Bounded Tracking Controllers
and Robustness Analysis for UAVs

Michael Malisoff
LSU Department of Mathematics
Joint with Aleksandra Gruszka and Frédéric Mazenc
Supported by AFOSR and NSF Grants

AMS Special Session on
Nonlinear Dynamical Systems and Applications IV
2012 Spring Central Section Meeting
Uncontrolled UAV Model
Uncontrolled UAV Model

\[v = v_0 \]

\[h = (v_0 h) x (v_0 h) y = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} v_0 \]
Uncontrolled UAV Model

\[
\begin{align*}
 v_h &= \begin{bmatrix} v \\ 0 \end{bmatrix}
\end{align*}
\]
Uncontrolled UAV Model

\[v_h = \begin{bmatrix} v \\ 0 \end{bmatrix} \]

\[v_h^0 = \begin{bmatrix} (v_h^0)_x \\ (v_h^0)_y \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} v \\ 0 \end{bmatrix} \]
Uncontrolled UAV Model

\[
\begin{bmatrix}
\dot{x} \\
\dot{y}
\end{bmatrix} =
\begin{bmatrix}
v \cos \theta \\
v \sin \theta
\end{bmatrix}
\]
Controlled UAV Model

\[
\begin{aligned}
\dot{x} &= v \cos(\theta), \quad \dot{y} = v \sin(\theta) \\
\dot{\theta} &= \alpha_\theta(\theta_c - \theta + \Delta), \quad \dot{v} = \alpha_v(v_c - v + \delta)
\end{aligned}
\]
Controlled UAV Model

\[
\begin{aligned}
\dot{x} &= v \cos(\theta), & \dot{y} &= v \sin(\theta) \\
\dot{\theta} &= \alpha_\theta (\theta_c - \theta + \Delta), & \dot{v} &= \alpha_v (v_c - v + \delta)
\end{aligned}
\]

(1)

\(x, y\) position of UAV at constant altitude
\(\theta, v\) heading angle and inertial velocity
\(\alpha_\theta, \alpha_v\) positive constants for autopilot
\(\theta_c, v_c\) controllers we will design
\(\Delta, \delta\) actuator disturbances
Controlled UAV Model

\[
\begin{align*}
\dot{x} &= v \cos(\theta), \quad \dot{y} = v \sin(\theta) \\
\dot{\theta} &= \alpha_\theta (\theta_c - \theta + \Delta), \quad \dot{v} = \alpha_v (v_c - v + \delta)
\end{align*}
\] (1)

x, y position of UAV at constant altitude
θ, v heading angle and inertial velocity
α_θ, α_v positive constants for autopilot
θ_c, v_c controllers we will design
Δ, δ actuator disturbances

Ailon, Chandler, Gu, Proud-Pachter-Azzo, Ren-Beard,...
Controlled UAV Model

\[
\begin{aligned}
\dot{x} &= v \cos(\theta), \quad \dot{y} = v \sin(\theta) \\
\dot{\theta} &= \alpha_\theta (\theta_c - \theta + \Delta), \quad \dot{v} = \alpha_v (v_c - v + \delta)
\end{aligned}
\]

\(x, y\) position of UAV at constant altitude
\(\theta, v\) heading angle and inertial velocity
\(\alpha_\theta, \alpha_v\) positive constants for autopilot
\(\theta_c, v_c\) controllers we will design
\(\Delta, \delta\) actuator disturbances

Ailon, Chandler, Gu, Proud-Pachter-Azzo, Ren-Beard,...

Omitted altitude dynamics: \(\ddot{h} = -\alpha_h \dot{h} + \alpha_h (h_c - h)\).
Controlled UAV Model

\[
\begin{aligned}
\dot{x} &= v \cos(\theta), \quad \dot{y} = v \sin(\theta) \\
\dot{\theta} &= \alpha_{\theta}(\theta_c - \theta + \Delta), \quad \dot{v} = \alpha_v(v_c - v + \delta)
\end{aligned}
\] (1)

- \(x, y\) position of UAV at constant altitude
- \(\theta, v\) heading angle and inertial velocity
- \(\alpha_{\theta}, \alpha_v\) positive constants for autopilot
- \(\theta_c, v_c\) controllers we will design
- \(\Delta, \delta\) actuator disturbances

Ailon, Chandler, Gu, Proud-Pachter-Azzo, Ren-Beard,...

Omitted altitude dynamics: \(\ddot{h} = -\alpha_h \dot{h} + \alpha_h(h_c - h)\).

