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Chemostat Model

Chemostat with N competing species and M limiting nutrients:
ṡj = Ds

j (s
in
j − sj)−

N∑
i=1

Gi,j(S)xi , 1 ≤ j ≤ M

ẋi =

−Dx
i +

M∑
j=1

ηi,jGi,j(S)

 xi , 1 ≤ i ≤ N .

(1)

S = (s1, s2, . . . , sN) gives substrate concentrations.
xi = concentration of species i . Dx

i = removal rate of species i .
Gi,j(S) =C1 consumption rate of substrate j by species i .

Smith.. MacArthur, Tilman.. Li-Smith. Sontag. Wolkowicz.
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Survey of Our Work

For N = M = 1, we stabilized certain periodic trajectories with
robustness to dilution rate controller uncertainty. MBE’07.

We covered N = 2 and M = 1 with periodic reference
trajectories and exponentially fast tracking. TAC’08.

Also for N = 2 and M = 1, we stabilized positive points with
output controls, Lyapunov functions, and robustness. TAC’09.

We covered Haldane Gi,j ’s, stabilization of positive equilibria, and
delayed output controls for N = 2 and M = 1. Automatica’10.

This talk focuses on stability and stabilization of componentwise
positive points that apply for any value of N = M. JBD’12.
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We first address the nontrivial problem of finding
componentwise positive equilibria of the dynamics.

Then we study the stability and stabilization of such points.
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Sufficient Conditions for Positive Equilibria

Pi = projection on component i . ν = (1, ....,1)> ∈ RN .

Assumption 1: Gi,j(S) > 0 for all S ∈ (0,∞)N , (∂Gi,j/∂sk )(S) ≥ 0
for all S ∈ [0,∞)N , and (∂Gi,i/∂si)(mPi(ν)) > 0 for all m > 0,
and Gi,j(S − Pj(S)) = 0 for all S ∈ [0,∞)N for all i , j , k .

Assumption 2: There are constants B < minj{sin
j } and ε ∈ (0,B)

such that the following hold for all i ∈ {1,2, . . . ,N}:
N∑

j=1

ηi,jGi,j

(
BPi(ν)

)
> Dx

i (2)

N∑
j=1

ηi,jGi,j

(
B[ν − Pi(ν)] + εPi(ν)

)
< Dx

i (3)

sup
S∈[ε,B]N

N∑
p=1, p 6=i

Gp,i (S)Ds
p(sin

p −ε)
Gp,p(S) < Ds

i (s
in
i − B) . (4)
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Classes of Gi ,j ’s Covered by Assumptions 1-2

Monod uptake functions:

Gi,j(S) =
ci,jsj

1 + gjsj
.

Tessier uptake functions:

Gi,j(S) = ci,jsj

(
1− e−sj/gj

)
.

The ci,j ’s and gj ’s are positive constants.

Interacting species cases:

Gi,j(S) =

∫ Ri,j (sj )

0
Ji,j
(
r ,S − Pj(S)

)
dr .
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General Existence Theorem (M&M’12)

Theorem E: If Assumptions 1-2 hold, then (1) admits a
componentwise positive equilibrium point (S∗,X∗) ∈ (0,∞)2N .

Idea of Proof: First find S∗ = (s1∗, s2∗, . . . , sN∗) ∈ (ε,B)N so that

−Dx
i +

N∑
j=1

ηi,jGi,j(S∗) = 0 ∀i ∈ {1,2, . . . ,N} . (5)

That makes ẋi = 0 for all i . Next make ṡj = 0 for all j by finding
X∗ = (x1∗, x2∗, . . . , xN∗) ∈ (0,∞)N that solves the system

Ds
j (s

in
j − sj∗)−
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Gi,j(S∗)xi∗ = 0, 1 ≤ j ≤ N . (6)

Use Brouwer degrees and the homotopy invariance property.
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GAS Positive Equilibrium (M&M’12)

Theorem A: Let (1) satisfy Assumptions 1-2 with Monod Gi,j ’s
and C = [ci,j ] invertible. Assume there is a constant D > 0 such
that Ds

j = Dx
i = D and ηi,j = 1 for all i , j ∈ {1,2, . . . ,N}. Then (1)

has a GAS equilibrium (S∗,X∗) relative to (0,∞)2N . �

Idea of Proof: Use Barbalat’s Lemma and the Lyapunov function

L(S̃, X̃ ) =
N∑

j=1

1
1 + gjsj∗

ϕsj∗(s̃j) +
N∑

k=1

ϕxk∗(x̃k ) , (7)

where S∗ = (s1∗, s2∗, . . . , sN∗), X∗ = (x1∗, x2∗, . . . , xN∗), and

ϕξ∗(ξ) = ξ − ξ∗ ln
(

1 + ξ
ξ∗

)
. (8)

We can solve for (S∗,X∗) explicitly using the Monod formulas.
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Reminder of the Model

Now we view D and sin
j as controllers.

ṡj = D(sin
j − sj)−

N∑
i=1

Gi,j(S)xi , 1 ≤ j ≤ N

ẋi =

−D +
N∑

j=1

ηi,jGi,j(S)

 xi , 1 ≤ i ≤ N .

