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ṡ = (sin − s)D(y) − µ1(s)x1 − µ2(s)x2
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ṡ = (sin − s)D(y) − µ1(s)x1 − µ2(s)x2
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ẋi = [µi(s) − D(y)] xi , i = 1, 2
y = x1(t − τ) + ax2(t − τ), (s, x1, x2) ∈ (0,∞)3

(1)

s = level of the substrate, xi = concentration of species i ,
sin, a = positive constants, D = dilution rate controller, a ∈ (0, 1)

I Goal: Global stabilization of an appropriate equilibrium
(s∗, x1∗, x2∗) ∈ (0,∞)3 under Haldane uptake functions

µi(s) =
Kis

Li + s + gis2 (2)

and uncertain feedback delays τ .



Two-Species Chemostat Model
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ṡ = (sin − s)D(y) − µ1(s)x1 − µ2(s)x2
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Figure 2: (K1, L1, g1) = (6, 8, 0.00) and (K2, L2, g2) = (2, 1, 0.00)
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I Along the error dynamics,

U̇1 ≤ −(s̃ + x̃1+x̃2)
2− ℵ

5
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s − ε1ε2|f|
8 (x̃1+ax̃2)
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(

ε2{x1(t−τ)+ax2(t−τ)−x1∗−ax2∗}
)

Pick p ∈ (0, 1) so that µi(sin) > (1 + p)µ1(s∗) for i = 1, 2.

ε̄1 = min
{

0.5pµ1(s∗), ℵs∗
10(L1+g1s2

∗)sin

}

,

ε̄2 = 10
11sin

, and

ε̄3 = min
{

ℵ|f|

5(c̄2
1+1)sin

, |f|, 1
10c̄2τM

min
{

ℵ
τM

,
√

|f|
}}

.

(3)

The formulas for c̄1 and c̄2 depend on parameters other than τM .

ε̄3 → 0 as τM → +∞, so D → µ1(s∗) pointwise as τM → +∞.
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Simulation Study

µ1(s) = 6s
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Our assumptions hold with (s∗, x1∗, x2∗) = (2.5, 0.19, 0.06),
a = 0.1, ε1 = 0.01, ε2 = 0.01, and τM = 0.5.

We took (s(t), x1(t), x2(t)) ≡ (2.5, 1, 0.1) on [−0.5, 0].
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Figure 5: Convergence of s towards s∗ = 2.5.
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Figure 6: Convergence of x1 towards x1∗ = 0.19.
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Figure 7: Convergence of x2 towards x2∗ = 0.06.
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Conclusions

I We achieved output feedback stability of componentwise
positive equilibria under nonmonotone uptake functions.

I Under feedback delays, standard Poincaré-Bendixson and
strict Lyapunov function methods do not apply.

I Lyapunov-Krasovskii functionals for time-delayed systems
lead to a solution of this problem in the two species case.

I Our approach also leads to an input-to-state stability
robustness analysis with respect to actuator errors.

I For details and proofs, see [Mazenc, F., and M. Malisoff,
Automatica, Vol. 46, No. 9, Sept. 2010, regular paper.]