Our Goal:
Controlled UAV Model

\[
\begin{align*}
\dot{x} &= v \cos(\theta), \\
\dot{y} &= v \sin(\theta), \\
\dot{\theta} &= \alpha_\theta (\theta_c - \theta + \Delta), \\
\dot{v} &= \alpha_v (v_c - v + \delta)
\end{align*}
\]

(1)

x, y position of UAV at constant altitude

θ, v heading angle and inertial velocity

α_θ, α_v positive constants for autopilot

θ_c, v_c controllers we will design

Δ, δ actuator disturbances

Omitted altitude dynamics: \(\ddot{h} = -\alpha_h \dot{h} + \alpha_h (h_c - h). \)

Our Goal: Tracking with input-to-state stability with respect to disturbances under controller amplitude and rate constraints.
Input-to-State Stability (Sontag, TAC’89)
Input-to-State Stability (Sontag, TAC’89)

This generalizes uniform global asymptotic stability to systems

$$\dot{Y} = g(t, Y, \mu(t)), \quad Y \in \mathcal{X}.$$ \hspace{1cm} (2)
Input-to-State Stability (Sontag, TAC’89)

This generalizes uniform global asymptotic stability to systems

\[\dot{Y} = G(t, Y, \mu(t)), \quad Y \in \mathcal{X}. \]

(2)

It requires functions \(\gamma_i \in K_\infty \) such that all solutions of (2) satisfy

\[
|Y(t)| \leq \gamma_1 (e^{t_0 - t} \gamma_2(|Y(t_0)|)) + \gamma_3 (|\mu|_{[t_0, t]}) \quad \forall t \geq t_0 \geq 0.
\]

(3)
Input-to-State Stability (Sontag, TAC’89)

This generalizes uniform global asymptotic stability to systems

\[\dot{Y} = g(t, Y, \mu(t)), \quad Y \in X. \]

(2)

It requires functions \(\gamma_i \in K_\infty \) such that all solutions of (2) satisfy

\[|Y(t)| \leq \gamma_1(e^{t_0-t} \gamma_2(|Y(t_0)|)) + \gamma_3(|\mu|_{[t_0,t]}) \quad \forall \ t \geq t_0 \geq 0. \]

(3)

Integral ISS (Sontag, ’98) is the same except with

\[\gamma_0(|Y(t)|) \leq \gamma_1(e^{t_0-t} \gamma_2(|Y(t_0)|)) + \int_{t_0}^{t} \gamma_3(|\mu(r)|)dr. \]

(4)
Input-to-State Stability (Sontag, TAC’89)

This generalizes uniform global asymptotic stability to systems

\[\dot{Y} = g(t, Y, \mu(t)), \quad Y \in \mathcal{X}. \] (2)

It requires functions \(\gamma_i \in \mathcal{K}_\infty \) such that all solutions of (2) satisfy

\[|Y(t)| \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y(t_0)|)\right) + \gamma_3(|\mu|_{t_0, t}) \quad \forall t \geq t_0 \geq 0. \] (3)

Integral ISS (Sontag, ’98) is the same except with

\[\gamma_0(|Y(t)|) \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y(t_0)|)\right) + \int_{t_0}^{t} \gamma_3(|\mu(r)|)dr. \] (4)

In practical ISS or iISS, \(\gamma_3 \) can depend on \(|Y(t_0)|\).
Input-to-State Stability (Sontag, TAC’89)

This generalizes uniform global asymptotic stability to systems

\[\dot{Y} = G(t, Y, \mu(t)), \quad Y \in X. \]

(2)

It requires functions \(\gamma_i \in \mathcal{K}_\infty \) such that all solutions of (2) satisfy

\[|Y(t)| \leq \gamma_1 (e^{t_0 - t} \gamma_2 (|Y(t_0)|)) + \gamma_3 (|\mu|_{[t_0, t]}) \quad \forall t \geq t_0 \geq 0. \]

(3)

Integral ISS (Sontag, ‘98) is the same except with

\[\gamma_0 (|Y(t)|) \leq \gamma_1 (e^{t_0 - t} \gamma_2 (|Y(t_0)|)) + \int_{t_0}^{t} \gamma_3 (|\mu(r)|)dr. \]

(4)

In practical ISS or iISS, \(\gamma_3 \) can depend on \(|Y(t_0)| \).

