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Goal of Control Theory: Find an explicit u(y) so that all
trajectories q(t) meet some prescribed control objective.

Main Method: Design u(y) in conjunction with an explicit
construction of a Lyapunov function for the control system.

Significance: Explicit Lyapunov functions allow us to
precisely quantify the effect of the uncertainty d(t).
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REVIEW of CONTROL THEORY

Control System: q̇ = f(q, u,d), y = H(q)

q = state variable
y = output
u = controller depending on y
d = unknown disturbance function

ISS [Sontag, 1989]: ∃ functions β ∈ KL, γ ∈ K∞ such that
|q(t)| ≤ β(|q(0)|, t) + γ(|d|∞) along all trajectories.

ISS Lyapunov Function: A C1 proper positive definite
function V for which there exist α1, α2 ∈ K∞ such that
∇V (q)f(q, u(q), d) ≤ −α1(|q|) + α2(|d|) everywhere.

Lyapunov Characterizations [Sontag-Wang, 1995]: The
system is ISS iff it admits an ISS Lyapunov function.
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CHEMOSTAT SET-UP

S(t), xi(t)S0

D D

Feed Vessel → Culture Vessel → Collecting Receptacle
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MODEL and GOAL

Basic Model: The two-species chemostat with nutrient
concentration S(t) and organism concentrations Xi(t)

evolving on X := (0,∞)3 is
{

Ṡ = D[S0 − S] − µ1(S)
Y1

X1 −
µ2(S)
Y2

X2 ,

Ẋi = [µi(S) − D]Xi , i = 1, 2

D(·) = dilution rate. S0(·) = input nutrient concentration.
Yi = yield. µi(S) = KiS

Li+S
= (Monod) uptake function, with

Ki, Li > 0 constants.

Competitive Exclusion: When S0(·) and D are constant and
the µi’s are increasing, at most one species survives.
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OVERVIEW of LITERATURE

Coexistence: In real ecological systems, n > 1 species can
coexist on 1 substrate, so much of the literature aims at
choosing S0 and/or D to force coexistence.

Time-Varying Controls: Have competitive exclusion if n = 2
and one of the controls is fixed and the other is periodic. See
Hal Smith (SIAP’81), Hale-Somolinos (JMB’83),..

Feedback Controls: De Leenheer-Smith (JMB’03) generated
a coexistence equilibrium for n = 2, 3. See
Mazenc-M-Harmand (ACC’07, TCAS’08) for n = 2 with
explicit Lyapunov functions and tracking of oscillations.

Outputs: De Leenheer-Smith and Gouzé-Robledo
(IJRNC’06..) stabilized using only X1 + X2 or S. No ISS.
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is a GAS equilibrium for the (S, x1, x2) dynamics when

S0 = S∗ + x1∗ + x2∗
D(y) = µ1(S∗) − ε(a − 1)σ (y − x1∗ − ax2∗) .

More precisely, we can construct a function β ∈ KL such
that |(Σ, ξ1, ξ2)(t)| ≤ β(|(Σ, ξ1, ξ2)(0)|, t) for all t ≥ 0 along
all trajectories (S, x1, x2)(t) of the closed loop dynamics.

Simpler than Mazenc-M-Harmand (ACC’07, TCAS’08),
outputs, robust stability, explicit strict Lyapunov function.
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OUR ROBUSTNESS RESULTS

Using a suitable bound ∆̄ on d = (d1,d2), we can design
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OUR ROBUSTNESS RESULTS

Using a suitable bound ∆̄ on d = (d1,d2), we can design
β ∈ KL, α ∈ K∞ so that along the trajectories of

Ṡ = [D(y)+d2](S0+d1−S) − µ1(S)x1 − µ2(S)x2

ẋi= [µi(S) − D(y) − d2]xi, i = 1, 2

the errors satisfy an iISS [Sontag, 1998] estimate of the form

α(|(Σ, ξ1, ξ2)(t)|) ≤ β(|(Σ, ξ1, ξ2)(0)|, t) +
∫ t

0
|d(r)|dr.

Further reducing ∆̄ gives usual ISS [Sontag, 1989] estimate

|(Σ, ξ1, ξ2)(t)| ≤ β(|(Σ, ξ1, ξ2)(0)|, t) + γ(|d|∞).
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• Our assumptions hold with S∗ = 105, ε ∈ (0, .00753],
S0 = 105.07, and D(y) = .042 + 0.001506σ(y − 0.066).
Hence, all closed loop trajectories converge to
(105, 0.05, 0.02) when d = 0.

• If instead d2 ≡ 0, then we have iISS to disturbances d1(t)

bounded by ∆̄ ≈ 16, or about 15% of S0 = 105.07.
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We used d(t) ≡ (1, 0) and (S, x1, x2)(0) = (103, 2, 1).
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Persistence. (S(t), x1(t), x2(t)) → (105, 0.05, 0.02), but with
an overshoot determined by iISS and the magnitude of d1.
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