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Perturbed Systems with Feedback Delays

These are doubly parameterized families of ODEs of the form

Y ′(t) = F
(
t ,Y (t),u(t ,Y (t − τ)), δ(t)

)
, Y (t) ∈ Y ⊆ Rn. (1)

δ : [0,∞)→ D is (nonstochastic) uncertainty. D ⊆ Rm. τ = delay.

Specify u to get a singly parameterized closed loop family

Y ′(t) = G(t ,Y (t),Y (t − τ), δ(t)), Y (t) ∈ Y, (2)

where G(t ,Y (t),Y (t − τ),d) = F(t ,Y (t),u(t ,Y (t − τ)),d).

Problem: For a given reference trajectory Yr and delay τ , design
u such that the dynamics for E(t) = Y (t)− Yr (t) is ISS with
respect to δ. This gives tracking of Yr when δ = 0.
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Input-to-State Stability (or ISS)

ISS (Sontag, ’89) generalizes uniform global asymptotic stability.

Y ′(t) = G(t ,Y (t),Y (t − τ)), Y (t) ∈ Y (Σ)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y |[t0−τ ,t0])

)
(UGAS)

γi ’s are 0 at 0, strictly increasing, and unbounded. γi ∈ K∞.

Y ′(t) = G
(
t ,Y (t),Y (t − τ), δ(t)

)
, Y (t) ∈ Y (Σpert)

|Y (t)| ≤ γ1
(
et0−tγ2(|Y |[t0−τ ,t0])

)
+ γ3(|δ|[t0,t]) (ISS)

Often, we find γi ’s using special strict Lyapunov functions (LFs).

When τ = 0, a system is ISS iff it has an ISS LF (Sontag-Wang).
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Ways We Built Delay-Tolerant Feedback Controls

Emulation Approach:
1. Solve the stabilization problem with the delays set to zero,

by building a feedback and a strict LF for the corresponding
undelayed closed-loop system.

2. Transform the LF into a Lyapunov-Krasovkii functional (LKF)
for the feedback delayed system by adding double integrals
whose integrands involve the norm of the state.

3. Use the LKF to compute upper bounds on the delays that
the feedback can tolerate while maintaining the stability
property, and use the strictness to prove ISS.

Mazenc, F., M. Malisoff, and Z. Lin, “Further results on
input-to-state stability for nonlinear systems with delayed
feedbacks,” Automatica, 44(9):2415-2421, 2008.

http://dx.doi.org/10.1016/j.automatica.2008.01.024
http://dx.doi.org/10.1016/j.automatica.2008.01.024
http://dx.doi.org/10.1016/j.automatica.2008.01.024
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Ways We Built Delay-Tolerant Feedback Controls

Reduction Approach:

1. Our controls depend on state values on a continuum of past
times, can apply under any constant delay, and are found by
solving an integral equation involving the state.

2. We prove global stabilization for linear time-varying
systems, which can arise from linearizing a nonlinear
system around a desired reference trajectory.

3. We can also prove local stabilization for time-varying
nonlinear systems, by applying our reduction approach to
linearizations of the time-varying nonlinear systems.

Mazenc, F., M. Malisoff, and S.-I. Niculescu, “Reduction model
approach for linear time-varying systems with delays,” IEEE
Transactions on Automatic Control, 59(8):2068-2082, 2014.

http://dx.doi.org/10.1109/TAC.2014.2320308
http://dx.doi.org/10.1109/TAC.2014.2320308
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Emulation Approach

Transform a suitable Lyapunov function V for a UGAS system

ẋ = f (t , x) + g(t , x)us(t , x) (Σnd)

into an ISS Lyapunov-Krasovskii functional (LKF) for

ẋ(t) = f (t , x(t)) + g(t , x(t))[us(t , x(t − τ)) + δ(t)]. (Σd)

U : [0,∞)× Cn(R)→ [0,∞) is an ISS-LKF for (Σd ) provided
there are αi ∈ K∞ and a κ ∈ N such that for all solutions x(t) of
(Σd ), U(t , xt ) is absolutely continuous in t and we have

(i) α1(|φ(0)|) ≤ U(t , φ) ≤ α2(|φ|[−κτ,0]) and
(ii) DtU(t , xt ) ≤ −α3(U(t , xt )) + α4(|δ|[to,t])

for all φ ∈ Cn([−κτ,0]) and almost all t ≥ to + κτ .
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ẋ(t) = f (t , x(t)) + g(t , x(t))[us(t , x(t − τ)) + δ(t)]. (Σd)

U : [0,∞)× Cn(R)→ [0,∞) is an ISS-LKF for (Σd ) provided
there are αi ∈ K∞ and a κ ∈ N such that for all solutions x(t) of
(Σd ), U(t , xt ) is absolutely continuous in t and we have

(i) α1(|φ(0)|) ≤ U(t , φ) ≤ α2(|φ|[−κτ,0]) and
(ii) DtU(t , xt ) ≤ −α3(U(t , xt )) + α4(|δ|[to,t])

for all φ ∈ Cn([−κτ,0]) and almost all t ≥ to + κτ .