We show ISS and iISS properties with respect to \(\mu = (\delta, \Delta) \).
Reference Trajectories We Can Track

Definition: A C^2 function $\mathbf{r}^* : \mathbb{R} \to \mathbb{R}^3 \times (0, \infty)$ is called a trackable reference trajectory provided

1. $x^*, y^*, \dot{\theta}^*, \ddot{\theta}^*, v^*, \dot{v}^*$ are bounded,
2. $\dot{x}^*(t) = v^*(t) \cos(\theta^*(t))$ and $\dot{y}^*(t) = v^*(t) \sin(\theta^*(t))$ hold for all $t \in \mathbb{R}$, and
3. $\inf \{ v^*(t) : t \in \mathbb{R} \} > 0$.

Condition 3. is the no-stall condition.

Consequence of Trackability: There are constants $c_0 > 0$ and $T > 0$ such that

$$\int_{t+T}^{t} [\dot{\theta}^*(s)]^2 ds \geq c_0$$

for all $t \in \mathbb{R}$.
Reference Trajectories We Can Track

Definition: A C^2 function $\mathcal{R}_* = (x_*, y_*, \theta_*, v_*) : \mathbb{R} \rightarrow \mathbb{R}^3 \times (0, \infty)$ is called a trackable reference trajectory provided

1. $x_*, y_*, \dot{x}_*, \dot{\theta}_*, v_*$, and \dot{v}_* are bounded,
2. $\dot{x}_*(t) = v_*(t) \cos(\theta_*(t))$ and $\dot{y}_*(t) = v_*(t) \sin(\theta_*(t))$ hold for all $t \in \mathbb{R}$, and
3. $\inf\{v_*(t) : t \in \mathbb{R}\} > 0$.

Condition 3. is the no-stall condition. This allows circles, figure 8's, and much more under certain conditions on the constants.

Consequence of Trackability: There are constants $c_0 > 0$ and $T_0 > 0$ such that

$$\int_{t+T}^{t} \left[\dot{\theta}_*(s) \right]^2 ds \geq c_0$$

for all $t \in \mathbb{R}$.
Reference Trajectories We Can Track

Definition: A C^2 function $\mathcal{R}_* = (x_*, y_*, \theta_*, v_*) : \mathbb{R} \to \mathbb{R}^3 \times (0, \infty)$ is called a trackable reference trajectory provided

1. $x_*, y_*, \dot{\theta}_*, \ddot{\theta}_*, v_*$, and \dot{v}_* are bounded,

2. $\dot{x}_*(t) = v_*(t) \cos(\theta_*(t))$ and $\dot{y}_*(t) = v_*(t) \sin(\theta_*(t))$ hold for all $t \in \mathbb{R}$, and

3. $\inf\{v_*(t) : t \in \mathbb{R}\} > 0$.

Condition 3. is the no-stall condition.
Reference Trajectories We Can Track

Definition: A C^2 function $\mathcal{R}_* = (x_*, y_*, \theta_*, v_*) : \mathbb{R} \to \mathbb{R}^3 \times (0, \infty)$ is called a trackable reference trajectory provided

1. $x_*, y_*, \dot{\theta}_*, \ddot{\theta}_*, v_*, \text{and} \dot{v}_*$ are bounded,
2. $\dot{x}_*(t) = v_*(t) \cos(\theta_*(t))$ and $\dot{y}_*(t) = v_*(t) \sin(\theta_*(t))$ hold for all $t \in \mathbb{R}$, and
3. $\inf\{v_*(t) : t \in \mathbb{R}\} > 0$.

Condition 3. is the no-stall condition. This allows circles, figure 8’s, and much more under certain conditions on the constants.
Reference Trajectories We Can Track

Definition: A C^2 function $\mathcal{R}_* = (x_*, y_*, \theta_*, v_*) : \mathbb{R} \to \mathbb{R}^3 \times (0, \infty)$ is called a trackable reference trajectory provided

1. $x_*, y_*, \dot{x}_*, \ddot{x}_*, v_*$, and \dot{v}_* are bounded,
2. $\dot{x}_*(t) = v_*(t) \cos(\theta_*(t))$ and $\dot{y}_*(t) = v_*(t) \sin(\theta_*(t))$ hold for all $t \in \mathbb{R}$, and
3. $\inf \{v_*(t) : t \in \mathbb{R}\} > 0$.

Condition 3. is the no-stall condition. This allows circles, figure 8’s, and much more under certain conditions on the constants.

