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Problem: AGiven a trajectory Y, specify u and a dynamics for an
estimate I of I' such that the dynamics for the augmented error
E(t) = (Y(t) = Y, (), —T(t)) satisfies ISS with respect to ¢.

Flight control, electrical and mechanical engineering, etc.
Persistent excitation. Annaswamy, Narendra, Teel..
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ISS (Sontag, '89) generalizes uniform global asymptotic stability.

E'(t)=G(t,E(t),E(t—7),T), E(t) ey (%)
€D <71 (e° 2(€t—r.00)) (UGAS)
~i's are 0 at 0, strictly increasing, and unbounded. ~; € K.
E't)y=G(tEM),E(t—7),T,i(1), E) €Y (Zpert)
€D <71 (€ M2(I€lity— 1)) +73(10]t.17) (ISS)

Find ~;’s by building special strict Lyapunov functions (LFs).
When 7 = 0, a system is ISS iff it has an ISS LF (Sontag-Wang).
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My Joint Work with F. Mazenc and M. de Queiroz

We solved the tracking and parameter identification problem for

- @)
zi = gi(§)+ki(§)0i+1/)in, i=1,2,...,s.
£=(x,2) eR™S. (0,0) = (01, .... 05,91, ..., 1hs) € RPIF-FPsHS,

The C? reference trajectory £ = (Xg, Zg) is assumed to have
some period T > 0 and satisfy forall t > 0.

Main PE Assumption: positive definiteness of the matrices
= [T AT (Nt dt € READxPH) 1 <i<s  (4)
where )\( t) = (ki(¢r(1)), Zri(t) — 9i(§r(t))) fori=1,2,....s
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Two Other Key Assumptions

» We know v, and a strict LF V/ : [0,00) x RS — [0, o0) for

X =
{32 ®
such that —/ and V have positive definite quadratic lower
bounds near 0, and V' and v; also have period T.

Key: Reduces the LF construction problem to (5).

» There are known positive constants 0y, 1> and ¢ such that
P < Y < P and |0;] < Oy (6)

foreachie {1,2,...,s}. Known directions for the ¢;’s.
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Dynamic Feedback

éi,j = wij, 1<i<s,1<j<p @
P = Ti, 1<i<s
Here 6; = (0;1,...,0ip) fori=1,2,...,s,
wij = —92(tkij(E+¢r(t)) and @®)
TI' — _%(L E)U,‘(t, g? éu 1//;) .
ui(t, 5”7 é’ 121) _ (tf)—Qi(ﬁ)lgiki(ﬁ)éf-i-in,i(t) 9)

Estimator and feedback can only depend on things we know.

ensure that v < ¢;(t) < ¢ and |9 ()| < .
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Augmented Error Dynamics

Tracking error: £ = (X,2) = £ — &g = (X — Xg, Z — ZR)
Parameter estimation errors: 0; = 0; — 6; and ¥; = ¢; — ;

[ _
z = + Ki(€ + €a(t))0;
it €,.0,49), 1<i<s (AED)
5/,/' = - wij, 1<i<s, 1<j<p;
QZ,' = - Ti,1<i<s.

Y = R (T {T O — Oun 01+ 0un)})
x (TTiy (i — o, i — ).
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Stabilization Analysis

We build a strict LF for the e}ugmerjted error dynamics for
= (&,0,v) = (£ — &R, 0 — 0,1 — 1)) on its state space ).

We start with this nonstrict barrier type LF on ):

(tE05.0) = ruzz/ o dm
i,

/1/1

¢/ m
+ Z dm.
= Jo (Vi Vi

On Y, V; < —W(€) for some positive definite function W.

