Recent Results on Control Problems for Chemostats

Michael Malisoff, Louisiana State University Joint work with Frédéric Mazenc from INRIA Published in *Automatica* in 2010 Sponsored by NSF/DMS Grant 0708084

SIAM Minisymposium on Applications of Difference and Differential Equations in Ecology and Epidemiology 2011 Joint Meetings, New Orleans

Bioreactor.

Bioreactor. Fresh medium continuously added.

Bioreactor. Fresh medium continuously added. Culture liquid continuously removed.

Bioreactor. Fresh medium continuously added. Culture liquid continuously removed. Culture volume constant.

$$\begin{split} \dot{S} &= (s_{in} - S) D(Y) - \mu_1(S) \frac{X_1}{G_1} - \mu_2(S) \frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)] X_i, \ i = 1, 2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \end{split}$$

$$\begin{aligned} \dot{S} &= (S_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \end{aligned}$$
(CM)

S = level of the substrate.

$$\begin{split} \dot{S} &= (S_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0,\infty)^3. \end{split}$$
(CM)

S = level of the substrate. X_i = concentration of species *i*.

$$\begin{split} \dot{S} &= (S_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0,\infty)^3. \end{split}$$
(CM)

S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants.

$$\begin{aligned} \dot{S} &= (S_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0,\infty)^3. \end{aligned}$$
(CM)

S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants. D(Y) = dilution rate controller.

$$\begin{aligned} \dot{S} &= (S_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \quad (S, X_1, X_2) \in (0,\infty)^3. \end{aligned}$$
(CM)

S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants. D(Y) = dilution rate controller. G_i = growth yield constants.

$$\begin{aligned} \dot{S} &= (S_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0,\infty)^3. \end{aligned}$$
(CM)

S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants. D(Y) = dilution rate controller. G_i = growth yield constants. μ_i = uptake function.

$$\begin{aligned} \dot{S} &= (S_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \end{aligned}$$
(CM)

- S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants. D(Y) = dilution rate controller. G_i = growth yield constants. μ_i = uptake function.
 - Main Goal:

$$\begin{aligned} \dot{S} &= (s_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \end{aligned}$$
(CM)

- S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants. D(Y) = dilution rate controller. G_i = growth yield constants. μ_i = uptake function.
 - ▶ Main Goal: Design *D* to render an appropriate equilibrium $(s_*, x_{1*}, x_{2*}) \in (0, \infty)^3$ GAS

$$\begin{aligned} \dot{S} &= (S_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \end{aligned}$$
(CM)

- S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants. D(Y) = dilution rate controller. G_i = growth yield constants. μ_i = uptake function.
 - Main Goal: Design D to render an appropriate equilibrium (s_∗, x_{1∗}, x_{2∗}) ∈ (0,∞)³ GAS under possibly nonmonotone uptake functions μ_i

$$\begin{aligned} \dot{S} &= (S_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \end{aligned}$$
(CM)

- S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants. D(Y) = dilution rate controller. G_i = growth yield constants. μ_i = uptake function.
 - Main Goal: Design *D* to render an appropriate equilibrium (*s*_{*}, *x*_{1*}, *x*_{2*}) ∈ (0, ∞)³ GAS under possibly nonmonotone uptake functions µ_i when G₁ ≠ G₂.

$$\begin{aligned} \dot{S} &= (s_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \end{aligned}$$
(CM)

- S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants. D(Y) = dilution rate controller. G_i = growth yield constants. μ_i = uptake function.
 - Main Goal: Design D to render an appropriate equilibrium (s_{*}, x_{1*}, x_{2*}) ∈ (0, ∞)³ GAS under possibly nonmonotone uptake functions µ_i when G₁ ≠ G₂.
 - Bioengineering, microbial ecology, and population biology.

$$\begin{aligned} \dot{S} &= (s_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \end{aligned}$$
(CM)

- S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants. D(Y) = dilution rate controller. G_i = growth yield constants. μ_i = uptake function.
 - Main Goal: Design *D* to render an appropriate equilibrium (s_{*}, x_{1*}, x_{2*}) ∈ (0,∞)³ GAS under possibly nonmonotone uptake functions µ_i when G₁ ≠ G₂.
 - Bioengineering, microbial ecology, and population biology. De Leenheer

$$\begin{aligned} \dot{S} &= (S_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \end{aligned}$$
(CM)

- S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants. D(Y) = dilution rate controller. G_i = growth yield constants. μ_i = uptake function.
 - Main Goal: Design D to render an appropriate equilibrium (s_{*}, x_{1*}, x_{2*}) ∈ (0, ∞)³ GAS under possibly nonmonotone uptake functions µ_i when G₁ ≠ G₂.
 - Bioengineering, microbial ecology, and population biology. De Leenheer, Gouzé

$$\begin{aligned} \dot{S} &= (S_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \end{aligned}$$
(CM)

