Tracking Control and Robustness for Planar Vertical Takeoff and Landing Aircraft under Bounded Feedbacks

Joint work with Michael Malisoff (Louisiana State University Department of Mathematics) and Frédéric Mazenc (Projet INRIA DISCO, CNRS-Supéléc, France)

 $\xi_2 = u_2 - u_{2r}(t)$ We want bounded controllers u_i to make (3) UGAS and ULES to 0. Main Challenges: u_1 must stay positive and (3) is underactuated.

2011 National Control Engineering Students Workshop, University of Maryland, April 28 – May 1, 2011

Aleksandra Gruszka, Louisiana State University Department of Mathematics, olka@math.lsu.edu

$$\begin{cases} \dot{X}_{1} = X_{2} + \Theta(t, X) \\ \dot{X}_{2} = \beta_{\ell, \bar{\eta}}(t, X) + L(t, X, S) + \eta \\ \dot{S} = E(t, S) \end{cases}$$
(6)

$$\frac{\beta_{\ell,\bar{\eta}}(t,X) =}{-[1+172\bar{\eta}/\ell]\sigma_{\ell}\left(2X_{2}+\sigma_{\ell}(\ell X_{1})\varphi_{\ell}(X_{2})\right)-\ell\sigma_{\ell}'(\ell X_{1})\varphi_{\ell}(X_{2})[X_{2}+\Theta(t,X)]}{2+\sigma_{\ell}(\ell X_{1})\varphi_{\ell}'(X_{2})}$$
(7)

$$u_{1r} = \sqrt{(\ddot{z}_{1r})^2 + (\ddot{w}_{1r} + g)^2}$$
 and $u_{2r} = \ddot{\xi}_{1r}$, (8)

$$\xi_{2r} = \dot{\xi}_{1r}$$
, $z_{2r} = \dot{z}_{1r}$, $w_{2r} = \dot{w}_{1r}$, and

$$l_{r} = \arcsin\left(\frac{-\ddot{z}_{1r}}{\sqrt{(\ddot{z}_{1r})^2 + (\ddot{w}_{1r} + g)^2}}\right)$$
 (9)

$$z_{1r}(t), w_{1r}(t) \big)^{\top} = 5 \big(1.5 + \cos(t), 1.5 + \sin(t) \big)^{\top}$$
 (10)

• The PVTOL aircraft dynamics is a benchmark model that is of continuing ongoing research interest.

• We developed a new bounded tracking feedback design that gives UGAS and ULES for a large class of reference trajectories. • Combined with the Do-Jiang-Pan observer design, our feedbacks apply when the velocity measurements are unavailable.

• Our feedbacks give ISS performance to actuator disturbances for any a priori bound on the admissible disturbances.

• Our proofs used a new bounded backstepping method which we anticipate being useful for other models in feedforward form.

12. References

• Gruszka, A., M. Malisoff, and F. Mazenc, "On tracking for the PV-TOL model with bounded feedbacks," in Proceedings of the 2011 American Control Conference, accepted as regular paper. [Finalist for Student Best Paper Award]

• Gruszka, A., M. Malisoff, and F. Mazenc, "Tracking control and robustness analysis for PVTOL aircraft under bounded feedbacks," submitted in November 2010, in review.