Recent Results on Control Problems for Chemostats

Michael Malisoff, Louisiana State University
Joint work with Frédéric Mazenc from INRIA
Published in *Automatica* in 2010
Sponsored by NSF/DMS Grant 0708084

SIAM Minisymposium on Applications of Difference and Differential Equations in Ecology and Epidemiology
2011 Joint Meetings, New Orleans
Chemostat Apparatus
Chemostat Apparatus
Chemostat Apparatus

Bioreactor.
Chemostat Apparatus

Bioreactor. Fresh medium continuously added.
Chemostat Apparatus

Bioreactor. Fresh medium continuously added. Culture liquid continuously removed.
Chemostat Apparatus

Two-Species Chemostat Model
Two-Species Chemostat Model

\[\begin{align*}
\dot{S} &= (s_{in} - S) D(Y) - \mu_1(S) \frac{X_1}{G_1} - \mu_2(S) \frac{X_2}{G_2} \\
\dot{X}_i &= [\mu_i(S) - D(Y)] X_i, \quad i = 1, 2 \\
Y &= X_1 + X_2, \quad (S, X_1, X_2) \in (0, \infty)^3.
\end{align*} \] (CM)
Two-Species Chemostat Model

\[\begin{align*}
\dot{S} &= (s_{\text{in}} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\
\dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \quad i = 1, 2 \\
Y &= X_1 + X_2, \quad (S, X_1, X_2) \in (0, \infty)^3.
\end{align*} \]

(CM)

\[S = \text{level of the substrate}. \]
Two-Species Chemostat Model

\begin{align*}
 \dot{S} &= (s_{in} - S) D(Y) - \mu_1(S) \frac{X_1}{G_1} - \mu_2(S) \frac{X_2}{G_2} \\
 \dot{X}_i &= [\mu_i(S) - D(Y)] X_i, \quad i = 1, 2 \quad \text{(CM)} \\
 Y &= X_1 + X_2, \quad (S, X_1, X_2) \in (0, \infty)^3
\end{align*}

S = level of the substrate. X_i = concentration of species i.
Two-Species Chemostat Model

\[\dot{S} = (s_{\text{in}} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \]

\[\dot{X}_i = \left[\mu_i(S) - D(Y) \right] X_i, \quad i = 1, 2 \quad \text{(CM)} \]

\[Y = X_1 + X_2, \quad (S, X_1, X_2) \in (0, \infty)^3. \]

$S =$ level of the substrate. $X_i =$ concentration of species i. $s_{\text{in}} =$ positive constants.
Two-Species Chemostat Model

\[
\begin{align*}
\dot{S} &= (s_{in} - S)D(Y) - \mu_1(S) \frac{X_1}{G_1} - \mu_2(S) \frac{X_2}{G_2} \\
\dot{X}_i &= [\mu_i(S) - D(Y)] X_i, \ i = 1, 2 \\
Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3.
\end{align*}
\]

\(S\) = level of the substrate. \(X_i\) = concentration of species \(i\).

\(s_{in}\) = positive constants. \(D(Y)\) = dilution rate controller.
Two-Species Chemostat Model

\[
\begin{align*}
\dot{S} &= (s_{\text{in}} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\
\dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1, 2 \quad \text{(CM)} \\
Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3.
\end{align*}
\]

$S = \text{level of the substrate.}$ $X_i = \text{concentration of species } i.$

$s_{\text{in}} = \text{positive constants.}$ $D(Y) = \text{dilution rate controller.}$

$G_i = \text{growth yield constants.}$
Two-Species Chemostat Model

\[
\dot{S} = (s_{\text{in}} - S) D(Y) - \mu_1(S) \frac{X_1}{G_1} - \mu_2(S) \frac{X_2}{G_2}
\]

\[
\dot{X}_i = [\mu_i(S) - D(Y)] X_i, \quad i = 1, 2 \quad \text{(CM)}
\]

\[
Y = X_1 + X_2, \quad (S, X_1, X_2) \in (0, \infty)^3.
\]

\(S\) = level of the substrate. \(X_i\) = concentration of species \(i\).

\(s_{\text{in}}\) = positive constants. \(D(Y)\) = dilution rate controller.

\(G_i\) = growth yield constants. \(\mu_i\) = uptake function.
Two-Species Chemostat Model

\[\dot{S} = (s_{\text{in}} - S) D(Y) - \mu_1(S) \frac{X_1}{G_1} - \mu_2(S) \frac{X_2}{G_2} \]

\[\dot{X}_i = [\mu_i(S) - D(Y)] X_i, \ i = 1, 2 \quad \text{(CM)} \]

\[Y = X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \]

S = level of the substrate. X_i = concentration of species i.
s_{in} = positive constants. $D(Y)$ = dilution rate controller.
G_i = growth yield constants. μ_i = uptake function.

► Main Goal:
Two-Species Chemostat Model

\[
\begin{align*}
\dot{S} & = (s_{in} - S)D(Y) - \mu_1(S) \frac{X_1}{G_1} - \mu_2(S) \frac{X_2}{G_2} \\
\dot{X}_i & = [\mu_i(S) - D(Y)] X_i, \quad i = 1, 2 \\
Y & = X_1 + X_2, \quad (S, X_1, X_2) \in (0, \infty)^3.
\end{align*}
\]

\(S \) = level of the substrate. \(X_i \) = concentration of species \(i \).
\(s_{in} \) = positive constants. \(D(Y) \) = dilution rate controller.
\(G_i \) = growth yield constants. \(\mu_i \) = uptake function.

- **Main Goal**: Design \(D \) to render an appropriate equilibrium \((s_*, x_{1*}, x_{2*}) \in (0, \infty)^3\) GAS.
Two-Species Chemostat Model

\[
\begin{align*}
\dot{S} &= (s_{\text{in}} - S) D(Y) - \mu_1(S) \frac{X_1}{G_1} - \mu_2(S) \frac{X_2}{G_2} \\
\dot{X}_i &= [\mu_i(S) - D(Y)] X_i, \quad i = 1, 2 \\
Y &= X_1 + X_2, \quad (S, X_1, X_2) \in (0, \infty)^3.
\end{align*}
\]

S = level of the substrate. X_i = concentration of species i.
s_{in} = positive constants. $D(Y)$ = dilution rate controller.
G_i = growth yield constants. μ_i = uptake function.

