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Without organisms or consumption, (Vs)'(t) = s, F — s(t)F.

s = concentration of nutrient in culture vessel.
Consumption: 2%, x = concentration of organism (mass/®).
m = maximum growth rate (1/t). a = half-saturation constant.
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Extend this to ISS estimate on [0, o) by a trajectory analysis.
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Blue Curve. Initial State (s(0), x1(0), x2(0)) = (1.3,0.2,0.1).
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Theorem: Under our assumptions, for all constants x > 0 and
5 > siy, the dynamics for the error vector £ = (s, x) — &, satisfy
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Construct a function T € K, and constants ¢; > 0 and k; > 0
such that the time derivative of
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V(%) = X; — Xix In (X'“’*) for all iepP
and \IJ,-(x,-) =x forallie{1,2,....,n}\P
along all solutions of (M) starting in any Sz x with 7, = 0 satisfies

~2 n ~'2t
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forall t > T(|£(0)|), where X; = x; — x;, forall i and § = s — s,.
Extend this to ISS estimate on [0, o) by a trajectory analysis.



Main Idea of Proof: Delayed Case

Build T € K. and positive constants M., vy, and N such that

Vi(&, a(t) = V(E(t), a(1) + M. [ f,fs(')drdf )

s(r)

satisfies

) 4

13 () t3 (r) Ny
Vi(ELa(D) < Vo ( 8 drcw)+ Nislog

along all solutions of the (3, &) system for all t > T(|£(0)|) where
oi(t) = xi(t)e oI Li(s()—pi(s:)lde @)

for all i, V is the Lyapunov construction from the undelayed case,
S=s— s, is as before, and &; = o; — x;, and 7; < 7 for all .
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