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Controlled UAV Model{
ẋ = v cos(θ), ẏ = v sin(θ)

θ̇ = αθ(θc − θ + ∆), v̇ = αv (vc − v + δ)
(1)

x , y position of UAV at constant altitude
θ, v heading angle and inertial velocity

αθ,αv positive constants for autopilot
θc ,vc controllers we will design

∆,δ actuator disturbances

Ailon, Chandler, Gu, Proud-Pachter-Azzo, Ren-Beard,...

Omitted altitude dynamics: ḧ = −αhḣ + αh(hc − h).

Our Goal: Tracking with input-to-state stability with respect to
disturbances under controller amplitude and rate constraints.
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Input-to-State Stability (Sontag, TAC’89)

This generalizes uniform global asymptotic stability to systems

Ẏ = G(t ,Y , µ(t)), Y ∈ X . (2)

It requires functions γi ∈ K∞ such that all solutions of (2) satisfy

|Y (t)| ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+ γ3(|µ|[t0,t]) ∀t ≥ t0 ≥ 0 . (3)

Integral ISS (Sontag, ’98) is the same except with

γ0(|Y (t)|) ≤ γ1
(
et0−tγ2(|Y (t0)|)

)
+
∫ t

t0
γ3(|µ(r)|)dr . (4)

In practical ISS or iISS, γ3 can depend on |Y (t0)|.
We show ISS and iISS properties with respect to µ = (δ,∆).
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Reference Trajectories We Can Track

Definition: A C2 function R∗ = (x∗, y∗, θ∗, v∗) : R→ R3 × (0,∞)
is called a trackable reference trajectory provided

1. x∗, y∗, θ̇∗, θ̈∗, v∗, and v̇∗ are bounded,

2. ẋ∗(t) = v∗(t) cos(θ∗(t)) and ẏ∗(t) = v∗(t) sin(θ∗(t)) hold for
all t ∈ R, and

3. inf{v∗(t) : t ∈ R} > 0.

Condition 3. is the no-stall condition. This allows circles, figure
8’s, and much more under certain conditions on the constants.

Consequence of Trackability: There are constants c0 > 0 and
T > 0 such that

∫ t+T
t [θ̇∗(s)]2ds ≥ c0 for all t ∈ R.
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Tracking a Given Trackable Reference Trajectory

ψ = − sin(θ)x + cos(θ)y , ξ = cos(θ)x + sin(θ)y

ψ̃ = ψ − ψ∗(t), ξ̃ = ξ − ξ∗(t), θ̃ = θ − θ∗(t), ṽ = v − v∗(t).

Tracking variable: E = (ψ̃, ξ̃, θ̃, ṽ).

vc(t , E) = vN(E) + v∗(t) + v̇∗(t)/αv

θc(t , E) = θN(t , E) + θ∗(t) + θ̇∗(t)/αθ
(5)

Tracking Dynamics:
˙̃ψ = −θ̇∗(t)ξ̃ + αθ[ξ̃ + ξ∗(t)][θ̃ − θN −∆]
˙̃ξ = θ̇∗(t)ψ̃ + ṽ − αθ[ψ̃ + ψ∗(t)][θ̃ − θN −∆]
˙̃θ = αθ(−θ̃ + θN + ∆)
˙̃v = αv (−ṽ + vN + δ)

(TD)
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Theorem (Gruszka-M-Mazenc, TAC’12)

Let k > 0 be any constant. Choose any constant ∆̄ > 0 such
that αθ‖θ̇∗‖∆̄ < c0/(2T ).

Choose Q1 = 1
2 |(ψ̃, ξ̃)|2,

vN(E) = −k
ξ̃

2αv
√

Q1 + 1
and θN(t , E) = k

ψ̃ξ∗(t)− ξ̃ψ∗(t)
2
√

Q1 + 1
.

Then (TD) are iISS with respect to δ ∈MR and practically iISS
with respect to (δ,∆) ∈MR×[−∆̄,∆̄]. There is a constant δM > 0
such that (TD) are ISS with respect to δ ∈M[−δM ,δM ] and
practically ISS with respect to (δ,∆) ∈M[−δM ,δM ]2 .

Key Features: iISS Lyapunov functions. Controls do not depend
on v and satisfy certain amplitude and rate constraints.
||vN || ≤ k/{

√
2αv} and ||θN || ≤

√
2k max{||ξ∗||, ||ψ∗||}.
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||vN || ≤ k/{
√

2αv} and ||θN || ≤
√

2k max{||ξ∗||, ||ψ∗||}.