(1)



Regulation of Species and Nutrient (M&M’12)

Theorem B: Assume that the Gi,j ’s are Monod, that C = [ci,j ] is
invertible, and that C−1ν = (k1, k2, . . . , kN)

> ∈ (0,∞)N . Assume
ηi,j = 1 for all i and j . Given any (ξ1, ..., ξN) ∈ (0,∞)N , fix any

D ∈
(

0,min
j

1
kjgj

)
and $j =

Dkj

1− Dkjgj
∀j ∈ {1,2, . . . ,N} . (9)

Then (1) with the dilution rate Ds
j ≡ Dx

i ≡ D and the constants

sin
j = $j + kj

N∑
i=1

ci,jξi , j = 1,2, . . . ,N (10)

admits ($1, ..., $N , ξ1, ..., ξN) as a globally asymptotically stable
componentwise positive equilibrium point relative to (0,∞)2N . �



Regulation of Species and Nutrient (M&M’12)

Theorem B: Assume that the Gi,j ’s are Monod, that C = [ci,j ] is
invertible, and that C−1ν = (k1, k2, . . . , kN)

> ∈ (0,∞)N .

Assume
ηi,j = 1 for all i and j . Given any (ξ1, ..., ξN) ∈ (0,∞)N , fix any

D ∈
(

0,min
j

1
kjgj

)
and $j =

Dkj

1− Dkjgj
∀j ∈ {1,2, . . . ,N} . (9)

Then (1) with the dilution rate Ds
j ≡ Dx

i ≡ D and the constants

sin
j = $j + kj

N∑
i=1

ci,jξi , j = 1,2, . . . ,N (10)

admits ($1, ..., $N , ξ1, ..., ξN) as a globally asymptotically stable
componentwise positive equilibrium point relative to (0,∞)2N . �



Regulation of Species and Nutrient (M&M’12)

Theorem B: Assume that the Gi,j ’s are Monod, that C = [ci,j ] is
invertible, and that C−1ν = (k1, k2, . . . , kN)

> ∈ (0,∞)N . Assume
ηi,j = 1 for all i and j .

Given any (ξ1, ..., ξN) ∈ (0,∞)N , fix any

D ∈
(

0,min
j

1
kjgj

)
and $j =

Dkj

1− Dkjgj
∀j ∈ {1,2, . . . ,N} . (9)

Then (1) with the dilution rate Ds
j ≡ Dx

i ≡ D and the constants

sin
j = $j + kj

N∑
i=1

ci,jξi , j = 1,2, . . . ,N (10)

admits ($1, ..., $N , ξ1, ..., ξN) as a globally asymptotically stable
componentwise positive equilibrium point relative to (0,∞)2N . �



Regulation of Species and Nutrient (M&M’12)

Theorem B: Assume that the Gi,j ’s are Monod, that C = [ci,j ] is
invertible, and that C−1ν = (k1, k2, . . . , kN)

> ∈ (0,∞)N . Assume
ηi,j = 1 for all i and j . Given any (ξ1, ..., ξN) ∈ (0,∞)N , fix any

D ∈
(

0,min
j

1
kjgj

)
and $j =

Dkj

1− Dkjgj
∀j ∈ {1,2, . . . ,N} . (9)

Then (1) with the dilution rate Ds
j ≡ Dx

i ≡ D and the constants

sin
j = $j + kj

N∑
i=1

ci,jξi , j = 1,2, . . . ,N (10)

admits ($1, ..., $N , ξ1, ..., ξN) as a globally asymptotically stable
componentwise positive equilibrium point relative to (0,∞)2N . �



Regulation of Species and Nutrient (M&M’12)

Theorem B: Assume that the Gi,j ’s are Monod, that C = [ci,j ] is
invertible, and that C−1ν = (k1, k2, . . . , kN)

> ∈ (0,∞)N . Assume
ηi,j = 1 for all i and j . Given any (ξ1, ..., ξN) ∈ (0,∞)N , fix any

D ∈
(

0,min
j

1
kjgj

)
and $j =

Dkj

1− Dkjgj
∀j ∈ {1,2, . . . ,N} . (9)

Then (1) with the dilution rate Ds
j ≡ Dx

i ≡ D and the constants

sin
j = $j + kj

N∑
i=1

ci,jξi , j = 1,2, . . . ,N (10)

admits ($1, ..., $N , ξ1, ..., ξN) as a globally asymptotically stable
componentwise positive equilibrium point relative to (0,∞)2N . �



Simulations for Theorem B

We took the Monod uptake functions

Gi,j(S) =
ci,j sj

1+gj sj
(11)

with N = 3 and the parameters

ck ,k = 2 ∀k ∈ {1,2,3} , ci,k = 1
12 for i 6= k ,

and gk = 1
4 ∀k ∈ {1,2,3} .

(12)

C = [ci,j ] is invertible and C−1ν = (k1, k2, . . . , kN)
> ∈ (0,∞)N .

We took the controllers D = 4.333 and sin
j = 5 for j = 1,2,3.

These controller values satisfy the requirements from Theorem
B for stabilizing the species levels to X∗ = (1,1,1).
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Simulation for First Species x1

Initial value x1(0) = 0.5.



Simulation for First Species x2

Initial value x2(0) = 1.



Simulation for First Species x3

Initial value x3(0) = 1.5.



Simulation for First Substrate s1

Initial value s1(0) = 0.5.



Simulation for First Substrate s2

Initial value s2(0) = 1.



Simulation for First Substrate s3

Initial value s3(0) = 1.5.



Conclusions

I Chemostats play a central role in bioengineering and have
been studied by many authors using a variety of techniques.

I We used Brouwer degree theory to find componentwise
positive equilibria in chemostats with arbitrary N = M.

I For Monod uptake functions, reasonable conditions ensure
global asymptotic stability of this equilibrium.

I Other conditions ensure stabilizability of desired
componentwise positive equilibrium points.

I We aim for extensions that prove robustness to unknown
perturbations in the sense of input-to-state stability.
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