Consequence of Trackability: There are constants $c_0 > 0$ and $T > 0$ such that $\int_t^{t+T} [\dot{\theta}_*(s)]^2 ds \geq c_0$ for all $t \in \mathbb{R}$.
Tracking a Given Trackable Reference Trajectory

\[\psi = -\sin(\theta)x + \cos(\theta)y, \quad \xi = \cos(\theta)x + \sin(\theta)y \]
Tracking a Given Trackable Reference Trajectory

\[\psi = -\sin(\theta)x + \cos(\theta)y, \quad \xi = \cos(\theta)x + \sin(\theta)y \]
\[\tilde{\psi} = \psi - \psi_*(t), \quad \tilde{\xi} = \xi - \xi_*(t), \quad \tilde{\theta} = \theta - \theta_*(t), \quad \tilde{v} = v - v_*(t). \]
Tracking a Given Trackable Reference Trajectory

\[\psi = -\sin(\theta)x + \cos(\theta)y, \quad \xi = \cos(\theta)x + \sin(\theta)y \]

\[\tilde{\psi} = \psi - \psi_*(t), \quad \tilde{\xi} = \xi - \xi_*(t), \quad \tilde{\theta} = \theta - \theta_*(t), \quad \tilde{v} = v - v_*(t). \]

Tracking variable: \(\mathcal{E} = (\tilde{\psi}, \tilde{\xi}, \tilde{\theta}, \tilde{v}). \)
Tracking a Given Trackable Reference Trajectory

\[\psi = -\sin(\theta)x + \cos(\theta)y, \quad \xi = \cos(\theta)x + \sin(\theta)y \]
\[\tilde{\psi} = \psi - \psi^*(t), \quad \tilde{\xi} = \xi - \xi^*(t), \quad \tilde{\theta} = \theta - \theta^*(t), \quad \tilde{\nu} = \nu - \nu^*(t). \]

Tracking variable: \(\mathcal{E} = (\tilde{\psi}, \tilde{\xi}, \tilde{\theta}, \tilde{\nu}) \).

\[v_c(t, \mathcal{E}) = v_N(\mathcal{E}) + v^*(t) + \dot{v}^*(t)/\alpha_v \]
\[\theta_c(t, \mathcal{E}) = \theta_N(t, \mathcal{E}) + \theta^*(t) + \dot{\theta}^*(t)/\alpha_{\theta} \]
Tracking a Given Trackable Reference Trajectory

\[
\psi = -\sin(\theta)x + \cos(\theta)y, \quad \xi = \cos(\theta)x + \sin(\theta)y
\]

\[
\tilde{\psi} = \psi - \psi_*(t), \quad \tilde{\xi} = \xi - \xi_*(t), \quad \tilde{\theta} = \theta - \theta_*(t), \quad \tilde{v} = v - v_*(t).
\]

Tracking variable: \(\mathbf{E} = (\tilde{\psi}, \tilde{\xi}, \tilde{\theta}, \tilde{v}) \).

\[
\begin{align*}
\nu_c(t, \mathbf{E}) &= \nu_N(\mathbf{E}) + \nu_*(t) + \dot{\nu}_*(t)/\alpha_v \\
\theta_c(t, \mathbf{E}) &= \theta_N(t, \mathbf{E}) + \theta_*(t) + \dot{\theta}_*(t)/\alpha_\theta
\end{align*}
\]

Tracking Dynamics:

\[
\begin{align*}
\dot{\tilde{\psi}} &= -\dot{\theta}_*(t)\tilde{\xi} + \alpha_\theta[\tilde{\xi} + \xi_*(t)][\tilde{\theta} - \theta_N - \Delta] \\
\dot{\tilde{\xi}} &= \dot{\theta}_*(t)\tilde{\psi} + \tilde{v} - \alpha_\theta[\tilde{\psi} + \psi_*(t)][\tilde{\theta} - \theta_N - \Delta] \\
\dot{\tilde{\theta}} &= \alpha_\theta(-\tilde{\theta} + \theta_N + \Delta) \\
\dot{\tilde{v}} &= \alpha_v(-\tilde{v} + v_N + \delta)
\end{align*}
\]
Theorem (Gruszka-M-Mazenc, TAC’12)

Let $k > 0$ be any constant. Choose any constant $\bar{\Delta} > 0$ such that $\alpha\theta \|\dot{\theta}_*\|\bar{\Delta} < c_0/(2T)$.
Theorem (Gruszka-M-Mazenc, TAC’12)