Emulation Approach

Assumption A: f and g are locally Lipschitz, us ∈ C1, and there
is an L̄ such that for all x ∈ Rn and t ≥ 0, (A1) |f (t , x)| ≤ L̄|x |,
(A2) |g(t , x)| ≤ L̄(|x |+ 1), and (A3) |(∂us/∂x)(t , x)| ≤ L̄ all hold.

Assumption B: There are σ ∈ K∞ such that σ(r) ≤ r for all
r ≥ 0; constants K1 ≥ 1 and Ki ≥ 0 for i = 2,3,4; and a C1

uniformly proper and positive definite V : [0,∞)× Rn → [0,∞)
such that for all x ∈ Rn, q ∈ Rn, l ≥ 0, and t ≥ 0, we have

H1 Vt (t , x) + Vx (t , x)[f (t , x) + g(t , x)us(t , x)]≤−σ(|x |)2;
H2 |Vx (t , x)g(t , x)| ≤ K1σ(|x |),

∣∣∂us
∂x (t , x)f (l , x)

∣∣2 ≤ K2σ(|x |)2;
H3

∣∣∂us
∂x (t , x)g(l , x)

∣∣2 ≤ K3(σ(|x |) + 1); and

H4
[∣∣∂us
∂x (t , x)g(l , x)

∣∣ |us(l ,q)|
]2 ≤ K4[σ2(|x |) + σ2(|q|)].
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Sample Result (F. Mazenc, M., Z. Lin)

Theorem 1: If Assumptions A and B are satisfied, then

ẋ(t) = f (t , x(t)) + g(t , x(t))[us(t , x(t − τ)) + δ(t)] (Σd)

with any constant feedback delay τ ∈ (0, τ̄ ] where

τ̄ = 1
4K1
√

3K2+3K4+1

admits the ISS-LKF

U(t , xt ) = V (t , x(t)) + 1
8τ̄

∫ t
t−2τ̄

(∫ t
r σ

2(|x(p)|)dp
)

dr

and therefore is ISS.

Remark: When Vt ≡ 0 and the drift f ≡ 0, we can make the
delay bound τ̄ arbitrarily large by taking K2 = 0 and scaling us.



Sample Result (F. Mazenc, M., Z. Lin)

Theorem 1: If Assumptions A and B are satisfied, then
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Application of Emulation Approach

When m : R→ Rn is continuous, we build an ISS-LKF for

ẋ(t) = −m(t)mT (t)[x(t − τ) + δ(t)]. (Σid)

Assume |m(t)| = 1 for all t ∈ R and that we know constants
α′ ∈ (0,1), β′ > 0, and c̃ > 0 such that

α′In ≤
∫ t+c̃

t m(r)mT (r)dr ≤ β′In for all t ∈ R.

Corollary: Let τ ∈ (0, τ̄ ]. Then (Σid) admits the ISS-LKF

U(t , xt ) = xT (t)P(t)x(t) + α′

8τ̄

∫ t
t−2τ

(∫ t
r |x(l)|2dl

)
dr ,

where
P(t) = κIn +

∫ t
t−c̃

∫ t
s m(l)mT (l) dl ds

and κ = 1 + c̃
2 + 1

4α′ c̃4.
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α′ ∈ (0,1), β′ > 0, and c̃ > 0 such that

α′In ≤
∫ t+c̃

t m(r)mT (r)dr ≤ β′In for all t ∈ R.

Corollary: Let τ ∈ (0, τ̄ ]. Then (Σid) admits the ISS-LKF

U(t , xt ) = xT (t)P(t)x(t) + α′

8τ̄

∫ t
t−2τ

(∫ t
r |x(l)|2dl

)
dr ,

where
P(t) = κIn +

∫ t
t−c̃

∫ t
s m(l)mT (l) dl ds

and κ = 1 + c̃
2 + 1

4α′ c̃4.