Main Goal: Design D to render an appropriate equilibrium $(s_*, x_{1*}, x_{2*}) \in (0, \infty)^3$ GAS under possibly nonmonotone uptake functions μ_i.
Two-Species Chemostat Model

\[\dot{S} = (s_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \]
\[\dot{X}_i = [\mu_i(S) - D(Y)]X_i, \ i = 1, 2 \] \hspace{1cm} (CM)
\[Y = X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \]

S = level of the substrate. X_i = concentration of species i.
s_{in} = positive constants. $D(Y)$ = dilution rate controller.
G_i = growth yield constants. μ_i = uptake function.

Main Goal: Design D to render an appropriate equilibrium $(s_*, x_{1*}, x_{2*}) \in (0, \infty)^3$ GAS under possibly nonmonotone uptake functions μ_i when $G_1 \neq G_2$.
Two-Species Chemostat Model

\[\begin{align*}
\dot{S} &= (s_{\text{in}} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\
\dot{X}_i &= [\mu_i(S) - D(Y)] X_i, \quad i = 1, 2 \\
Y &= X_1 + X_2, \quad (S, X_1, X_2) \in (0, \infty)^3.
\end{align*} \]

(CM)

$S =$ level of the substrate. $X_i =$ concentration of species i.

$s_{\text{in}} =$ positive constants. $D(Y) =$ dilution rate controller.

$G_i =$ growth yield constants. $\mu_i =$ uptake function.

- **Main Goal**: Design D to render an appropriate equilibrium $(s_*, x_{1*}, x_{2*}) \in (0, \infty)^3$ GAS under possibly nonmonotone uptake functions μ_i when $G_1 \neq G_2$.

- Bioengineering, microbial ecology, and population biology.
Two-Species Chemostat Model

\[
\begin{align*}
\dot{S} &= (s_{\text{in}} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\
\dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \quad i = 1, 2 \\
Y &= X_1 + X_2, \quad (S, X_1, X_2) \in (0, \infty)^3.
\end{align*}
\]

(S) = level of the substrate. \(X_i \) = concentration of species \(i \).
\(s_{\text{in}} \) = positive constants. \(D(Y) \) = dilution rate controller.
\(G_i \) = growth yield constants. \(\mu_i \) = uptake function.

★★ Main Goal: Design \(D \) to render an appropriate equilibrium \((s_*, x_{1*}, x_{2*}) \in (0, \infty)^3\) GAS under possibly nonmonotone uptake functions \(\mu_i \) when \(G_1 \neq G_2 \).

★★ Bioengineering, microbial ecology, and population biology.
De Leenheer
Two-Species Chemostat Model

\[
\begin{align*}
\dot{S} &= (s_{\text{in}} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\
\dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \quad i = 1, 2 \\
Y &= X_1 + X_2, \quad (S, X_1, X_2) \in (0, \infty)^3.
\end{align*}
\]

\(S\) = level of the substrate. \(X_i\) = concentration of species \(i\).
\(s_{\text{in}}\) = positive constants. \(D(Y)\) = dilution rate controller.
\(G_i\) = growth yield constants. \(\mu_i\) = uptake function.

- **Main Goal**: Design \(D\) to render an appropriate equilibrium \((s_*, x_{1*}, x_{2*}) \in (0, \infty)^3\) GAS under possibly nonmonotone uptake functions \(\mu_i\) when \(G_1 \neq G_2\).

- Bioengineering, microbial ecology, and population biology.
 De Leenheer, Gouzé
Two-Species Chemostat Model

\[\dot{S} = (s_{\text{in}} - S) D(Y) - \mu_1(S) \frac{X_1}{G_1} - \mu_2(S) \frac{X_2}{G_2} \]

\[\dot{X}_i = [\mu_i(S) - D(Y)] X_i, \quad i = 1, 2 \] \hspace{1cm} (CM)

\[Y = X_1 + X_2, \quad (S, X_1, X_2) \in (0, \infty)^3. \]

\(S \) = level of the substrate. \(X_i \) = concentration of species \(i \).
\(s_{\text{in}} \) = positive constants. \(D(Y) \) = dilution rate controller.
\(G_i \) = growth yield constants. \(\mu_i \) = uptake function.

- **Main Goal:** Design \(D \) to render an appropriate equilibrium \((s_*, x_{1*}, x_{2*}) \in (0, \infty)^3 \) GAS under possibly nonmonotone uptake functions \(\mu_i \) when \(G_1 \neq G_2 \).

- Bioengineering, microbial ecology, and population biology. De Leenheer, Gouzé, Robledo
Two-Species Chemostat Model

\[\begin{align*}
\dot{S} &= (s_{\text{in}} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\
\dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1, 2 \\
Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3.
\end{align*} \]

(CM)

\(S \) = level of the substrate. \(X_i \) = concentration of species \(i \).
\(s_{\text{in}} \) = positive constants. \(D(Y) \) = dilution rate controller.
\(G_i \) = growth yield constants. \(\mu_i \) = uptake function.

- **Main Goal**: Design \(D \) to render an appropriate equilibrium \((s_*, x_{1*}, x_{2*}) \in (0, \infty)^3 \) GAS under possibly nonmonotone uptake functions \(\mu_i \) when \(G_1 \neq G_2 \).

- Bioengineering, microbial ecology, and population biology. De Leenheer, Gouzé, Robledo, Smith-Waltman
Two-Species Chemostat Model

\[
\begin{align*}
\dot{S} &= (s_{\text{in}} - S)D(Y) - \mu_1(S) \frac{X_1}{G_1} - \mu_2(S) \frac{X_2}{G_2} \\
\dot{X}_i &= [\mu_i(S) - D(Y)] X_i, \ i = 1, 2 \\
Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3.
\end{align*}
\]

\(S\) = level of the substrate. \(X_i\) = concentration of species \(i\).
\(s_{\text{in}}\) = positive constants. \(D(Y)\) = dilution rate controller.
\(G_i\) = growth yield constants. \(\mu_i\) = uptake function.