Let $k > 0$ be any constant. Choose any constant $\bar{\Delta} > 0$ such that $\alpha_\theta \| \dot{\theta}_* \| \bar{\Delta} < c_0 / (2T)$. Choose $Q_1 = \frac{1}{2} |(\tilde{\psi}, \tilde{\xi})|^2$,

$$v_N(\mathcal{E}) = -k \frac{\tilde{\xi}}{2\alpha_v \sqrt{Q_1} + 1} \quad \text{and} \quad \theta_N(t, \mathcal{E}) = k \frac{\tilde{\psi} \xi_*(t) - \tilde{\xi} \psi_*(t)}{2 \sqrt{Q_1} + 1}.$$
Theorem (Gruszka-M-Mazenc, TAC’12)

Let \(k > 0 \) be any constant. Choose any constant \(\bar{\Delta} > 0 \) such that \(\alpha \theta \| \dot{\theta}_* \| \bar{\Delta} < c_0 / (2 T) \). Choose \(Q_1 = \frac{1}{2} |(\tilde{\psi}, \tilde{\xi})|^2 \),

\[
\nu_N(\mathcal{E}) = -k \frac{\tilde{\xi}}{2 \alpha_v \sqrt{Q_1 + 1}} \quad \text{and} \quad \theta_N(t, \mathcal{E}) = k \frac{\tilde{\psi} \xi_*(t) - \tilde{\xi} \psi_*(t)}{2 \sqrt{Q_1 + 1}}.
\]

Then (TD) are iISS with respect to \(\delta \in \mathcal{M}_\mathbb{R} \) and practically iISS with respect to \((\delta, \Delta) \in \mathcal{M}_\mathbb{R} \times [-\bar{\Delta}, \bar{\Delta}] \).
Theorem (Gruszka-M-Mazenc, TAC’12)

Let \(k > 0 \) be any constant. Choose any constant \(\bar{\Delta} > 0 \) such that \(\alpha_\theta \| \dot{\theta}_* \| \bar{\Delta} < c_0/(2T) \). Choose \(Q_1 = \frac{1}{2} |(\tilde{\psi}, \tilde{\xi})|^2 \),

\[
v_N(\mathcal{E}) = -k \frac{\tilde{\xi}}{2\alpha_N \sqrt{Q_1} + 1} \quad \text{and} \quad \theta_N(t, \mathcal{E}) = k \frac{\tilde{\psi} \xi_*(t) - \tilde{\xi} \psi_*(t)}{2 \sqrt{Q_1} + 1}.
\]

Then (TD) are iISS with respect to \(\delta \in \mathcal{M}_\mathbb{R} \) and practically iISS with respect to \((\delta, \Delta) \in \mathcal{M}_{\mathbb{R} \times [-\bar{\Delta}, \bar{\Delta}]} \). There is a constant \(\delta_M > 0 \) such that (TD) are ISS with respect to \(\delta \in \mathcal{M}_{[-\delta_M, \delta_M]} \) and practically ISS with respect to \((\delta, \Delta) \in \mathcal{M}_{[-\delta_M, \delta_M]^2} \).
Theorem (Gruszka-M-Mazenc, TAC’12)

Let $k > 0$ be any constant. Choose any constant $\tilde{\Delta} > 0$ such that $\alpha_{\theta} \| \dot{\theta}_* \| \tilde{\Delta} < c_0/(2T)$. Choose $Q_1 = \frac{1}{2} |(\tilde{\psi}, \tilde{\xi})|^2$,

$$v_N(\mathcal{E}) = -k \frac{\tilde{\xi}}{2\alpha_v \sqrt{Q_1} + 1} \quad \text{and} \quad \theta_N(t, \mathcal{E}) = k \frac{\tilde{\psi} \xi_*(t) - \tilde{\xi} \psi_*(t)}{2\sqrt{Q_1} + 1}.$$

Then (TD) are iISS with respect to $\delta \in \mathcal{M}_R$ and practically iISS with respect to $(\delta, \Delta) \in \mathcal{M}_{\mathbb{R} \times [-\tilde{\Delta}, \tilde{\Delta}]}$. There is a constant $\delta_M > 0$ such that (TD) are ISS with respect to $\delta \in \mathcal{M}_{[-\delta_M, \delta_M]}$ and practically ISS with respect to $(\delta, \Delta) \in \mathcal{M}_{[-\delta_M, \delta_M]^2}$.