Sample Result (F. Mazenc, M., S-I. Niculescu)

ẋ(t) = M(t)x(t) + N(t)u(t − τ) + δ(t). (3)

Theorem 2: If there is a bounded continuous K such that

ż(t) =
[
M(t) + λ(t , t + τ)N(t + τ)K (t)

]
z(t) (4)

is UGAS, where λ is the fundamental matrix for M, then there
are β ∈ KL and γ ∈ K∞ such that all trajectories of (3) with

u(t) = K (t)
[
x(t) +

∫ t
t−τ λ(t , r + τ)N(r + τ)u(r)dr

]
(5)

satisfy

|x(t)|+ |u|[t−τ,t] ≤ β
(
|x(t0)|+ |u|[t0−τ ,t0], t − t0

)
+ γ(|δ|[t0,t]) (6)

for all initial times t0 ≥ 0 and all t ≥ t0.
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Reduction Approach

Next consider

ẋ(t) = F (t)x(t) + G(t)u(t − τ) + δ(t) . (RS)

F and G continuous, F has some period T > 0, and G bounded.

MF = 1
T

∫ T
0 F (`)d` and

F(t) = 1
T

∫ t
t−T

(∫ t
m F (`)d`

)
dm − L0,

(7)

where the (i , j) entry of L0 ∈ Rn×n is 1
2(ϕ]

i,j + ϕ[
i,j) for all i and j ,

and ϕ]

i,j (resp., ϕ[
i,j ) is the maximum (resp., minimum) of

1
T

∫ t
t−T

(∫ t
m Fi,j(`)d`

)
dm

over all t .
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Reduction Approach

Next consider

ẋ(t) = F (t)x(t) + G(t)u(t − τ) + δ(t) . (RS)

Assumption 1: There exist a bounded continuous function K and
a C1 function P such that the time derivative of

Q(t , z) = z>P(t)z (8)

along ż(t) = (F (t) + e−MF τG(t + τ)K (t))z(t) satisfies

Q̇(t) ≤ −|z(t)|2. (9)

Also, there are positive constants p∗ and ps such that

|P(t)| ≤ p∗ and psIn ≤ P(t) ≤ p∗In (10)

hold for all t ∈ R.



Sample Result (F. Mazenc, M., S-I. Niculescu)

Next consider

ẋ(t) = F (t)x(t) + G(t)u(t − τ) + δ(t) . (RS)

Assumption 2: The inequalities

|F|∞|K |∞p∗e|F |∞τ |G|∞ ≤ 1
16 ,

|G|∞|F|∞|K |∞e(|F |∞+1)τ√τ ≤ 1√
2
, and

|F|∞|K |∞p∗|G|∞eτ max
{

1, J∗e|F |∞τ√τ
}
≤ 0.19

(11)

hold, where J∗ = 2|F |∞ + e|F |∞τ |G|∞|K |∞(1 + |F|∞).

Theorem 3: If Assumptions 1-2 hold, then (RS) with the control

u(t) = K (t)
[
x(t) +

∫ t
t−τ eMF (t−r−τ)G(r + τ)u(r)dr

]
(12)

is exponentially ISS.
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One of Our Applications of Reduction Approach

Simple pendulum:{
ṙ1(t) = r2(t)
ṙ2(t) = −g

` sin(r1(t)) + 1
m`2 v(t − τ)

(13)

We wish to track with r1,s(t) = ωt and τ = 1 when ω > 0 is a
large enough constant, which gives a rapidly time-varying
system. m = mass, ` = pendulum length, g = 9.8.

Corollary: The control v(t − 1) = m`2(u(t − 1) + g
` sin(ωt)) with

u(t) = −0.6x1(t)− 0.4x2(t)

−
∫ t

t−1

(
0.6(t − s − 1) + 0.4

)
u(s)ds

(14)

ensures exponential ISS of the linearized tracking dynamics to 0.
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Pendulum Simulations with δ = 0



Pendulum Simulations with δ = 0.1(sin, cos)



Reduction Approach for Nonlinear Systems

We can prove locally stabilizing analogs for

ẋ(t) = A(t)x(t) + B(t)u(t − τ) + F (t , x(t)). (LS)

Main Assumptions: (a) F admits a decomposition of the form

F (t , x) = λ(t , t + τ)B(t + τ)f1(t , τ , x) + f2(t , x), (15)

and suitable continuous functions α1 and α2 such that

|f1(t , τ , x)| ≤ |x |2α1(τ , |x |2) and |f2(t , x)| ≤ |x |2α2(|x |2) (16)

for all t ∈ R, τ ≥ 0, and x ∈ Rn, where λ is the fundamental
solution of ẋ = A(t)x . (b) There is a matrix K such that