- **Main Goal**: Design \(D\) to render an appropriate equilibrium \((s_*, x_{1*}, x_{2*}) \in (0, \infty)^3\) GAS under possibly nonmonotone uptake functions \(\mu_i\) when \(G_1 \neq G_2\).

- Bioengineering, microbial ecology, and population biology. De Leenheer, Gouzé, Robledo, Smith-Waltman,..
Two-Species Chemostat Model

\[\dot{S} = (s_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \]

\[\dot{X}_i = [\mu_i(S) - D(Y)]X_i, \ i = 1, 2 \]

(CM)

\[Y = X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3 . \]

\(S \) = level of the substrate. \(X_i \) = concentration of species \(i \).

\(s_{in} \) = positive constants. \(D(Y) \) = dilution rate controller.

\(G_i \) = growth yield constants. \(\mu_i \) = uptake function.

► **Main Goal**: Design \(D \) to render an appropriate equilibrium \((s_*, x_{1*}, x_{2*}) \in (0, \infty)^3 \) GAS under possibly nonmonotone uptake functions \(\mu_i \) when \(G_1 \neq G_2 \).

► Bioengineering, microbial ecology, and population biology. De Leenheer, Gouzé, Robledo, Smith-Waltman,..

► \(D \) cannot be constant if the \(\mu_i \)'s are monotone.
Case 1: $G_1 > G_2$

Since the assumptions on the μ_j's will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.
Case 1: $G_1 > G_2$

Since the assumptions on the μ_j’s will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Take the new variables $(s, x_1, x_2) = (S, X_1/G_1, X_2/G_2)$.
Case 1: $G_1 > G_2$

Since the assumptions on the μ_j’s will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Take the new variables $(s, x_1, x_2) = (S, X_1/G_1, X_2/G_2)$.

$$\dot{s} = (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2$$

$$\dot{x}_i = [\mu_i(s) - D(y)] x_i \quad i = 1, 2$$

$$y = x_1(t - \tau) + ax_2(t - \tau), \quad a = G_2/G_1 \in (0, 1)$$

(NV1)
Case 1: $G_1 > G_2$

Since the assumptions on the μ_i's will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Take the new variables $(s, x_1, x_2) = (S, X_1/G_1, X_2/G_2)$.

\[
\begin{align*}
\dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\
\dot{x}_i &= [\mu_i(s) - D(y)]x_i, \quad i = 1, 2 \quad (NV1) \\
y &= x_1(t - \tau) + ax_2(t - \tau), \quad a = G_2/G_1 \in (0, 1)
\end{align*}
\]

Goal:
Case 1: $G_1 > G_2$

Since the assumptions on the μ_j’s will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Take the new variables $(s, x_1, x_2) = (S, X_1/G_1, X_2/G_2)$.

\[
\begin{align*}
\dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\
\dot{x}_i &= [\mu_i(s) - D(y)]x_i, \quad i = 1, 2 \\
y &= x_1(t - \tau) + ax_2(t - \tau), \quad a = G_2/G_1 \in (0, 1)
\end{align*}
\]
(NV1)

Goal: Global asymptotic stabilization of a suitable equilibrium $(s_*, x_1*, x_2*) \in (0, \infty)^3$
Case 1: $G_1 > G_2$

Since the assumptions on the μ_i’s will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Take the new variables $(s, x_1, x_2) = (S, X_1/G_1, X_2/G_2)$.

\[\begin{align*}
\dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\
\dot{x}_i &= [\mu_i(s) - D(y)]x_i, \quad i = 1, 2 \\
y &= x_1(t - \tau) + ax_2(t - \tau), \quad a = G_2/G_1 \in (0, 1)
\end{align*} \]

Goal: Global asymptotic stabilization of a suitable equilibrium $(s_*, x_{1*}, x_{2*}) \in (0, \infty)^3$ under Haldane uptake functions

\[\mu_i(s) = \frac{K_i s}{L_i + s + g_i s^2} \]

(HG)
Case 1: $G_1 > G_2$

Since the assumptions on the μ_i’s will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Take the new variables $(s, x_1, x_2) = (S, X_1/G_1, X_2/G_2)$.

$$
\begin{align*}
\dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\
\dot{x}_i &= [\mu_i(s) - D(y)] x_i, \quad i = 1, 2 \\
y &= x_1(t - \tau) + ax_2(t - \tau), \quad a = G_2/G_1 \in (0, 1)
\end{align*}
$$

Goal: Global asymptotic stabilization of a suitable equilibrium $(s_*, x_{1*}, x_{2*}) \in (0, \infty)^3$ under Haldane uptake functions

$$
\mu_i(s) = \frac{K_i s}{L_i + s + g_i s^2}
$$

and uncertain constant delays τ.
Case 1: $G_1 > G_2$

Since the assumptions on the μ_i’s will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Take the new variables $(s, x_1, x_2) = (S, X_1/G_1, X_2/G_2)$.

\[
\begin{align*}
\dot{s} & = (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\
\dot{x}_i & = [\mu_i(s) - D(y)]x_i, \ i = 1, 2 \\
y & = x_1(t - \tau) + ax_2(t - \tau), \ a = G_2/G_1 \in (0, 1)
\end{align*}
\]
\hspace{1cm} (NV1)

Goal: Global asymptotic stabilization of a suitable equilibrium $(s_*, x_{1*}, x_{2*}) \in (0, \infty)^3$ under Haldane uptake functions

\[
\mu_i(s) = \frac{K_is}{L_i + s + g_is^2}
\]
\hspace{1cm} (HG)

and uncertain constant delays τ. $g_i \geq 0$ and $L_i, K_i > 0$ constants.
Assumptions for Case where $G_1 > G_2$
Assumptions for Case where $G_1 > G_2$

- There is a constant $s_\ast \in (0, s_{in})$ such that $\mu_1(s_\ast) = \mu_2(s_\ast)$.
Assumptions for Case where $G_1 > G_2$

- There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- The constants $\delta_i = L_i - g_i s_* s_{in}$ for $i = 1, 2$ are positive.
Assumptions for Case where $G_1 > G_2$