Theorem (Gruszka-M-Mazenc, TAC’12)

Let k > 0 be any constant. Choose any constant ∆̄ > 0 such
that αθ‖θ̇∗‖∆̄ < c0/(2T ). Choose Q1 = 1

2 |(ψ̃, ξ̃)|2,

vN(E) = −k
ξ̃

2αv
√

Q1 + 1
and θN(t , E) = k

ψ̃ξ∗(t)− ξ̃ψ∗(t)
2
√

Q1 + 1
.

Then (TD) are iISS with respect to δ ∈MR and practically iISS
with respect to (δ,∆) ∈MR×[−∆̄,∆̄]. There is a constant δM > 0
such that (TD) are ISS with respect to δ ∈M[−δM ,δM ] and
practically ISS with respect to (δ,∆) ∈M[−δM ,δM ]2 .

Key Features: iISS Lyapunov functions. Controls do not depend
on v and satisfy certain amplitude and rate constraints.
||vN || ≤ k/{

√
2αv} and ||θN || ≤

√
2k max{||ξ∗||, ||ψ∗||}.



Control Amplitude and Rate Constraints

vc(t , E) = vN(E) + v∗(t) + v̇∗(t)/αv

θc(t , E) = θN(t , E) + θ∗(t) + θ̇∗(t)/αθ

Let ε > 0 be a constant and [va, v̄a] be the desired vc envelope.

Assume that va + ε < v∗(t) + v̇∗(t)/αv < v̄a − ε holds for all t .
We can choose the constant k > 0 small enough such that
va < vc(t , E(t)) < v̄a along all trajectories, and similarly for θc .

Let [θr , θ̄r ] and [v r , v̄r ] be the desired rate envelopes.

Assume that v r + ε < v̇∗(t) + v̈∗(t)/αv < v̄r − ε holds for all t .

For each constant B > 0, we can find a constant K̄ (B) such that
if |(θ̃(t0), ṽ(t0))| ≤ B and k ∈ (0, K̄ (B)) both hold, then
v r < v̇c(t , E(t)) < v̄r along all trajectories, and similarly for θ̇c .
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if |(θ̃(t0), ṽ(t0))| ≤ B and k ∈ (0, K̄ (B)) both hold, then
v r < v̇c(t , E(t)) < v̄r along all trajectories, and similarly for θ̇c .



Control Amplitude and Rate Constraints

vc(t , E) = vN(E) + v∗(t) + v̇∗(t)/αv

θc(t , E) = θN(t , E) + θ∗(t) + θ̇∗(t)/αθ

Let ε > 0 be a constant and [va, v̄a] be the desired vc envelope.

Assume that va + ε < v∗(t) + v̇∗(t)/αv < v̄a − ε holds for all t .

We can choose the constant k > 0 small enough such that
va < vc(t , E(t)) < v̄a along all trajectories, and similarly for θc .

Let [θr , θ̄r ] and [v r , v̄r ] be the desired rate envelopes.

Assume that v r + ε < v̇∗(t) + v̈∗(t)/αv < v̄r − ε holds for all t .

For each constant B > 0, we can find a constant K̄ (B) such that
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if |(θ̃(t0), ṽ(t0))| ≤ B and k ∈ (0, K̄ (B)) both hold, then
v r < v̇c(t , E(t)) < v̄r along all trajectories, and similarly for θ̇c .



Control Amplitude and Rate Constraints

vc(t , E) = vN(E) + v∗(t) + v̇∗(t)/αv

θc(t , E) = θN(t , E) + θ∗(t) + θ̇∗(t)/αθ

Let ε > 0 be a constant and [va, v̄a] be the desired vc envelope.

Assume that va + ε < v∗(t) + v̇∗(t)/αv < v̄a − ε holds for all t .
We can choose the constant k > 0 small enough such that
va < vc(t , E(t)) < v̄a along all trajectories, and similarly for θc .

Let [θr , θ̄r ] and [v r , v̄r ] be the desired rate envelopes.

Assume that v r + ε < v̇∗(t) + v̈∗(t)/αv < v̄r − ε holds for all t .

For each constant B > 0, we can find a constant K̄ (B) such that
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Conclusions

I The benchmark model for controlled UAVs includes
uncertainty in both controls.

I Our controls give input-to-state stability estimates whose
overshoot terms quantify the effects of the uncertainty.

I They satisfy command amplitude, command rate, and state
constraints, e.g., coordinated turning conditions |θ̇| ≤ c∗/v .

I It may be useful to obtain more information on the behavior
of the trajectories of the closed loop (TD) with vN and θN .

I We also aim to extend our work to coordinated control of
uncertain UAVs under time delays in the controls.
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