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Figure 3: (K1, L1,91) = (6,8,0.12) and (K, Lo, g2) = (2,1,0.04)



Assumptions

» There is a constant s, € (0, siy) such that 1(s.) = p2(Sy).



Assumptions

» There is a constant s, € (0, siy) such that 1(s.) = p2(Sy).

» The constants §; = L; — g;s.si, for i = 1,2 are positive.



Assumptions

» There is a constant s, € (0, siy) such that 1(s.) = p2(Sy).

» The constants §; = L; — g;s.si, for i = 1,2 are positive.

Ro= dru(s) |1+ 1ZL/+Sm+Q:52 i
i (s9)

Lrgi—L
+ K58, X, % >0



Assumptions

» There is a constant s, € (0, siy) such that 1(s.) = p2(Sy).

» The constants §; = L; — g;s.si, for i = 1,2 are positive.

4
1+ ZL/JrSerQ:sZ ’*]

Lrgi—L
+ K58, X, % >0

N = d1pq(ss)

_ « 9185
0 = i [—K1+L1 g132K] £0 (sc)



Assumptions

» There is a constant s, € (0, siy) such that 1(s.) = p2(Sy).

» The constants §; = L; — g;s.si, for i = 1,2 are positive.

_ 1
Ro= ouu(s) (14 ZL/JrSerQ:SZ ’*]
(s9)
Lhgi—Ligo
—i—KQS*XQ*T >0
I * L g S*
0 = i [—K1 + & g132K] £0 (sc)

> min{s1(Sin), 2(Sin)} > 111(8)



Assumptions

» There is a constant s, € (0, siy) such that 1(s.) = p2(Sy).

» The constants §; = L; — g;s.si, for i = 1,2 are positive.

_ 1
N = (51/J1 S* 14 ZLIJFS]"JrgIsz /*]
(s9)
Lrgi—L1g0
—i—KQS*XQ*T >0
_ « 918
0 = i [—K1 + & g132K] £0 (sc)

> min{u1(Sin), 2(Sin)} > p1(8:), and L9y — L1g2 < 0.



Assumptions

» There is a constant s, € (0, siy) such that 1(s.) = p2(Sy).

» The constants §; = L; — g;s.si, for i = 1,2 are positive.

_ 1
N = (51/J1 S* 14 ZLIJFS]"Jrglsz /*]
(s9)
Lrgi—L1g0
—i—KQS*XQ*T >0
_ « 918
0 = i [—K1 + & g132K] £0 (sc)

> min{u1(Sin), 2(Sin)} > p1(8:), and L9y — L1g2 < 0.

» There is a known constant 7y > 0 sothat 0 < 7 < 7.



Assumptions

» There is a constant s, € (0, siy) such that 1(s.) = p2(Sy).

» The constants §; = L; — g;s.si, for i = 1,2 are positive.

_ 1
N = (51/J1 S* 14 ZLIJFS]"Jrglsz /*]
(s9)
Lrgi—L1g0
—i—KQS*XQ*T >0
— * g S*
0 = i [—K1 + & g132K] £0 (sc)

> Min{y1(Sin), H2(Sin)} > p1(S:), and L9y — L1g2 < 0.
» There is a known constant 7y > 0 sothat 0 < 7 < 7.

X1, Xo, > 0 are any constants such that s, + X1, + Xo, = Sin.
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constants ¢; € (0,&;) for i = 1,2 such that 4e, < &3, the control
D = 1 (s*)—sign(U)51U(52{X1 (t—T)+aX2(t—T)—X1*—aXQ*})

globally asymptotically stabilizes (s., x1., X2, ) for all initializations
(fs, Pxy > Bx,) € C([—27m,0], (0,00)3). o = standard saturation.

» Standard Poincaré-Bendixson and Lyapunov function
methods do not apply under delays. Instead, the proof
constructs a Lyapunov-Krasovskii functional U .

» At each time t, U; depends on the history of the error
variable (5, x) = (s — 8., x — x,) over [t — 27y, t].
» Along the error dynamics,

~ ~ ~ 22 1€ ~ ~
Uy < —(E++5)2-88 22003 rag)?, t>r.
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The formulas for ¢y and ¢, depend on parameters other than .

g3 — 0as 7y — +o0, S0 D — p4(s,) pointwise as myy — +oo.
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Figure 4: uq (Dashed) and u» (Solid).

Our assumptions hold with (s, X1, X2,) = (2.5,0.19,0.06),
a=0.1,¢4 =0.01,e0 = 0.01, and 7y = 0.5.

We took (s(t), x1(t), x2(t)) = (2.5,1,0.1) on [-0.5,0].
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» We achieved output feedback stability of componentwise
positive equilibria under nonmonotone uptake functions.

» Under feedback delays, standard Poincaré-Bendixson and
strict Lyapunov function methods do not apply.

» Lyapunov-Krasovskii functionals for time-delayed systems
lead to a solution of this problem in the two species case.

» Our approach also leads to an input-to-state stability
robustness analysis with respect to actuator errors.

» For details and proofs, see [Mazenc, F., and M. Malisoff,
Automatica, Vol. 46, No. 9, Sept. 2010, regular paper.]