- There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- The constants $\delta_i = L_i - g_i s_* s_{in}$ for $i = 1, 2$ are positive.

\[
\kappa = \delta_1 \mu_1(s_*) \left[1 + \frac{1}{s_*} \sum_{i=1}^{2} \frac{\delta_i}{L_i + s_{in} + g_i s_{in}^2} x_{i*} \right] + K_2 s_* x_{2*} \frac{L_2 g_1 - L_1 g_2}{\delta_2} > 0
\]
Assumptions for Case where $G_1 > G_2$

- There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- The constants $\delta_i = L_i - g_is_*s_{in}$ for $i = 1, 2$ are positive.

\[
\eta = \delta_1 \mu_1(s_*) \left[1 + \frac{1}{s_*} \sum_{i=1}^{2} \frac{\delta_i}{L_i + s_{in} + g_is_{in}^2} x_i^* \right] \quad (SG)
\]
\[
+ K_2 s_* x_2^* \frac{L_2 g_1 - L_1 g_2}{\delta_2} > 0
\]
\[
\mathcal{U} = \frac{s_*}{(1-a)\mu_1(s_*)} \left[-K_1 + \frac{L_1 - g_1 s_*^2}{L_2 - g_1 s_*^2} K_2 \right] \neq 0 \quad (SC)
\]
Assumptions for Case where $G_1 > G_2$

- There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- The constants $\delta_i = L_i - g_i s_* s_{in}$ for $i = 1, 2$ are positive.

\[\mathcal{N} = \delta_1 \mu_1(s_*) \left[1 + \frac{1}{s_*} \sum_{i=1}^{2} \frac{\delta_i}{L_i + s_{in} + g_i s_{in}^2} x_{i*} \right] \]

\[+ K_2 s_* x_{2*} \frac{L_2 g_1 - L_1 g_2}{\delta_2} > 0 \]

\[\mathcal{U} = \frac{s_*}{(1-a) \mu_1(s_*)} \left[-K_1 + \frac{L_1 - g_1 s_*^2}{L_2 - g_2 s_*^2} K_2 \right] \neq 0 \]

- $\min\{\mu_1(s_{in}), \mu_2(s_{in})\} > \mu_1(s_*)$
Assumptions for Case where $G_1 > G_2$

- There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- The constants $\delta_i = L_i - g_i s_* s_{in}$ for $i = 1, 2$ are positive.

$$
\kappa = \delta_1 \mu_1(s_*) \left[1 + \frac{1}{s_*} \sum_{i=1}^{2} \frac{\delta_i}{L_i + s_{in} + g_i s_{in}^2} \right] \quad \text{(SG)}
$$

$$
+ K_2 s_* x_2^* \frac{L_2 g_1 - L_1 g_2}{\delta_2} > 0
$$

$$
\bar{\delta} = \frac{s_*}{(1-a)\mu_1(s_*)} \left[-K_1 + \frac{L_1 - g_1 s_*^2}{L_2 - g_2 s_*^2} K_2 \right] \neq 0 \quad \text{(SC)}
$$

- $\min\{\mu_1(s_{in}), \mu_2(s_{in})\} > \mu_1(s_*)$, and $L_2 g_1 - L_1 g_2 \leq 0$.
Assumptions for Case where $G_1 > G_2$

- There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- The constants $\delta_i = L_i - g_i s_* s_{in}$ for $i = 1, 2$ are positive.

$$
\Upsilon = \delta_1 \mu_1(s_*) \left[1 + \frac{1}{s_*} \sum_{i=1}^{2} \frac{\delta_i}{L_i + s_{in} + g_i s_{in}^2} x_i^* \right] \quad \text{(SG)}
$$

$$
+ K_2 s_* x_2^* \frac{L_2 g_1 - L_1 g_2}{\delta_2} > 0
$$

$$
\Upsilon = \frac{s_*}{(1-a) \mu_1(s_*)} \left[-K_1 + \frac{L_1 - g_1 s_*^2}{L_2 - g_2 s_*^2} K_2 \right] \neq 0 \quad \text{(SC)}
$$

- $\min \{ \mu_1(s_{in}), \mu_2(s_{in}) \} > \mu_1(s_*)$, and $L_2 g_1 - L_1 g_2 \leq 0$.
- There is a known constant $\tau_M > 0$ so that $0 \leq \tau \leq \tau_M$.
Assumptions for Case where $G_1 > G_2$

- There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- The constants $\delta_i = L_i - g_is_*s_{in}$ for $i = 1, 2$ are positive.

$$\nabla = \delta_1 \mu_1(s_*) \left[1 + \frac{1}{s_*} \sum_{i=1}^{2} \frac{\delta_i}{L_i s_{in} + g_i s^2_{in}} x_{i*} \right]$$ \hfill (SG)

$$+ K_2 s_* x_{2*} \frac{L_2 g_1 - L_1 g_2}{\delta_2} > 0$$

$$\bar{\omega} = \frac{s_*}{(1-a)\mu_1(s_*)} \left[-K_1 + \frac{L_1 - g_1 s^2_*}{L_2 - g_2 s^2_*} K_2 \right] \neq 0$$ \hfill (SC)

- $\min\{\mu_1(s_{in}), \mu_2(s_{in})\} > \mu_1(s_*)$, and $L_2 g_1 - L_1 g_2 \leq 0$.
- There is a known constant $\tau_M > 0$ so that $0 \leq \tau \leq \tau_M$. $x_{1*}, x_{2*} > 0$ are any constants such that $s_* + x_{1*} + x_{2*} = s_{in}$.
Haldane Growth Functions

Uptake

Substrate
Haldane Growth Functions

\[(K_1, L_1, g_1) = (6, 8, 0.12) \text{ and } (K_2, L_2, g_2) = (2, 1, 0.04) \]
Main Result for Case where $G_1 > G_2$
Main Result for Case where $G_1 > G_2$

