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Ẋi = [µi(S) − D(Y )] Xi , i = 1, 2

Y = X1 + X2, (S, X1, X2) ∈ (0,∞)3 .

(CM)

S = level of the substrate. Xi = concentration of species i .
sin = positive constants. D(Y ) = dilution rate controller.



Two-Species Chemostat Model
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Ẋi = [µi(S) − D(Y )] Xi , i = 1, 2

Y = X1 + X2, (S, X1, X2) ∈ (0,∞)3 .

(CM)

S = level of the substrate. Xi = concentration of species i .
sin = positive constants. D(Y ) = dilution rate controller.
Gi = growth yield constants. µi = uptake function.

I Main Goal: Design D to render an appropriate equilibrium
(s∗, x1∗, x2∗) ∈ (0,∞)3 GAS



Two-Species Chemostat Model
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Ẋi = [µi(S) − D(Y )] Xi , i = 1, 2

Y = X1 + X2, (S, X1, X2) ∈ (0,∞)3 .

(CM)

S = level of the substrate. Xi = concentration of species i .
sin = positive constants. D(Y ) = dilution rate controller.
Gi = growth yield constants. µi = uptake function.

I Main Goal: Design D to render an appropriate equilibrium
(s∗, x1∗, x2∗) ∈ (0,∞)3 GAS under possibly nonmonotone
uptake functions µi when G1 6= G2.

I Bioengineering, microbial ecology, and population biology.
De Leenheer, Gouzé



Two-Species Chemostat Model
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x1∗, x2∗ > 0 are any constants such that s∗ + x1∗ + x2∗ = sin.
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(K1, L1, g1) = (6, 8, 0.12) and (K2, L2, g2) = (2, 1, 0.04)
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I Standard Poincaré-Bendixson and Lyapunov function
methods do not apply under delays. Instead, the proof
constructs a Lyapunov-Krasovskii functional U1.

I At each time t , U1 depends on the history of the error
variable (s̃, x̃) = (s − s∗, x − x∗) over [t − 2τM , t ].

I Along the error dynamics, U̇1 is negative definite:

U̇1 ≤ −(s̃ + x̃1+x̃2)
2− ℵ

5
s̃2

s − ε1ε2|f|
8 (x̃1+ax̃2)

2, t ≥ τ .
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Theorem: For each constant K ∈ (0, K0) and each constant
a > 1, (NV2) in closed loop with the bounded positive controller

D(y) = µ1(s∗) − 2(1 + a)sinKσ
(

1
2(1+a)sin

[y − x1∗ − ax2∗]
)

(C)

is GAS to the equilibrium (s∗, x1∗, x2∗) on (0,∞)3.

Proof: Use Poincaré-Bendixson Theorem and dimension
reduction to a manifold where s + x1 + x2 = sin.

The case a = 1 would give a nonisolated equilibrium.
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Robustness Corollary for Case where G1 < G2

Suppose we compute D(y) from (C) using a pair of µi ’s, but the
actual uptake functions are some other functions νi that satisfy:

Assumption: (a) The νi ’s are 0 at 0 and C1, (b) νi
′(s) > 0 for

i = 1, 2 and all s ≥ 0, (c) there is a constant sv ∈ (0, sin) so that
ν1(s) > ν2(s) on (0, sv ) and ν1(s) < ν2(s) on (sv , sin), and (d)
ν1

′(sv ) < ν2
′(sv ).

Corollary: We can choose K and a constant ε > 0 such that if
T (µ, ν) = max{|µi

′(s) − νi
′(s)| : i = 1, 2; s ∈ [0, sin]} < ε, then

{

ṡ = D(y)[sin − s] − ν1(s)x1 − ν2(s)x2

ẋi = [νi(s) − D(y)] xi , i = 1, 2
(RC)

is GAS to some point (sv , x1v , x2v ) ∈ (0,∞)3.
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Conclusions
I We achieved output feedback GAS of componentwise

positive equilibria using only the sum of the species levels.

I Competitive exclusion required us to use a nonconstant
controller to get permanence of both species.

I We dropped the usual assumption on the relative sizes of
the growth yields Gi .

I When G1<G2, we can allow uncertain monotone uptake
functions µi that are not necessary concave.

I When G1>G2, we can cover time delays, nonmonotone
uptake functions, and robustness to actuator errors.

I Desirable extensions would allow more than two species, or
multiple limiting substrates.