We transform /; into the desired strict LF for (AED).
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Our Transformation

Theorem: We can construct a function £ € K., N C' such that

VE(t,€,0,9) = L(Vi(,E0,0) +> Qi(t,€,0,4) ,  (10)

i=1
where Q;(t,€,0,¢) = —ZA()OZ/(@,%Z/)

11
ol (B B0, 5) .

o O — 0

i0nvi) = ~ ; and
@iy = |2 ] an -
Qi(t)y = [, [EAT(s)Ni(s)dsdm |

is a strict LF for (AED) on its state space ), so (AED) is UGAS.
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Application: Marine Robots (with Georgia Tech)

Path of
robot .-~

X2

y2

ra

Y1

Iy

X4

Desired curve
to be tracked

p = |ra — rq], ¢ = angle between x4 and Xz, cos(¢) = X - X2



Curve Tracking Dynamics



Curve Tracking Dynamics

Zhang et al, IEEE CDC, '04: Steering control

p = —sin(¢)
¢ = "0y (p,¢) € (0,00) x (—/2,7/2)

1+kp

K €os(¢)

Uo = 1+kp

— W (p) cos(¢) + psin(¢) , k = curvature

h(p) = « {p + é — 2/)0} , po = desired value for p
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Curve Tracking Dynamics
Zhang et al, IEEE CDC, '04: Steering control

p = —sin(¢)
¢ = "0y (p,¢) € (0,00) x (—/2,7/2)

1+kp
Up = %ﬁ’) — H(p)cos(¢) + usin(¢) , k = curvature

h(p) = « {p + é — 2/)0} , po = desired value for p

V(p,¢) = —In(cos(¢)) + h(p)

_ 1 [V(p9)
New: U(p.0) =~ W(p)sin(@) + [ To(myam
HJo
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Our Robustly Forwardly Invariant Hexagons

We used U to prove ISS of the (p — po, ¢) system, where

p = —sin(¢),

b= H(p)cos(s) — usin(@) +5  (18)

and 0 : [0,00) — [—0./, 04], on certain forward invariant sets H;.

T

2

9

F

E

Tight Disturbance Bound: Choose any ¢.; € (0,min{A,;, A..;}).

View the curve tracking state space

Y =(0,00) x (—7/2,7/2) as a union of
hexagonal regions Hf C H, C ... H; C ...
For each /, all trajectories of (18) starting in
H; for all ¢ : [0, 00) — [—0.j, 0] stay in H;.

A = min{|i(p)cos(d)| : (p,¢)" € ABUED}
A..; = min{|n(p) cos(é) — psin(@)| : (p.¢)" € BCUEF}.
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p = —sin(e)
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T+kp




Our Adaptive Robust Tracking Control

p = —sin(¢)
19
{ ¢ _ rcos(9) —|—K[U—i—5] (19)

1+kp

&= (p, ), 0 = 0, v = K, £(€) = —sin(e), gi(€) = =)
Take u = —up/K.




Our Adaptive Robust Tracking Control

po= ) (19)
6 = 20 4 Klu+ 4]

&= (p.6), 01 = 0, vy = K, £(€) = —sin(6), gi(&) = “=L2)
Take u = —up/K. We proved ISS for the dynamics

g = —sin(@)
® = TG~ Rglo — KO (20)
R - _(R+ K - Cmin)(Cmax - R - K)@ o

06 K+K

for (&1, &, K) = (p — po, », K — K) on each set in our sequence
of hexagonal regions that fill Y = (0, 00) x (—7/2,7/2).
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Our Summer 2011 Field Work at Grand Isle, LA

20 days of field work off Grand Isle. Search for oil spill remnants.
Georgia Tech Savannah Robotics Team. Joint with F. Zhang.
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Our Summer 2011 Field Work at Grand Isle, LA

(Loading Video...)
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Media File (video/quicktime)


Circle Tracking by ASV Victoria
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Adaptive nonlinear controllers are useful for many engineering
control systems with and uncertainties.

Curve tracking controllers for autonomous marine vehicles are
important for monitoring water quality, especially after oil spills.

Our controls identify parameters and are adaptive and robust to
the perturbations and that arise in field work.

We can prove these properties using ISS, dynamic extensions,
and Lyapunov-Krasovskii functionals.

We used our controls on student built marine robots to map
residual crude oil from the Deepwater Horizon spill.

A promising research direction is to study adaptive robust
control for heterogeneous fleets of autonomous marine vehicles.