We can compute constants $\bar{\epsilon}_i$ depending on τ_M so that for any constants $\epsilon_i \in (0, \bar{\epsilon}_i)$ for $i = 1, 2$ such that $\epsilon_1 \epsilon_2 \leq \bar{\epsilon}_3$, the control

$$D = \mu_1(s_*) - \text{sign}(\mathcal{U}) \epsilon_1 \sigma(\epsilon_2\{x_1(t-\tau) + ax_2(t-\tau) - x_1^* - ax_2^*\})$$

globally asymptotically stabilizes (s^*, x_1^*, x_2^*) for all initializations $(\phi_s, \phi_{x_1}, \phi_{x_2}) \in C([-2\tau_M, 0], (0, \infty)^3)$.
Main Result for Case where $G_1 > G_2$

We can compute constants $\bar{\varepsilon}_i$ depending on τ_M so that for any constants $\varepsilon_i \in (0, \bar{\varepsilon}_i)$ for $i = 1, 2$ such that $\varepsilon_1 \varepsilon_2 \leq \bar{\varepsilon}_3$, the control

$$D = \mu_1(s_*) - \text{sign}(U) \varepsilon_1 \sigma(\varepsilon_2 \{ x_1(t-\tau) + ax_2(t-\tau) - x_1* - ax_2* \})$$

globally asymptotically stabilizes (s_*, x_1*, x_2*) for all initializations $(\phi_s, \phi_{x_1}, \phi_{x_2}) \in C([-2\tau_M, 0], (0, \infty)^3)$. $\sigma = \text{standard saturation}$.
Main Result for Case where $G_1 > G_2$

We can compute constants $\bar{\varepsilon}_i$ depending on τ_M so that for any constants $\varepsilon_i \in (0, \bar{\varepsilon}_i)$ for $i = 1, 2$ such that $\varepsilon_1 \varepsilon_2 \leq \bar{\varepsilon}_3$, the control

$$D = \mu_1(s_*) - \text{sign}(\mathcal{U})\varepsilon_1 \sigma(\varepsilon_2 \{x_1(t-\tau) + ax_2(t-\tau) - x_1^* - ax_2^*\})$$

globally asymptotically stabilizes (s_*, x_1^*, x_2^*) for all initializations $(\phi_s, \phi_{x_1}, \phi_{x_2}) \in C([-2\tau_M, 0], (0, \infty)^3)$. $\sigma = \text{standard saturation}$.

- Standard Poincaré-Bendixson and Lyapunov function methods do not apply under delays.
Main Result for Case where $G_1 > G_2$

We can compute constants $\bar{\varepsilon}_i$ depending on τ_M so that for any constants $\varepsilon_i \in (0, \bar{\varepsilon}_i)$ for $i = 1, 2$ such that $\varepsilon_1 \varepsilon_2 \leq \bar{\varepsilon}_3$, the control

$$D = \mu_1(s_*) - \text{sign}(\bar{U})\varepsilon_1 \sigma(\varepsilon_2\{x_1(t-\tau) + ax_2(t-\tau) - x_1 - ax_2\})$$

globally asymptotically stabilizes (s_*, x_1, x_2) for all initializations $(\phi_s, \phi_{x_1}, \phi_{x_2}) \in C([-2\tau_M, 0], (0, \infty)^3)$. $\sigma = \text{standard saturation}$.

- Standard Poincaré-Bendixson and Lyapunov function methods do not apply under delays. Instead, the proof constructs a Lyapunov-Krasovskii functional U_1.
Main Result for Case where $G_1 > G_2$

We can compute constants $\bar{\varepsilon}_i$ depending on τ_M so that for any constants $\varepsilon_i \in (0, \bar{\varepsilon}_i)$ for $i = 1, 2$ such that $\varepsilon_1 \varepsilon_2 \leq \bar{\varepsilon}_3$, the control

$$D = \mu_1(s_*) - \text{sign}(\bar{U}) \varepsilon_1 \sigma \{ \varepsilon_2 \{ x_1(t-\tau) + ax_2(t-\tau) - x_1* - ax_2* \} \}$$

globally asymptotically stabilizes (s_*, x_1*, x_2*) for all initializations $(\phi_s, \phi_{x_1}, \phi_{x_2}) \in C([-2\tau_M, 0], (0, \infty)^3)$. $\sigma = \text{standard saturation}$.

- Standard Poincaré-Bendixson and Lyapunov function methods do not apply under delays. Instead, the proof constructs a Lyapunov-Krasovskii functional U_1.

- At each time t, U_1 depends on the history of the error variable $(\tilde{s}, \tilde{x}) = (s - s_*, x - x_*)$ over $[t - 2\tau_M, t]$.
Main Result for Case where $G_1 > G_2$

We can compute constants $\bar{\varepsilon}_i$ depending on τ_M so that for any constants $\varepsilon_i \in (0, \bar{\varepsilon}_i)$ for $i = 1, 2$ such that $\varepsilon_1 \varepsilon_2 \leq \bar{\varepsilon}_3$, the control

$$D = \mu_1(s_\star) - \text{sign}(\tilde{U})\varepsilon_1 \sigma(\varepsilon_2 \{x_1(t-\tau) + ax_2(t-\tau) - x_1^* - ax_2^*\})$$

globally asymptotically stabilizes (s_\star, x_1^*, x_2^*) for all initializations $(\phi_s, \phi_{x_1}, \phi_{x_2}) \in C([-2\tau_M, 0], (0, \infty)^3)$. $\sigma = \text{standard saturation}$.

- Standard Poincaré-Bendixson and Lyapunov function methods do not apply under delays. Instead, the proof constructs a Lyapunov-Krasovskii functional U_1.
- At each time t, U_1 depends on the history of the error variable $(\tilde{s}, \tilde{x}) = (s - s_\star, x - x_\star)$ over $[t - 2\tau_M, t]$.
- Along the error dynamics, \dot{U}_1 is negative definite:
Main Result for Case where $G_1 > G_2$

We can compute constants $\bar{\varepsilon}_i$ depending on τ_M so that for any constants $\varepsilon_i \in (0, \bar{\varepsilon}_i)$ for $i = 1, 2$ such that $\varepsilon_1 \varepsilon_2 \leq \bar{\varepsilon}_3$, the control

$$D = \mu_1(s_*) - \text{sign}(\mathcal{U}) \varepsilon_1 \sigma(\varepsilon_2 \{ x_1(t-\tau) + ax_2(t-\tau) - x_1* - ax_2* \})$$

globally asymptotically stabilizes (s_*, x_1*, x_2*) for all initializations $(\phi_s, \phi_{x_1}, \phi_{x_2}) \in C([-2\tau_M, 0], (0, \infty)^3)$. $\sigma = \text{standard saturation}$.