Key Features:
Theorem (Gruszka-M-Mazenc, TAC’12)

Let $k > 0$ be any constant. Choose any constant $\Delta > 0$ such that $\alpha_\theta \|\dot{\theta}_*\|\Delta < c_0/(2T)$. Choose $Q_1 = \frac{1}{2}|(\tilde{\psi}, \tilde{\xi})|^2$,

$$v_N(E) = -k \frac{\tilde{\xi}}{2\alpha_N \sqrt{Q_1} + 1}$$

and

$$\theta_N(t, E) = k \frac{\tilde{\psi} \xi_*(t) - \tilde{\xi} \psi_*(t)}{2 \sqrt{Q_1} + 1}.$$

Then (TD) are iISS with respect to $\delta \in \mathcal{M}_{\mathbb{R}}$ and practically iISS with respect to $(\delta, \Delta) \in \mathcal{M}_{\mathbb{R} \times [\Delta, \Delta]}$. There is a constant $\delta_M > 0$ such that (TD) are ISS with respect to $\delta \in \mathcal{M}_{[-\delta_M, \delta_M]}$ and practically ISS with respect to $(\delta, \Delta) \in \mathcal{M}_{[-\delta_M, \delta_M]^2}$.

Key Features: iISS Lyapunov functions.
Theorem (Gruszka-M-Mazenc, TAC’12)

Let $k > 0$ be any constant. Choose any constant $\bar{\Delta} > 0$ such that $\alpha_{\theta} \| \dot{\theta}_* \| \bar{\Delta} < c_0/(2T)$. Choose $Q_1 = \frac{1}{2}|(\tilde{\psi}, \tilde{\xi})|^2$,

$$v_N(\mathcal{E}) = -k \frac{\tilde{\xi}}{2\alpha_{\nu} \sqrt{Q_1} + 1} \quad \text{and} \quad \theta_N(t, \mathcal{E}) = k \frac{\tilde{\psi} \xi_*(t) - \tilde{\xi} \psi_*(t)}{2 \sqrt{Q_1} + 1}.$$

Then (TD) are iISS with respect to $\delta \in \mathcal{M}_\mathbb{R}$ and practically iISS with respect to $(\delta, \Delta) \in \mathcal{M}_{\mathbb{R}^2}[-\bar{\Delta}, \bar{\Delta}]$. There is a constant $\delta_M > 0$ such that (TD) are ISS with respect to $\delta \in \mathcal{M}[-\delta_M, \delta_M]$ and practically ISS with respect to $(\delta, \Delta) \in \mathcal{M}_{\mathbb{R}^2}[-\delta_M, \delta_M]^2$.

Key Features: iISS Lyapunov functions. Controls do not depend on ν and satisfy certain amplitude and rate constraints.
Theorem (Gruszka-M-Mazenc, TAC’12)

Let $k > 0$ be any constant. Choose any constant $\tilde{\Delta} > 0$ such that $\alpha_\theta \|\dot{\theta}_*\|\tilde{\Delta} < c_0/(2T)$. Choose $Q_1 = \frac{1}{2}|(\tilde{\psi}, \tilde{\xi})|^2$,

$$v_N(\mathcal{E}) = -k \frac{\tilde{\xi}}{2\alpha_v \sqrt{Q_1} + 1} \quad \text{and} \quad \theta_N(t, \mathcal{E}) = k \frac{\tilde{\psi}_\xi(t) - \tilde{\xi}_\psi(t)}{2 \sqrt{Q_1} + 1}.$$

Then (TD) are iISS with respect to $\delta \in \mathcal{M}_\mathbb{R}$ and practically iISS with respect to $(\delta, \Delta) \in \mathcal{M}_\mathbb{R} \times [-\tilde{\Delta}, \tilde{\Delta}]$. There is a constant $\delta_M > 0$ such that (TD) are ISS with respect to $\delta \in \mathcal{M}_{[-\delta_M, \delta_M]}$ and practically ISS with respect to $(\delta, \Delta) \in \mathcal{M}_{[-\delta_M, \delta_M]^2}$.

Key Features: iISS Lyapunov functions. Controls do not depend on ν and satisfy certain amplitude and rate constraints.