- S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants. D(Y) = dilution rate controller. G_i = growth yield constants. μ_i = uptake function.
 - Main Goal: Design *D* to render an appropriate equilibrium (s_∗, x_{1∗}, x_{2∗}) ∈ (0,∞)³ GAS under possibly nonmonotone uptake functions µ_i when G₁ ≠ G₂.
 - Bioengineering, microbial ecology, and population biology.
 De Leenheer, Gouzé, Robledo

$$\begin{aligned} \dot{S} &= (S_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \end{aligned}$$
(CM)

- S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants. D(Y) = dilution rate controller. G_i = growth yield constants. μ_i = uptake function.
 - Main Goal: Design *D* to render an appropriate equilibrium (s_∗, x_{1∗}, x_{2∗}) ∈ (0,∞)³ GAS under possibly nonmonotone uptake functions µ_i when G₁ ≠ G₂.
 - Bioengineering, microbial ecology, and population biology.
 De Leenheer, Gouzé, Robledo, Smith-Waltman

$$\begin{aligned} \dot{S} &= (S_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \end{aligned}$$
(CM)

- S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants. D(Y) = dilution rate controller. G_i = growth yield constants. μ_i = uptake function.
 - Main Goal: Design *D* to render an appropriate equilibrium (s_{*}, x_{1*}, x_{2*}) ∈ (0,∞)³ GAS under possibly nonmonotone uptake functions µ_i when G₁ ≠ G₂.
 - Bioengineering, microbial ecology, and population biology.
 De Leenheer, Gouzé, Robledo, Smith-Waltman,..

$$\begin{aligned} \dot{S} &= (S_{in} - S)D(Y) - \mu_1(S)\frac{X_1}{G_1} - \mu_2(S)\frac{X_2}{G_2} \\ \dot{X}_i &= [\mu_i(S) - D(Y)]X_i, \ i = 1,2 \\ Y &= X_1 + X_2, \ (S, X_1, X_2) \in (0, \infty)^3. \end{aligned}$$
(CM)

- S = level of the substrate. X_i = concentration of species *i*. s_{in} = positive constants. D(Y) = dilution rate controller. G_i = growth yield constants. μ_i = uptake function.
 - Main Goal: Design *D* to render an appropriate equilibrium (s_∗, x_{1∗}, x_{2∗}) ∈ (0,∞)³ GAS under possibly nonmonotone uptake functions µ_i when G₁ ≠ G₂.
 - Bioengineering, microbial ecology, and population biology.
 De Leenheer, Gouzé, Robledo, Smith-Waltman,...
 - *D* cannot be constant if the μ_i 's are monotone.

Since the assumptions on the μ_i 's will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Since the assumptions on the μ_i 's will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Take the new variables $(s, x_1, x_2) = (S, X_1/G_1, X_2/G_2)$.

Since the assumptions on the μ_i 's will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Take the new variables $(s, x_1, x_2) = (S, X_1/G_1, X_2/G_2)$.

$$\begin{aligned} \dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\ \dot{x}_i &= [\mu_i(s) - D(y)]x_i, \ i = 1,2 \\ y &= x_1(t - \tau) + ax_2(t - \tau), \ a = G_2/G_1 \in (0,1) \end{aligned}$$
(NV1)

Since the assumptions on the μ_i 's will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Take the new variables $(s, x_1, x_2) = (S, X_1/G_1, X_2/G_2)$.

$$\begin{aligned} \dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\ \dot{x}_i &= [\mu_i(s) - D(y)]x_i, \ i = 1,2 \\ y &= x_1(t - \tau) + ax_2(t - \tau), \ a = G_2/G_1 \in (0,1) \end{aligned}$$
(NV1)

Goal:

Since the assumptions on the μ_i 's will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Take the new variables $(s, x_1, x_2) = (S, X_1/G_1, X_2/G_2)$.

$$\begin{aligned} \dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\ \dot{x}_i &= [\mu_i(s) - D(y)]x_i, \ i = 1,2 \\ y &= x_1(t - \tau) + ax_2(t - \tau), \ a = G_2/G_1 \in (0,1) \end{aligned}$$
(NV1)

Goal: Global asymptotic stabilization of a suitable equilibrium $(s_*, x_{1*}, x_{2*}) \in (0, \infty)^3$

Since the assumptions on the μ_i 's will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Take the new variables $(s, x_1, x_2) = (S, X_1/G_1, X_2/G_2)$.

$$\begin{aligned} \dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\ \dot{x}_i &= [\mu_i(s) - D(y)]x_i, \ i = 1,2 \\ y &= x_1(t - \tau) + ax_2(t - \tau), \ a = G_2/G_1 \in (0,1) \end{aligned}$$
(NV1)

Goal: Global asymptotic stabilization of a suitable equilibrium $(s_*, x_{1*}, x_{2*}) \in (0, \infty)^3$ under Haldane uptake functions

$$\mu_i(s) = \frac{K_i s}{L_i + s + g_i s^2}$$
(HG)

Since the assumptions on the μ_i 's will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Take the new variables $(s, x_1, x_2) = (S, X_1/G_1, X_2/G_2)$.

$$\begin{aligned} \dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\ \dot{x}_i &= [\mu_i(s) - D(y)]x_i, \ i = 1,2 \\ y &= x_1(t - \tau) + ax_2(t - \tau), \ a = G_2/G_1 \in (0,1) \end{aligned}$$
(NV1)

Goal: Global asymptotic stabilization of a suitable equilibrium $(s_*, x_{1*}, x_{2*}) \in (0, \infty)^3$ under Haldane uptake functions

$$u_i(s) = \frac{K_i s}{L_i + s + g_i s^2}$$
(HG)

and uncertain constant delays τ .