- Standard Poincaré-Bendixson and Lyapunov function methods do not apply under delays. Instead, the proof constructs a Lyapunov-Krasovskii functional U_1.

- At each time t, U_1 depends on the history of the error variable $(\tilde{s}, \tilde{x}) = (s - s_*, x - x_*)$ over $[t - 2\tau_M, t]$.

- Along the error dynamics, \dot{U}_1 is negative definite:

$$\dot{U}_1 \leq -(\tilde{s} + \tilde{x}_1 + \tilde{x}_2)^2 - \frac{5}{6} \frac{\tilde{s}^2}{s} - \frac{\varepsilon_1 \varepsilon_2 |\mathcal{U}|}{8} (\tilde{x}_1 + a\tilde{x}_2)^2, \quad t \geq \tau .$$
Case 2: $G_1 < G_2$

The analysis from Case 1 does not apply in this situation.
Case 2: $G_1 < G_2$

The analysis from Case 1 does not apply in this situation. Instead, we use a feedback that *decreases* in the output.
Case 2: $G_1 < G_2$

The analysis from Case 1 does not apply in this situation. Instead, we use a feedback that decreases in the output. Feedbacks of this kind were used by Gouzé-Robledo and Keeran et al to stabilize periodic orbits or boxes.
Case 2: $G_1 < G_2$

The analysis from Case 1 does not apply in this situation. Instead, we use a feedback that decreases in the output. Feedbacks of this kind were used by Gouzé-Robledo and Keeran et al to stabilize periodic orbits or boxes.

\[
\begin{align*}
\dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\
\dot{x}_i &= [\mu_i(s) - D(y)]x_i, \quad i = 1, 2 \\
y &= x_1 + ax_2, \quad a = \frac{G_2}{G_1} > 1
\end{align*}
\]

(NV2)
Case 2: $G_1 < G_2$

The analysis from Case 1 does not apply in this situation.
Instead, we use a feedback that decreases in the output. Feedbacks of this kind were used by Gouzé-Robledo and Keeran et al to stabilize periodic orbits or boxes.

$$
\begin{align*}
\dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\
\dot{x}_i &= [\mu_i(s) - D(y)]x_i, \quad i = 1, 2 \\
y &= x_1 + ax_2, \quad a = G_2/G_1 > 1
\end{align*}
$$

New Assumption:
Case 2: $G_1 < G_2$

The analysis from Case 1 does not apply in this situation. Instead, we use a feedback that decreases in the output. Feedbacks of this kind were used by Gouzé-Robledo and Keeran et al to stabilize periodic orbits or boxes.

\[
\begin{align*}
\dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\
\dot{x}_i &= [\mu_i(s) - D(y)]x_i, \quad i = 1, 2 \\
y &= x_1 + ax_2, \quad a = \frac{G_2}{G_1} > 1
\end{align*}
\]

(NV2)

New Assumption: The μ_i’s are asymmetric, as follows:
Case 2: $G_1 < G_2$

The analysis from Case 1 does not apply in this situation. Instead, we use a feedback that decreases in the output. Feedbacks of this kind were used by Gouzé-Robledo and Keeran et al to stabilize periodic orbits or boxes.

\[
\begin{align*}
\dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\
\dot{x}_i &= [\mu_i(s) - D(y)]x_i, \ i = 1, 2 \\
y &= x_1 + ax_2, \ a = \frac{G_2}{G_1} > 1
\end{align*}
\]

(NewV2)

New Assumption: The μ_i's are asymmetric, as follows: The μ_i's are zero at $s = 0$ and C^1, and $\mu_i'(s) > 0$ for $i = 1, 2$ and all $s \geq 0$.
Case 2: $G_1 < G_2$

The analysis from Case 1 does not apply in this situation. Instead, we use a feedback that *decreases* in the output. Feedbacks of this kind were used by Gouzé-Robledo and Keeran et al to stabilize periodic orbits or boxes.

\[
\dot{s} = (s_{\text{in}} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\
\dot{x}_i = [\mu_i(s) - D(y)]x_i, \ i = 1, 2 \\
y = x_1 + ax_2, \ a = \frac{G_2}{G_1} > 1 \tag{NV2}
\]

New Assumption: The μ_i's are asymmetric, as follows: The μ_i's are zero at $s = 0$ and C^1, and $\mu_i'(s) > 0$ for $i = 1, 2$ and all $s \geq 0$. There is a constant $s_* \in (0, s_{\text{in}})$ so that $\mu_1(s) > \mu_2(s)$ on $(0, s_*)$ and $\mu_1(s) < \mu_2(s)$ on (s_*, s_{in}).
Case 2: $G_1 < G_2$

The analysis from Case 1 does not apply in this situation. Instead, we use a feedback that decreases in the output.

Feedbacks of this kind were used by Gouzé-Robledo and Keeran et al to stabilize periodic orbits or boxes.

\[
\begin{align*}
\dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\
\dot{x}_i &= [\mu_i(s) - D(y)]x_i, \ i = 1, 2 \\
y &= x_1 + ax_2, \ a = \frac{G_2}{G_1} > 1
\end{align*}
\]

(NV2)

New Assumption: The μ_i’s are asymmetric, as follows:

The μ_i’s are zero at $s = 0$ and C^1, and $\mu_i'(s) > 0$ for $i = 1, 2$ and all $s \geq 0$. There is a constant $s_* \in (0, s_{in})$ so that $\mu_1(s) > \mu_2(s)$ on $(0, s_*)$ and $\mu_1(s) < \mu_2(s)$ on (s_*, s_{in}). Also, $\mu_1'(s_*) < \mu_2'(s_*)$.