$||v_N|| \leq k/\{\sqrt{2}\alpha_v\}$ and $||\theta_N|| \leq \sqrt{2}k \max\{||\xi_*||, ||\psi_*||\}$.
Control Amplitude and Rate Constraints

\[
\begin{align*}
\nu_c(t, \mathcal{E}) &= \nu_N(\mathcal{E}) + \nu_*(t) + \dot{\nu}_*(t)/\alpha_v \\
\theta_c(t, \mathcal{E}) &= \theta_N(t, \mathcal{E}) + \theta_*(t) + \dot{\theta}_*(t)/\alpha_\theta
\end{align*}
\]
Control Amplitude and Rate Constraints

\[
\begin{align*}
\nu_c(t, \mathcal{E}) &= \nu_N(\mathcal{E}) + v_*(t) + \dot{v}_*(t)/\alpha_v \\
\theta_c(t, \mathcal{E}) &= \theta_N(t, \mathcal{E}) + \theta_*(t) + \dot{\theta}_*(t)/\alpha_\theta
\end{align*}
\]

Let \(\varepsilon > 0 \) be a constant and \([\nu_a, \bar{\nu}_a]\) be the desired \(\nu_c \) envelope.
Control Amplitude and Rate Constraints

\[v_c(t, \varepsilon) = v_N(\varepsilon) + v_*(t) + \dot{v}_*(t)/\alpha_v \]
\[\theta_c(t, \varepsilon) = \theta_N(t, \varepsilon) + \theta_*(t) + \dot{\theta}_*(t)/\alpha_{\theta} \]

Let \(\varepsilon > 0 \) be a constant and \([v_a, \bar{v}_a] \) be the desired \(v_c \) envelope.

Assume that \(v_a + \varepsilon < v_*(t) + \dot{v}_*(t)/\alpha_v < \bar{v}_a - \varepsilon \) holds for all \(t \).
Control Amplitude and Rate Constraints

\[
\begin{align*}
\nu_c(t, \mathcal{E}) &= \nu_N(\mathcal{E}) + \nu_*(t) + \dot{\nu}_*(t)/\alpha_v \\
\theta_c(t, \mathcal{E}) &= \theta_N(t, \mathcal{E}) + \theta_*(t) + \dot{\theta}_*(t)/\alpha_\theta
\end{align*}
\]

Let \(\varepsilon > 0 \) be a constant and \([\underline{\nu}_a, \bar{\nu}_a]\) be the desired \(\nu_c \) envelope.

Assume that \(\underline{\nu}_a + \varepsilon < \nu_*(t) + \dot{\nu}_*(t)/\alpha_v < \bar{\nu}_a - \varepsilon \) holds for all \(t \).

We can choose the constant \(k > 0 \) small enough such that \(\underline{\nu}_a < \nu_c(t, \mathcal{E}(t)) < \bar{\nu}_a \) along all trajectories, and similarly for \(\dot{\theta}_c \).
Control Amplitude and Rate Constraints

\[v_c(t, \mathcal{E}) = v_N(\mathcal{E}) + v_*(t) + \dot{v}_*(t)/\alpha_v \]
\[\theta_c(t, \mathcal{E}) = \theta_N(t, \mathcal{E}) + \theta_*(t) + \dot{\theta}_*(t)/\alpha_\theta \]

Let \(\varepsilon > 0 \) be a constant and \([v_a, \bar{v}_a]\) be the desired \(v_c \) envelope.

Assume that \(v_a + \varepsilon < v_*(t) + \dot{v}_*(t)/\alpha_v < \bar{v}_a - \varepsilon \) holds for all \(t \).

We can choose the constant \(k > 0 \) small enough such that
\[v_a < v_c(t, \mathcal{E}(t)) < \bar{v}_a \] along all trajectories, and similarly for \(\theta_c \).

Let \([\theta_r, \bar{\theta}_r]\) and \([v_r, \bar{v}_r]\) be the desired rate envelopes.
Control Amplitude and Rate Constraints

\[v_c(t, \mathcal{E}) = v_N(\mathcal{E}) + v_*(t) + \dot{v}_*(t)/\alpha_v \]
\[\theta_c(t, \mathcal{E}) = \theta_N(t, \mathcal{E}) + \theta_*(t) + \dot{\theta}_*(t)/\alpha_{\theta} \]

Let \(\varepsilon > 0 \) be a constant and \([\underline{v}_a, \overline{v}_a]\) be the desired \(v_c \) envelope.

Assume that \(\underline{v}_a + \varepsilon < v_*(t) + \dot{v}_*(t)/\alpha_v < \overline{v}_a - \varepsilon \) holds for all \(t \).

We can choose the constant \(k > 0 \) small enough such that \(\underline{v}_a < v_c(t, \mathcal{E}(t)) < \overline{v}_a \) along all trajectories, and similarly for \(\theta_c \).

Let \([\underline{\theta}_r, \overline{\theta}_r]\) and \([\underline{v}_r, \overline{v}_r]\) be the desired rate envelopes.