ẋ =
(
A(t) + λ(t , t + τ)B(t + τ)K (t , τ)

)
x (17)

satisfies appropriate stability properties.
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Reduction Approach for Nonlinear Systems

For suitable q, v , and a, we can then prove:

Theorem 3: For each constant τ > 0 and each initial function
(φx , φu) ∈ C0([−τ ,0],Rn × Rp) satisfying√

q(τ)
∣∣∣φx (0) +

∫ 0
−τ λ(0, r + τ)B(r + τ)φu(r)dr

∣∣∣
+ a
τ

∫ 0
−τ (r + 2τ)|φu(r)|dr < v(τ),

(18)

the unique solution of (LS), in closed loop with

u(t) = −f1(t , τ , x(t)) + K (t , τ)

[
x(t)

+
∫ t

t−τ λ(t , r + τ)B(r + τ)u(r)dr
]
,

(19)

converges to 0 as t →∞.



Joint work with V. Andrieu, M. Krstic, and Others

The preceding results assume that continuous observations of
the state are available, but sometimes only sampled values of
the state, or of an output, can be measured.

We designed continuous-discrete observers for nonlinear
time-varying systems, where the sampling of the output can be
viewed as sawtooth shaped time-varying delays.

We also incorporated sampling and state constraints in our
predictive control for neuromuscular electrical stimulation, which
aims to restore movement in patients with mobility disorders.

We also have feedback delays and state constraints in our
SICON paper on 3D curve tracking, where the state constraints
are chosen to compute maximal allowable perturbations.



Joint work with V. Andrieu, M. Krstic, and Others

The preceding results assume that continuous observations of
the state are available, but sometimes only sampled values of
the state, or of an output, can be measured.

We designed continuous-discrete observers for nonlinear
time-varying systems, where the sampling of the output can be
viewed as sawtooth shaped time-varying delays.

We also incorporated sampling and state constraints in our
predictive control for neuromuscular electrical stimulation, which
aims to restore movement in patients with mobility disorders.

We also have feedback delays and state constraints in our
SICON paper on 3D curve tracking, where the state constraints
are chosen to compute maximal allowable perturbations.



Joint work with V. Andrieu, M. Krstic, and Others

The preceding results assume that continuous observations of
the state are available, but sometimes only sampled values of
the state, or of an output, can be measured.

We designed continuous-discrete observers for nonlinear
time-varying systems, where the sampling of the output can be
viewed as sawtooth shaped time-varying delays.

We also incorporated sampling and state constraints in our
predictive control for neuromuscular electrical stimulation, which
aims to restore movement in patients with mobility disorders.

We also have feedback delays and state constraints in our
SICON paper on 3D curve tracking, where the state constraints
are chosen to compute maximal allowable perturbations.



Joint work with V. Andrieu, M. Krstic, and Others

The preceding results assume that continuous observations of
the state are available, but sometimes only sampled values of
the state, or of an output, can be measured.

We designed continuous-discrete observers for nonlinear
time-varying systems, where the sampling of the output can be
viewed as sawtooth shaped time-varying delays.

We also incorporated sampling and state constraints in our
predictive control for neuromuscular electrical stimulation, which
aims to restore movement in patients with mobility disorders.

We also have feedback delays and state constraints in our
SICON paper on 3D curve tracking, where the state constraints
are chosen to compute maximal allowable perturbations.



Joint work with V. Andrieu, M. Krstic, and Others

The preceding results assume that continuous observations of
the state are available, but sometimes only sampled values of
the state, or of an output, can be measured.

We designed continuous-discrete observers for nonlinear
time-varying systems, where the sampling of the output can be
viewed as sawtooth shaped time-varying delays.

We also incorporated sampling and state constraints in our
predictive control for neuromuscular electrical stimulation, which
aims to restore movement in patients with mobility disorders.

We also have feedback delays and state constraints in our
SICON paper on 3D curve tracking, where the state constraints
are chosen to compute maximal allowable perturbations.



Conclusions

Feedback stabilization under delays can be challenging and is
beyond the scope of standard Lyapunov methods.

One can design the controller with the delay set to zero and then
find upper bounds on the allowable feedback delays.

Another approach is prediction or reduction, where the delay is
given and we design the feedback to stabilize under that delay.

While complicated by integral equations, a possible advantage
of reduction is its ability to compensate for arbitrarily long delays.

There are interesting cases where we can also allow control
constraints, outputs, sampling, and state constraints.

Promising future research directions involve adaptive predictive
control and parameter identification for nonlinear systems.
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