Main Result for Case where $G_1 < G_2$
Main Result for Case where $G_1 < G_2$

Fix any constants $x_{i*} > 0$ such that $x_{1*} + x_{2*} = s_{in} - s_*$.
Main Result for Case where $G_1 < G_2$

Fix any constants $x_{i^*} > 0$ such that $x_{1^*} + x_{2^*} = s_{\text{in}} - s_*$.

$$K_0 = \min \left\{ \frac{\mu_1(s_{\text{in}}) - \mu_1(s_*)}{(a+1)x_{1^*} + 2ax_{2^*}}, \frac{\mu_1(s_*)}{4(a+1)s_{\text{in}}}, \frac{1}{a} \min \left\{ \mu_i'(s) : s \in [0, s_{\text{in}}], i = 1, 2 \right\} \right\}$$
Main Result for Case where $G_1 < G_2$

Fix any constants $x_{i*} > 0$ such that $x_{1*} + x_{2*} = s_{in} - s_*$.

$$K_0 = \min \left\{ \frac{\mu_1(s_{in}) - \mu_1(s_*)}{(a+1)x_{1*} + 2ax_{2*}}, \frac{\mu_1(s_*)}{4(a+1)s_{in}}, \frac{1}{a} \min \left\{ \mu_i'(s) : s \in [0, s_{in}], i = 1, 2 \right\} \right\}$$

Let $\sigma : \mathbb{R} \to [-1, 1]$ denote the usual saturation.
Main Result for Case where $G_1 < G_2$

Fix any constants $x_{i*} > 0$ such that $x_{1*} + x_{2*} = s_{in} - s_*$.

$$K_0 = \min \left\{ \frac{\mu_1(s_{in}) - \mu_1(s_*)}{(a+1)x_{1*} + 2ax_{2*}}, \frac{\mu_1(s_*)}{4(a+1)s_{in}}, \frac{1}{a} \min \left\{ \mu_i'(s) : s \in [0, s_{in}], i = 1, 2 \right\} \right\}$$

Let $\sigma : \mathbb{R} \rightarrow [-1, 1]$ denote the usual saturation.

Theorem: For each constant $K \in (0, K_0)$ and each constant $a > 1$,

Main Result for Case where $G_1 < G_2$

Fix any constants $x_{i*} > 0$ such that $x_{1*} + x_{2*} = s_{in} - s_*$.

$$K_0 = \min \left\{ \frac{\mu_1(s_{in}) - \mu_1(s_*)}{(a+1)x_{1*} + 2ax_{2*}}, \frac{\mu_1(s_*)}{4(a+1)s_{in}}, \frac{1}{a} \min \{ \mu_i'(s) : s \in [0, s_{in}], i = 1, 2 \} \right\}$$

Let $\sigma : \mathbb{R} \to [-1, 1]$ denote the usual saturation.

Theorem: For each constant $K \in (0, K_0)$ and each constant $a > 1$, (NV2) in closed loop with the bounded positive controller

$$D(y) = \mu_1(s_*) - 2(1 + a)s_{in}K\sigma \left(\frac{1}{2(1+a)s_{in}} [y - x_{1*} - ax_{2*}] \right)$$

is GAS to the equilibrium (s_*, x_{1*}, x_{2*}) on $(0, \infty)^3$.
Main Result for Case where $G_1 < G_2$

Fix any constants $x_{i*} > 0$ such that $x_{1*} + x_{2*} = s_{in} - s_*$.

$$K_0 = \min \left\{ \frac{\mu_1(s_{in}) - \mu_1(s_*)}{(a+1)x_{1*} + 2ax_{2*}}, \frac{\mu_1(s_*)}{4(a+1)s_{in}}, \frac{1}{a} \min \{ \mu_i'(s) : s \in [0, s_{in}], i = 1, 2 \} \right\}$$

Let $\sigma : \mathbb{R} \rightarrow [-1, 1]$ denote the usual saturation.

Theorem: For each constant $K \in (0, K_0)$ and each constant $a > 1$, (NV2) in closed loop with the bounded positive controller

$$D(y) = \mu_1(s_*) - 2(1 + a)s_{in}K\sigma \left(\frac{1}{2(1+a)s_{in}}[y - x_{1*} - ax_{2*}] \right)$$

(C) is GAS to the equilibrium (s_*, x_{1*}, x_{2*}) on $(0, \infty)^3$.

Proof:
Main Result for Case where $G_1 < G_2$

Fix any constants $x_{i*} > 0$ such that $x_{1*} + x_{2*} = s_{in} - s_*$.

$$K_0 = \min \left\{ \frac{\mu_1(s_{in})-\mu_1(s_*)}{(a+1)x_{1*}+2ax_{2*}}, \frac{\mu_1(s_*)}{4(a+1)s_{in}}, \frac{1}{a} \min \{ \mu_i'(s) : s \in [0, s_{in}], i = 1, 2 \} \right\}$$

Let $\sigma : \mathbb{R} \rightarrow [-1, 1]$ denote the usual saturation.

Theorem: For each constant $K \in (0, K_0)$ and each constant $a > 1$, (NV2) in closed loop with the bounded positive controller

$$D(y) = \mu_1(s_*) - 2(1 + a)s_{in}K\sigma\left(\frac{1}{2(1+a)s_{in}}[y - x_{1*} - ax_{2*}]\right) \quad \text{(C)}$$

is GAS to the equilibrium (s_*, x_{1*}, x_{2*}) on $(0, \infty)^3$.

Proof: Use Poincaré-Bendixson Theorem and dimension reduction to a manifold where $s + x_1 + x_2 = s_{in}$.
Main Result for Case where $G_1 < G_2$

Fix any constants $x_{i*} > 0$ such that $x_{1*} + x_{2*} = s_{in} - s_*$.

$$K_0 = \min \left\{ \frac{\mu_1(s_{in}) - \mu_1(s_*)}{(a+1)x_{1*} + 2ax_{2*}}, \frac{\mu_1(s_*)}{4(a+1)s_{in}}, \frac{1}{a} \min \{ \mu_i'(s) : s \in [0, s_{in}], i = 1, 2 \} \right\}$$

Let $\sigma : \mathbb{R} \to [-1, 1]$ denote the usual saturation.