Since the assumptions on the μ_i 's will be asymmetric, we must treat the cases $G_1 > G_2$ and $G_1 < G_2$ separately.

Take the new variables $(s, x_1, x_2) = (S, X_1/G_1, X_2/G_2)$.

$$\begin{aligned} \dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\ \dot{x}_i &= [\mu_i(s) - D(y)]x_i, \ i = 1,2 \\ y &= x_1(t - \tau) + ax_2(t - \tau), \ a = G_2/G_1 \in (0,1) \end{aligned}$$
(NV1)

Goal: Global asymptotic stabilization of a suitable equilibrium $(s_*, x_{1*}, x_{2*}) \in (0, \infty)^3$ under Haldane uptake functions

$$u_i(s) = \frac{K_i s}{L_i + s + g_i s^2}$$
(HG)

and uncertain constant delays τ . $g_i \ge 0$ and L_i , $K_i > 0$ constants.

Assumptions for Case where $G_1 > G_2$

Assumptions for Case where $G_1 > G_2$

▶ There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- ▶ The constants $\delta_i = L_i g_i s_* s_{in}$ for i = 1, 2 are positive.

- ▶ There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- The constants $\delta_i = L_i g_i s_* s_{in}$ for i = 1, 2 are positive.

$$\aleph = \delta_1 \mu_1(s_*) \left[1 + \frac{1}{s_*} \sum_{i=1}^2 \frac{\delta_i}{L_i + s_{\mathrm{in}} + g_i s_{\mathrm{in}}^2} x_{i*} \right]$$
(SG)

$$+K_2s_*x_{2*}\frac{L_2g_1-L_1g_2}{\delta_2}>0$$

- ▶ There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- The constants $\delta_i = L_i g_i s_* s_{in}$ for i = 1, 2 are positive.

$$\aleph = \delta_1 \mu_1(s_*) \left[1 + \frac{1}{s_*} \sum_{i=1}^2 \frac{\delta_i}{L_i + s_{in} + g_i s_{in}^2} X_{i*} \right]$$
(SG)

$$+K_2s_*x_{2*}\frac{L_2g_1-L_1g_2}{\delta_2}>0$$

$$\mho = \frac{s_*}{(1-a)\mu_1(s_*)} \left[-K_1 + \frac{L_1 - g_1 s_*^2}{L_2 - g_2 s_*^2} K_2 \right] \neq 0$$
(SC)

- There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- The constants $\delta_i = L_i g_i s_* s_{in}$ for i = 1, 2 are positive.

$$\aleph = \delta_{1} \mu_{1}(s_{*}) \left[1 + \frac{1}{s_{*}} \sum_{i=1}^{2} \frac{\delta_{i}}{L_{i} + s_{in} + g_{i} s_{in}^{2}} X_{i*} \right]$$
(SG)

$$+K_2s_*x_{2*}\frac{L_2g_1-L_1g_2}{\delta_2}>0$$

$$\mho = \frac{s_*}{(1-a)\mu_1(s_*)} \left[-K_1 + \frac{L_1 - g_1 s_*^2}{L_2 - g_2 s_*^2} K_2 \right] \neq 0$$
(SC)

• $\min\{\mu_1(s_{in}), \mu_2(s_{in})\} > \mu_1(s_*)$

- There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- The constants $\delta_i = L_i g_i s_* s_{in}$ for i = 1, 2 are positive.

$$\aleph = \delta_{1} \mu_{1}(s_{*}) \left[1 + \frac{1}{s_{*}} \sum_{i=1}^{2} \frac{\delta_{i}}{L_{i} + s_{in} + g_{i} s_{in}^{2}} x_{i*} \right]$$
(SG)

$$+K_2s_*x_{2*}rac{L_2g_1-L_1g_2}{\delta_2}>0$$

$$\mho = \frac{s_*}{(1-a)\mu_1(s_*)} \left[-K_1 + \frac{L_1 - g_1 s_*^2}{L_2 - g_2 s_*^2} K_2 \right] \neq 0$$
(SC)

• $\min\{\mu_1(s_{in}), \mu_2(s_{in})\} > \mu_1(s_*), \text{ and } L_2g_1 - L_1g_2 \le 0.$

- ▶ There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- The constants $\delta_i = L_i g_i s_* s_{in}$ for i = 1, 2 are positive.