Assume that \(\underline{v}_r + \varepsilon < \dot{v}_*(t) + \ddot{v}_*(t)/\alpha_v < \overline{v}_r - \varepsilon \) holds for all \(t \).
Control Amplitude and Rate Constraints

$$v_c(t, \mathcal{E}) = v_N(\mathcal{E}) + v_*(t) + \dot{v}_*(t)/\alpha_v$$
$$\theta_c(t, \mathcal{E}) = \theta_N(t, \mathcal{E}) + \theta_*(t) + \dot{\theta}_*(t)/\alpha_\theta$$

Let $\varepsilon > 0$ be a constant and $[v_a, \bar{v}_a]$ be the desired v_c envelope.

Assume that $v_a + \varepsilon < v_*(t) + \dot{v}_*(t)/\alpha_v < \bar{v}_a - \varepsilon$ holds for all t.

We can choose the constant $k > 0$ small enough such that $v_a < v_c(t, \mathcal{E}(t)) < \bar{v}_a$ along all trajectories, and similarly for θ_c.

Let $[\theta_r, \bar{\theta}_r]$ and $[\bar{v}_r, \bar{v}_r]$ be the desired rate envelopes.

Assume that $\bar{v}_r + \varepsilon < \dot{\theta}_*(t) + \ddot{\theta}_*(t)/\alpha_\theta < \bar{v}_r - \varepsilon$ holds for all t.

For each constant $B > 0$, we can find a constant $\bar{K}(B)$ such that if $|(\tilde{\theta}(t_0), \tilde{v}(t_0))| \leq B$ and $k \in (0, \bar{K}(B))$ both hold, then $v_r < \dot{v}_c(t, \mathcal{E}(t)) < \bar{v}_r$ along all trajectories, and similarly for $\dot{\theta}_c$.
Conclusions

▶ The benchmark model for controlled UAVs includes uncertainty in both controls.
▶ Our controls give input-to-state stability estimates whose overshoot terms quantify the effects of the uncertainty.
▶ They satisfy command amplitude, command rate, and state constraints, e.g., coordinated turning conditions \[|\dot{\theta}| \leq c^* / v. \]
▶ It may be useful to obtain more information on the behavior of the trajectories of the closed loop (TD) with \(v_N \) and \(\theta_N \).
▶ We also aim to extend our work to coordinated control of uncertain UAVs under time delays in the controls.
Conclusions

- The benchmark model for controlled UAVs includes uncertainty in both controls.

It may be useful to obtain more information on the behavior of the trajectories of the closed loop (TD) with v_N and θ_N.

We also aim to extend our work to coordinated control of uncertain UAVs under time delays in the controls.
Conclusions

- The benchmark model for controlled UAVs includes uncertainty in both controls.

- Our controls give input-to-state stability estimates whose overshoot terms quantify the effects of the uncertainty.

- It may be useful to obtain more information on the behavior of the trajectories of the closed loop (TD) with v_N and θ_N.

- We also aim to extend our work to coordinated control of uncertain UAVs under time delays in the controls.
Conclusions

- The benchmark model for controlled UAVs includes uncertainty in both controls.

- Our controls give input-to-state stability estimates whose overshoot terms quantify the effects of the uncertainty.

- They satisfy command amplitude, command rate, and state constraints, e.g., coordinated turning conditions $|\dot{\theta}| \leq c_*/v$.

- It may be useful to obtain more information on the behavior of the trajectories of the closed loop (TD) with v and θ. N

- We also aim to extend our work to coordinated control of uncertain UAVs under time delays in the controls.
Conclusions

- The benchmark model for controlled UAVs includes uncertainty in both controls.
- Our controls give input-to-state stability estimates whose overshoot terms quantify the effects of the uncertainty.
- They satisfy command amplitude, command rate, and state constraints, e.g., coordinated turning conditions $|\dot{\theta}| \leq c_*/v$.
- It may be useful to obtain more information on the behavior of the trajectories of the closed loop (TD) with v_N and θ_N.
- We also aim to extend our work to coordinated control of uncertain UAVs under time delays in the controls.
Conclusions

▶ The benchmark model for controlled UAVs includes uncertainty in both controls.
▶ Our controls give input-to-state stability estimates whose overshoot terms quantify the effects of the uncertainty.
▶ They satisfy command amplitude, command rate, and state constraints, e.g., coordinated turning conditions $|\dot{\theta}| \leq c_* / v$.
▶ It may be useful to obtain more information on the behavior of the trajectories of the closed loop (TD) with v_N and θ_N.
▶ We also aim to extend our work to coordinated control of uncertain UAVs under time delays in the controls.