Theorem: For each constant $K \in (0, K_0)$ and each constant $a > 1$, (NV2) in closed loop with the bounded positive controller

$$D(y) = \mu_1(s_*) - 2(1 + a)s_{in}K\sigma \left(\frac{1}{2(1+a)s_{in}}[y - x_{1*} - ax_{2*}] \right)$$

is GAS to the equilibrium (s_*, x_{1*}, x_{2*}) on $(0, \infty)^3$.

Proof: Use Poincaré-Bendixson Theorem and dimension reduction to a manifold where $s + x_1 + x_2 = s_{in}$.

The case $a = 1$ would give a nonisolated equilibrium.
Robustness Corollary for Case where $G_1 \prec G_2$
Robustness Corollary for Case where $G_1 < G_2$

Suppose we compute $D(y)$ from (C) using a pair of μ_i’s, but the actual uptake functions are some other functions ν_j that satisfy:
Robustness Corollary for Case where $G_1 < G_2$

Suppose we compute $D(y)$ from (C) using a pair of μ_i’s, but the actual uptake functions are some other functions ν_i that satisfy:

Assumption:
Robustness Corollary for Case where $G_1 < G_2$

Suppose we compute $D(y)$ from (C) using a pair of μ_i’s, but the actual uptake functions are some other functions ν_i that satisfy:

Assumption: (a) The ν_i’s are 0 at 0 and C^1,

Robustness Corollary for Case where $G_1 < G_2$

Suppose we compute $D(y)$ from (C) using a pair of μ_i's, but the actual uptake functions are some other functions ν_i that satisfy:

Assumption: (a) The ν_i's are 0 at 0 and C^1, (b) $\nu_i'(s) > 0$ for $i = 1, 2$ and all $s \geq 0$,
Robustness Corollary for Case where $G_1 < G_2$

Suppose we compute $D(y)$ from (C) using a pair of μ_i's, but the actual uptake functions are some other functions ν_i that satisfy:

Assumption: (a) The ν_i's are 0 at 0 and C^1, (b) $\nu_i'(s) > 0$ for $i = 1, 2$ and all $s \geq 0$, (c) there is a constant $s_v \in (0, s_{in})$ so that $\nu_1(s) > \nu_2(s)$ on $(0, s_v)$ and $\nu_1(s) < \nu_2(s)$ on (s_v, s_{in})
Robustness Corollary for Case where $G_1 < G_2$

Suppose we compute $D(y)$ from (C) using a pair of μ_i’s, but the actual uptake functions are some other functions ν_i that satisfy:

Assumption: (a) The ν_i’s are 0 at 0 and C^1, (b) $\nu_i'(s) > 0$ for $i = 1, 2$ and all $s \geq 0$, (c) there is a constant $s_v \in (0, s_{in})$ so that $\nu_1(s) > \nu_2(s)$ on $(0, s_v)$ and $\nu_1(s) < \nu_2(s)$ on (s_v, s_{in}), and (d) $\nu_1'(s_v) < \nu_2'(s_v)$.
Robustness Corollary for Case where $G_1 < G_2$

Suppose we compute $D(y)$ from (C) using a pair of μ_i’s, but the actual uptake functions are some other functions ν_i that satisfy:

Assumption: (a) The ν_i’s are 0 at 0 and C^1, (b) $\nu_i'(s) > 0$ for $i = 1, 2$ and all $s \geq 0$, (c) there is a constant $s_v \in (0, s_{in})$ so that $\nu_1(s) > \nu_2(s)$ on $(0, s_v)$ and $\nu_1(s) < \nu_2(s)$ on (s_v, s_{in}), and (d) $\nu_1'(s_v) < \nu_2'(s_v)$.

Corollary: We can choose K and a constant $\varepsilon > 0$ such that if $T(\mu, \nu) = \max\{|\mu_i'(s) - \nu_i'(s)| : i = 1, 2; s \in [0, s_{in}]\} < \varepsilon$, then

$$\begin{cases} \dot{s} &= D(y)[s_{in} - s] - \nu_1(s)x_1 - \nu_2(s)x_2 \\ \dot{x}_i &= [\nu_i(s) - D(y)]x_i, \ i = 1, 2 \end{cases} \quad (RC)$$

is GAS to some point $(s_v, x_{1v}, x_{2v}) \in (0, \infty)^3$.
Conclusions
Conclusions

- We achieved output feedback GAS of componentwise positive equilibria using only the sum of the species levels.
Conclusions

- We achieved output feedback GAS of componentwise positive equilibria using only the sum of the species levels.
- Competitive exclusion required us to use a nonconstant controller to get permanence of both species.
Conclusions

- We achieved output feedback GAS of componentwise positive equilibria using only the sum of the species levels.
- Competitive exclusion required us to use a nonconstant controller to get permanence of both species.
- We dropped the usual assumption on the relative sizes of the growth yields G_i.
Conclusions

- We achieved output feedback GAS of componentwise positive equilibria using only the sum of the species levels.
- Competitive exclusion required us to use a nonconstant controller to get permanence of both species.
- We dropped the usual assumption on the relative sizes of the growth yields G_i.
- When $G_1 < G_2$, we can allow uncertain monotone uptake functions μ_i that are not necessary concave.
Conclusions

- We achieved output feedback GAS of componentwise positive equilibria using only the sum of the species levels.

- Competitive exclusion required us to use a nonconstant controller to get permanence of both species.

- We dropped the usual assumption on the relative sizes of the growth yields G_i.

- When $G_1 < G_2$, we can allow uncertain monotone uptake functions μ_i that are not necessary concave.

- When $G_1 > G_2$, we can cover time delays, nonmonotone uptake functions, and robustness to actuator errors.
Conclusions

- We achieved output feedback GAS of componentwise positive equilibria using only the sum of the species levels.
- Competitive exclusion required us to use a nonconstant controller to get permanence of both species.
- We dropped the usual assumption on the relative sizes of the growth yields G_i.
- When $G_1 < G_2$, we can allow uncertain monotone uptake functions μ_i that are not necessary concave.
- When $G_1 > G_2$, we can cover time delays, nonmonotone uptake functions, and robustness to actuator errors.
- Desirable extensions would allow more than two species, or multiple limiting substrates.