$$\aleph = \delta_{1} \mu_{1}(s_{*}) \left[1 + \frac{1}{s_{*}} \sum_{i=1}^{2} \frac{\delta_{i}}{L_{i} + s_{in} + g_{i} s_{in}^{2}} x_{i*} \right]$$
(SG)

$$+K_2s_*x_{2*}\frac{L_2g_1-L_1g_2}{\delta_2}>0$$

$$\mho = \frac{s_*}{(1-a)\mu_1(s_*)} \left[-K_1 + \frac{L_1 - g_1 s_*^2}{L_2 - g_2 s_*^2} K_2 \right] \neq 0$$
(SC)

• $\min\{\mu_1(s_{in}), \mu_2(s_{in})\} > \mu_1(s_*), \text{ and } L_2g_1 - L_1g_2 \le 0.$

• There is a known constant $\tau_M > 0$ so that $0 \le \tau \le \tau_M$.

- There is a constant $s_* \in (0, s_{in})$ such that $\mu_1(s_*) = \mu_2(s_*)$.
- The constants $\delta_i = L_i g_i s_* s_{in}$ for i = 1, 2 are positive.

$$\aleph = \delta_{1} \mu_{1}(s_{*}) \left[1 + \frac{1}{s_{*}} \sum_{i=1}^{2} \frac{\delta_{i}}{L_{i} + s_{in} + g_{i} s_{in}^{2}} x_{i*} \right]$$
(SG)

$$+K_2s_*x_{2*}\frac{L_2g_1-L_1g_2}{\delta_2}>0$$

$$\mho = \frac{s_*}{(1-a)\mu_1(s_*)} \left[-K_1 + \frac{L_1 - g_1 s_*^2}{L_2 - g_2 s_*^2} K_2 \right] \neq 0$$
(SC)

• $\min\{\mu_1(s_{in}), \mu_2(s_{in})\} > \mu_1(s_*), \text{ and } L_2g_1 - L_1g_2 \le 0.$

• There is a known constant $\tau_M > 0$ so that $0 \le \tau \le \tau_M$. $x_{1*}, x_{2*} > 0$ are any constants such that $s_* + x_{1*} + x_{2*} = s_{in}$.

Haldane Growth Functions

Haldane Growth Functions

We can compute constants $\bar{\varepsilon}_i$ depending on τ_M so that for any constants $\varepsilon_i \in (0, \bar{\varepsilon}_i)$ for i = 1, 2 such that $\varepsilon_1 \varepsilon_2 \leq \bar{\varepsilon}_3$, the control

$$D = \mu_1(s_*) - \operatorname{sign}(\mho) \varepsilon_1 \sigma \left(\varepsilon_2 \{ x_1(t-\tau) + a x_2(t-\tau) - x_{1*} - a x_{2*} \} \right)$$

We can compute constants $\bar{\varepsilon}_i$ depending on τ_M so that for any constants $\varepsilon_i \in (0, \bar{\varepsilon}_i)$ for i = 1, 2 such that $\varepsilon_1 \varepsilon_2 \leq \bar{\varepsilon}_3$, the control

$$D = \mu_1(s_*) - \operatorname{sign}(\mho) \varepsilon_1 \sigma \left(\varepsilon_2 \{ x_1(t-\tau) + a x_2(t-\tau) - x_{1*} - a x_{2*} \} \right)$$

We can compute constants $\bar{\varepsilon}_i$ depending on τ_M so that for any constants $\varepsilon_i \in (0, \bar{\varepsilon}_i)$ for i = 1, 2 such that $\varepsilon_1 \varepsilon_2 \leq \bar{\varepsilon}_3$, the control

$$D = \mu_1(s_*) - \operatorname{sign}(\mho) \varepsilon_1 \sigma \left(\varepsilon_2 \{ x_1(t-\tau) + a x_2(t-\tau) - x_{1*} - a x_{2*} \} \right)$$

globally asymptotically stabilizes (s_*, x_{1*}, x_{2*}) for all initializations $(\phi_s, \phi_{x_1}, \phi_{x_2}) \in C([-2\tau_M, 0], (0, \infty)^3)$. σ = standard saturation.

 Standard Poincaré-Bendixson and Lyapunov function methods do not apply under delays.

We can compute constants $\bar{\varepsilon}_i$ depending on τ_M so that for any constants $\varepsilon_i \in (0, \bar{\varepsilon}_i)$ for i = 1, 2 such that $\varepsilon_1 \varepsilon_2 \leq \bar{\varepsilon}_3$, the control

$$D = \mu_1(\mathbf{s}_*) - \operatorname{sign}(\mho) \varepsilon_1 \sigma \left(\varepsilon_2 \{ \mathbf{x}_1(t-\tau) + \mathbf{a} \mathbf{x}_2(t-\tau) - \mathbf{x}_{1*} - \mathbf{a} \mathbf{x}_{2*} \} \right)$$

globally asymptotically stabilizes (s_*, x_{1*}, x_{2*}) for all initializations $(\phi_s, \phi_{x_1}, \phi_{x_2}) \in C([-2\tau_M, 0], (0, \infty)^3)$. σ = standard saturation.

