}$ such that

$$
\begin{gather*}
V^{\sharp}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})=K\left(V_{1}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})\right)+\sum_{i=1}^{s} \bar{\Upsilon}_{i}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}), \tag{11}\\
\text { where } \begin{aligned}
\bar{\Upsilon}_{i}(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})= & -\tilde{z}_{i} \lambda_{i}(t) \alpha_{i}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right) \\
& +\frac{1}{T \bar{\psi}} \alpha_{i}^{\top}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right) \Omega_{i}(t) \alpha_{i}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right), \\
\lambda_{i}(t)= & \left(k_{i}\left(\xi_{R}(t)\right), \dot{z}_{R, i}(t)-g_{i}\left(\xi_{R}(t)\right)\right), \\
\alpha_{i}\left(\widetilde{\theta}_{i}, \widetilde{\psi}_{i}\right)= & {\left[\begin{array}{c}
\tilde{\theta}_{i} \psi_{i}-\theta_{i} \tilde{\psi}_{i} \\
\widetilde{\psi}_{i}
\end{array}\right], \text { and } } \\
\Omega_{i}(t)= & \int_{t-T}^{t} \int_{m}^{t} \lambda_{i}^{\top}(s) \lambda_{i}(s) \mathrm{d} s \mathrm{~d} m,
\end{aligned} .
\end{gather*}
$$

is a global strict LF for the Y dynamics on \mathcal{X}.

Application: BLDC Motor (Dawson-Hu-Burg)

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \tag{15}\\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{T}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right.
$$

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{15}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) .
\end{align*}
$$

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{15}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{15}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{15}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{15}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{15}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient. $M=$ mechanical inertia.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{15}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient. $M=$ mechanical inertia. $N=$ related to the load mass and gravitational constant.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{15}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient. $M=$ mechanical inertia. $N=$ related to the load mass and gravitational constant. $K_{\tau}, K_{b}=$ torque transmission coefficients.

Application: BLDC Motor (Dawson-Hu-Burg)

Linear magnetic circuit. Drives single-link, direct-drive robot arm.

$$
\begin{align*}
& \left\{\begin{array}{l}
\dot{y}_{1}=y_{2} \\
\dot{y}_{2}=-\frac{B}{M} y_{2}-\frac{N}{M} \sin \left(y_{1}\right)+K_{\tau}\left[K_{b} \zeta_{1}+1\right] \zeta_{2} \\
\dot{\zeta}_{i}=H_{i}(y, \zeta) \beta_{i}+\gamma_{i} u_{i}, \quad i=1,2
\end{array}\right. \tag{15}\\
& H_{1}(y, \zeta)=\left(-\zeta_{1}, y_{2} \zeta_{2}\right) . \quad H_{2}(y, \zeta)=\left(-\zeta_{2},-y_{2} \zeta_{1},-y_{2}\right) .
\end{align*}
$$

- $y_{1}, y_{2}=$ load position and velocity. $\zeta_{i}=$ winding currents.
- $B=$ viscous friction coefficient. $M=$ mechanical inertia. $N=$ related to the load mass and gravitational constant. $K_{\tau}, K_{b}=$ torque transmission coefficients.
- The unknown vectors $\beta_{1} \in \mathbb{R}^{2}$ and $\beta_{2} \in \mathbb{R}^{3}$ and unknown scalars γ_{1} and γ_{2} are the motor electric parameters.

Conclusions

Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.

Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.
- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.

Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.
- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.
- Our strict Lyapunov functions gave robustness to additive uncertainties on the parameters using the ISS paradigm.

Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.
- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.
- Our strict Lyapunov functions gave robustness to additive uncertainties on the parameters using the ISS paradigm.
- We covered systems with unknown control gains including brushless DC motors turning mechanical loads.

Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.
- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.
- Our strict Lyapunov functions gave robustness to additive uncertainties on the parameters using the ISS paradigm.
- We covered systems with unknown control gains including brushless DC motors turning mechanical loads.
- It would be useful to extend to cover models that are not affine in Γ, feedback delays, and output feedbacks.