Standard Poincaré-Bendixson and Lyapunov function methods do not apply under delays. Instead, the proof constructs a Lyapunov-Krasovskii functional U₁.

We can compute constants $\bar{\varepsilon}_i$ depending on τ_M so that for any constants $\varepsilon_i \in (0, \bar{\varepsilon}_i)$ for i = 1, 2 such that $\varepsilon_1 \varepsilon_2 \leq \bar{\varepsilon}_3$, the control

$$D = \mu_1(s_*) - \operatorname{sign}(\mho) \varepsilon_1 \sigma \left(\varepsilon_2 \{ x_1(t-\tau) + a x_2(t-\tau) - x_{1*} - a x_{2*} \} \right)$$

- Standard Poincaré-Bendixson and Lyapunov function methods do not apply under delays. Instead, the proof constructs a Lyapunov-Krasovskii functional U₁.
- At each time t, U₁ depends on the history of the error variable (š, x) = (s − s_{*}, x − x_{*}) over [t − 2τ_M, t].

We can compute constants $\bar{\varepsilon}_i$ depending on τ_M so that for any constants $\varepsilon_i \in (0, \bar{\varepsilon}_i)$ for i = 1, 2 such that $\varepsilon_1 \varepsilon_2 \leq \bar{\varepsilon}_3$, the control

 $D = \mu_1(s_*) - \operatorname{sign}(\mho) \varepsilon_1 \sigma \left(\varepsilon_2 \{ x_1(t-\tau) + a x_2(t-\tau) - x_{1*} - a x_{2*} \} \right)$

- Standard Poincaré-Bendixson and Lyapunov function methods do not apply under delays. Instead, the proof constructs a Lyapunov-Krasovskii functional U₁.
- At each time t, U₁ depends on the history of the error variable (š, x) = (s − s_{*}, x − x_{*}) over [t − 2τ_M, t].
- Along the error dynamics, \dot{U}_1 is negative definite:

We can compute constants $\bar{\varepsilon}_i$ depending on τ_M so that for any constants $\varepsilon_i \in (0, \bar{\varepsilon}_i)$ for i = 1, 2 such that $\varepsilon_1 \varepsilon_2 \leq \bar{\varepsilon}_3$, the control

$$D = \mu_1(s_*) - \operatorname{sign}(\mho) \varepsilon_1 \sigma \left(\varepsilon_2 \{ x_1(t-\tau) + a x_2(t-\tau) - x_{1*} - a x_{2*} \} \right)$$

- Standard Poincaré-Bendixson and Lyapunov function methods do not apply under delays. Instead, the proof constructs a Lyapunov-Krasovskii functional U₁.
- At each time t, U₁ depends on the history of the error variable (š, x) = (s − s_{*}, x − x_{*}) over [t − 2τ_M, t].
- ► Along the error dynamics, \dot{U}_1 is negative definite: $\dot{U}_1 \leq -(\tilde{s} + \tilde{x}_1 + \tilde{x}_2)^2 - \frac{\aleph}{5} \frac{\tilde{s}^2}{s} - \frac{\varepsilon_1 \varepsilon_2 |U|}{8} (\tilde{x}_1 + a \tilde{x}_2)^2, \quad t \geq \tau$.

The analysis from Case 1 does not apply in this situation.

Case 2: *G*₁ < *G*₂

The analysis from Case 1 does not apply in this situation. Instead, we use a feedback that *decreases* in the output.

The analysis from Case 1 does not apply in this situation.

Instead, we use a feedback that *decreases* in the output.

Feedbacks of this kind were used by Gouzé-Robledo and Keeran et al to stabilize periodic orbits or boxes.

The analysis from Case 1 does not apply in this situation.

Instead, we use a feedback that *decreases* in the output.

Feedbacks of this kind were used by Gouzé-Robledo and Keeran et al to stabilize periodic orbits or boxes.

$$\begin{aligned} \dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\ \dot{x}_i &= [\mu_i(s) - D(y)]x_i, \ i = 1,2 \\ y &= x_1 + ax_2, \ a = G_2/G_1 > 1 \end{aligned}$$
(NV2)

The analysis from Case 1 does not apply in this situation.

Instead, we use a feedback that *decreases* in the output.

Feedbacks of this kind were used by Gouzé-Robledo and Keeran et al to stabilize periodic orbits or boxes.

$$\begin{aligned} \dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\ \dot{x}_i &= [\mu_i(s) - D(y)]x_i, \ i = 1,2 \\ y &= x_1 + ax_2, \ a = G_2/G_1 > 1 \end{aligned}$$
(NV2)

New Assumption:

The analysis from Case 1 does not apply in this situation.

Instead, we use a feedback that *decreases* in the output.

Feedbacks of this kind were used by Gouzé-Robledo and Keeran et al to stabilize periodic orbits or boxes.

$$\begin{aligned} \dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\ \dot{x}_i &= [\mu_i(s) - D(y)]x_i, \ i = 1,2 \\ y &= x_1 + ax_2, \ a = G_2/G_1 > 1 \end{aligned}$$
(NV2)

New Assumption: The μ_i 's are asymmetric, as follows:

The analysis from Case 1 does not apply in this situation.

Instead, we use a feedback that *decreases* in the output.

Feedbacks of this kind were used by Gouzé-Robledo and Keeran et al to stabilize periodic orbits or boxes.

$$\begin{aligned} \dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\ \dot{x}_i &= [\mu_i(s) - D(y)]x_i, \ i = 1,2 \\ y &= x_1 + ax_2, \ a = G_2/G_1 > 1 \end{aligned}$$
(NV2)

New Assumption: The μ_i 's are asymmetric, as follows: The μ_i 's are zero at s = 0 and C^1 , and $\mu_i'(s) > 0$ for i = 1, 2 and all $s \ge 0$.

The analysis from Case 1 does not apply in this situation.

Instead, we use a feedback that *decreases* in the output.

Feedbacks of this kind were used by Gouzé-Robledo and Keeran et al to stabilize periodic orbits or boxes.

$$\begin{aligned} \dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\ \dot{x}_i &= [\mu_i(s) - D(y)]x_i, \ i = 1,2 \\ y &= x_1 + ax_2, \ a = G_2/G_1 > 1 \end{aligned}$$
(NV2)

New Assumption: The μ_i 's are asymmetric, as follows:

The μ_i 's are zero at s = 0 and C^1 , and $\mu_i'(s) > 0$ for i = 1, 2 and all $s \ge 0$. There is a constant $s_* \in (0, s_{in})$ so that $\mu_1(s) > \mu_2(s)$ on $(0, s_*)$ and $\mu_1(s) < \mu_2(s)$ on (s_*, s_{in}) .

The analysis from Case 1 does not apply in this situation.

Instead, we use a feedback that *decreases* in the output.

Feedbacks of this kind were used by Gouzé-Robledo and Keeran et al to stabilize periodic orbits or boxes.

$$\begin{aligned} \dot{s} &= (s_{in} - s)D(y) - \mu_1(s)x_1 - \mu_2(s)x_2 \\ \dot{x}_i &= [\mu_i(s) - D(y)]x_i, \ i = 1,2 \\ y &= x_1 + ax_2, \ a = G_2/G_1 > 1 \end{aligned}$$
(NV2)

New Assumption: The μ_i 's are asymmetric, as follows:

The μ_i 's are zero at s = 0 and C^1 , and $\mu_i'(s) > 0$ for i = 1, 2 and all $s \ge 0$. There is a constant $s_* \in (0, s_{in})$ so that $\mu_1(s) > \mu_2(s)$ on $(0, s_*)$ and $\mu_1(s) < \mu_2(s)$ on (s_*, s_{in}) . Also, $\mu_1'(s_*) < \mu_2'(s_*)$.

$$\mathcal{K}_{0} = \min\left\{ \frac{\mu_{1}(s_{\text{in}}) - \mu_{1}(s_{*})}{(a+1)x_{1*} + 2ax_{2*}}, \frac{\mu_{1}(s_{*})}{4(a+1)s_{\text{in}}}, \frac{1}{a}\min\left\{ \mu_{i}'(s) : s \in [0, s_{\text{in}}], i = 1, 2 \right\} \right\}$$

$$\begin{split} & \mathcal{K}_{0} = \\ & \min\left\{\frac{\mu_{1}(s_{\text{in}}) - \mu_{1}(s_{*})}{(a+1)x_{1*} + 2ax_{2*}}, \frac{\mu_{1}(s_{*})}{4(a+1)s_{\text{in}}}, \frac{1}{a}\min\left\{\mu_{i}'(s) : s \in [0, s_{\text{in}}], i = 1, 2\right\}\right\} \\ & \text{Let } \sigma : \mathbb{R} \to [-1, 1] \text{ denote the usual saturation.} \end{split}$$

$$\begin{split} &\mathcal{K}_{0} = \\ &\min\left\{\frac{\mu_{1}(s_{\text{in}}) - \mu_{1}(s_{*})}{(a+1)x_{1*} + 2ax_{2*}}, \frac{\mu_{1}(s_{*})}{4(a+1)s_{\text{in}}}, \frac{1}{a}\min\left\{\mu_{i}'(s) : s \in [0, s_{\text{in}}], i = 1, 2\right\}\right\} \\ &\text{Let } \sigma : \mathbb{R} \to [-1, 1] \text{ denote the usual saturation.} \\ &\text{Theorem: For each constant } \mathcal{K} \in (0, \mathcal{K}_{0}) \text{ and each constant} \\ &a > 1, \end{split}$$

Fix any constants $x_{i*} > 0$ such that $x_{1*} + x_{2*} = s_{in} - s_*$.

$$\begin{split} &\mathcal{K}_{0} = \\ &\min\left\{\frac{\mu_{1}(s_{\text{in}}) - \mu_{1}(s_{*})}{(a+1)x_{1*} + 2ax_{2*}}, \frac{\mu_{1}(s_{*})}{4(a+1)s_{\text{in}}}, \frac{1}{a}\min\left\{\mu_{i}'(s) : s \in [0, s_{\text{in}}], i = 1, 2\right\}\right\} \\ &\text{Let } \sigma : \mathbb{R} \to [-1, 1] \text{ denote the usual saturation.} \end{split}$$

Theorem: For each constant $K \in (0, K_0)$ and each constant a > 1, (NV2) in closed loop with the bounded positive controller $D(y) = \mu_1(s_*) - 2(1+a)s_{in}K\sigma\left(\frac{1}{2(1+a)s_{in}}[y - x_{1*} - ax_{2*}]\right)$ (C) is GAS to the equilibrium (s_*, x_{1*}, x_{2*}) on $(0, \infty)^3$.

Fix any constants $x_{i*} > 0$ such that $x_{1*} + x_{2*} = s_{in} - s_*$.

$$\begin{split} & \mathcal{K}_{0} = \\ & \min\left\{\frac{\mu_{1}(s_{\text{in}}) - \mu_{1}(s_{*})}{(a+1)x_{1*} + 2ax_{2*}}, \frac{\mu_{1}(s_{*})}{4(a+1)s_{\text{in}}}, \frac{1}{a}\min\left\{\mu_{i}'(s) : s \in [0, s_{\text{in}}], i = 1, 2\right\}\right\} \\ & \text{Let } \sigma : \mathbb{R} \to [-1, 1] \text{ denote the usual saturation.} \end{split}$$

Theorem: For each constant $K \in (0, K_0)$ and each constant a > 1, (NV2) in closed loop with the bounded positive controller $D(y) = \mu_1(s_*) - 2(1+a)s_{in}K\sigma\left(\frac{1}{2(1+a)s_{in}}[y - x_{1*} - ax_{2*}]\right)$ (C) is GAS to the equilibrium (s_*, x_{1*}, x_{2*}) on $(0, \infty)^3$. Proof:

Fix any constants $x_{i*} > 0$ such that $x_{1*} + x_{2*} = s_{in} - s_*$.

$$\begin{split} & \mathcal{K}_{0} = \\ & \min\left\{\frac{\mu_{1}(s_{\text{in}}) - \mu_{1}(s_{*})}{(a+1)x_{1*} + 2ax_{2*}}, \frac{\mu_{1}(s_{*})}{4(a+1)s_{\text{in}}}, \frac{1}{a}\min\left\{\mu_{i}'(s) : s \in [0, s_{\text{in}}], i = 1, 2\right\}\right\} \\ & \text{Let } \sigma : \mathbb{R} \to [-1, 1] \text{ denote the usual saturation.} \end{split}$$

Theorem: For each constant $K \in (0, K_0)$ and each constant a > 1, (NV2) in closed loop with the bounded positive controller $D(y) = \mu_1(s_*) - 2(1+a)s_{in}K\sigma\left(\frac{1}{2(1+a)s_{in}}[y - x_{1*} - ax_{2*}]\right)$ (C) is GAS to the equilibrium (s_*, x_{1*}, x_{2*}) on $(0, \infty)^3$.

Proof: Use Poincaré-Bendixson Theorem and dimension reduction to a manifold where $s + x_1 + x_2 = s_{in}$.

Fix any constants $x_{i*} > 0$ such that $x_{1*} + x_{2*} = s_{in} - s_*$.

$$\begin{split} & \mathcal{K}_{0} = \\ & \min\left\{\frac{\mu_{1}(s_{\text{in}}) - \mu_{1}(s_{*})}{(a+1)x_{1*} + 2ax_{2*}}, \frac{\mu_{1}(s_{*})}{4(a+1)s_{\text{in}}}, \frac{1}{a}\min\left\{\mu_{i}'(s) : s \in [0, s_{\text{in}}], i = 1, 2\right\}\right\} \\ & \text{Let } \sigma : \mathbb{R} \to [-1, 1] \text{ denote the usual saturation.} \end{split}$$

Theorem: For each constant $K \in (0, K_0)$ and each constant a > 1, (NV2) in closed loop with the bounded positive controller $D(y) = \mu_1(s_*) - 2(1+a)s_{in}K\sigma\left(\frac{1}{2(1+a)s_{in}}[y - x_{1*} - ax_{2*}]\right)$ (C) is GAS to the equilibrium (s_*, x_{1*}, x_{2*}) on $(0, \infty)^3$.

Proof: Use Poincaré-Bendixson Theorem and dimension reduction to a manifold where $s + x_1 + x_2 = s_{in}$.

The case a = 1 would give a nonisolated equilibrium.

Robustness Corollary for Case where $G_1 < G_2$
Suppose we compute D(y) from (C) using a pair of μ_i 's, but the *actual* uptake functions are some other functions ν_i that satisfy:

Suppose we compute D(y) from (C) using a pair of μ_i 's, but the *actual* uptake functions are some other functions ν_i that satisfy:

Assumption:

Suppose we compute D(y) from (C) using a pair of μ_i 's, but the *actual* uptake functions are some other functions ν_i that satisfy:

Assumption: (a) The ν_i 's are 0 at 0 and C^1 ,

Suppose we compute D(y) from (C) using a pair of μ_i 's, but the *actual* uptake functions are some other functions ν_i that satisfy:

Assumption: (a) The ν_i 's are 0 at 0 and C^1 , (b) $\nu_i'(s) > 0$ for i = 1, 2 and all $s \ge 0$,

Suppose we compute D(y) from (C) using a pair of μ_i 's, but the *actual* uptake functions are some other functions ν_i that satisfy:

Assumption: (a) The ν_i 's are 0 at 0 and C^1 , (b) $\nu_i'(s) > 0$ for i = 1, 2 and all $s \ge 0$, (c) there is a constant $s_{\nu} \in (0, s_{in})$ so that $\nu_1(s) > \nu_2(s)$ on $(0, s_{\nu})$ and $\nu_1(s) < \nu_2(s)$ on (s_{ν}, s_{in})

Suppose we compute D(y) from (C) using a pair of μ_i 's, but the *actual* uptake functions are some other functions ν_i that satisfy:

Assumption: (a) The ν_i 's are 0 at 0 and C^1 , (b) $\nu_i'(s) > 0$ for i = 1, 2 and all $s \ge 0$, (c) there is a constant $s_v \in (0, s_{in})$ so that $\nu_1(s) > \nu_2(s)$ on $(0, s_v)$ and $\nu_1(s) < \nu_2(s)$ on (s_v, s_{in}) , and (d) $\nu_1'(s_v) < \nu_2'(s_v)$.

Suppose we compute D(y) from (C) using a pair of μ_i 's, but the *actual* uptake functions are some other functions ν_i that satisfy:

Assumption: (a) The ν_i 's are 0 at 0 and C^1 , (b) $\nu_i'(s) > 0$ for i = 1, 2 and all $s \ge 0$, (c) there is a constant $s_v \in (0, s_{in})$ so that $\nu_1(s) > \nu_2(s)$ on $(0, s_v)$ and $\nu_1(s) < \nu_2(s)$ on (s_v, s_{in}) , and (d) $\nu_1'(s_v) < \nu_2'(s_v)$.

Corollary: We can choose *K* and a constant $\varepsilon > 0$ such that if $\mathcal{T}(\mu, \nu) = \max\{|\mu_i'(s) - \nu_i'(s)| : i = 1, 2; s \in [0, s_{in}]\} < \varepsilon$, then $\begin{cases}
\dot{s} = D(y)[s_{in} - s] - \nu_1(s)x_1 - \nu_2(s)x_2 \\
\dot{x}_i = [\nu_i(s) - D(y)]x_i, i = 1, 2
\end{cases}$ (RC)

is GAS to some point $(s_{\nu}, x_{1\nu}, x_{2\nu}) \in (0, \infty)^3$.

We achieved output feedback GAS of componentwise positive equilibria using only the sum of the species levels.

- We achieved output feedback GAS of componentwise positive equilibria using only the sum of the species levels.
- Competitive exclusion required us to use a nonconstant controller to get permanence of both species.

- We achieved output feedback GAS of componentwise positive equilibria using only the sum of the species levels.
- Competitive exclusion required us to use a nonconstant controller to get permanence of both species.
- ► We dropped the usual assumption on the relative sizes of the growth yields G_i.

- We achieved output feedback GAS of componentwise positive equilibria using only the sum of the species levels.
- Competitive exclusion required us to use a nonconstant controller to get permanence of both species.
- ► We dropped the usual assumption on the relative sizes of the growth yields G_i.
- When G₁ < G₂, we can allow uncertain monotone uptake functions µ_i that are not necessary concave.

- We achieved output feedback GAS of componentwise positive equilibria using only the sum of the species levels.
- Competitive exclusion required us to use a nonconstant controller to get permanence of both species.
- We dropped the usual assumption on the relative sizes of the growth yields G_i.
- When G₁<G₂, we can allow uncertain monotone uptake functions μ_i that are not necessary concave.
- ▶ When G₁>G₂, we can cover time delays, nonmonotone uptake functions, and robustness to actuator errors.

- We achieved output feedback GAS of componentwise positive equilibria using only the sum of the species levels.
- Competitive exclusion required us to use a nonconstant controller to get permanence of both species.
- ► We dropped the usual assumption on the relative sizes of the growth yields G_i.
- When G₁ < G₂, we can allow uncertain monotone uptake functions µ_i that are not necessary concave.
- ▶ When G₁>G₂, we can cover time delays, nonmonotone uptake functions, and robustness to actuator errors.
- Desirable extensions would allow more than two species, or multiple limiting substrates.