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Basic Vocabulary and Simple Example

A Lyapunov function for a system ẋ = F(t , x) with state space X
is a positive definite proper function V : [0,∞)×X → [0,∞)
such that V̇ := Vt + VxF ≤ 0 on [0,∞)×X .

By positive definite, we mean inft V (t , x) is zero when x = 0 and
positive for all x ∈ X \ {0}. Proper means that inft V (t , x)→∞
as x approaches boundary(X ) or |x | → ∞.

For example, V (x) = ln(1 + x2) is a Lyapunov function for
ẋ = −x/(1 + x2) because V̇ ≤ −x2/(1 + x2)2, which gives
global asymptotic stability, i.e., attractivity and local stability.

However, for each constant δ̄ > 0, we can find an x0 such that
the trajectory for ẋ = −x/(1 + x2) + δ̄ starting at x0 is
unbounded, which means we lack input-to-state stability.
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the trajectory for ẋ = −x/(1 + x2) + δ̄ starting at x0 is
unbounded, which means we lack input-to-state stability.



Basic Vocabulary and Simple Example

A Lyapunov function for a system ẋ = F(t , x) with state space X
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Background

Strict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) positive definite.

Nonstrict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) nonnegative definite.

Either way, inft V (t , x) is assumed proper and positive definite.

Converse Lyapunov theory often guarantees the existence of
strict Lyapunov functions. See Bacciotti-Rosier CCE Book.
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Nonstrict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) nonnegative definite.

Either way, inft V (t , x) is assumed proper and positive definite.

Using LaSalle Invariance, we can often use nonstrict Lyapunov
functions to prove stability.
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However, explicit strict Lyapunov function constructions are
often needed in applications to certify robustness.
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Nonstrict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) nonnegative definite.

Either way, inft V (t , x) is assumed proper and positive definite.

This has led to significant research on explicitly constructing
strict Lyapunov functions.



Background

Strict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) positive definite.

Nonstrict Lyapunov function decay:
V̇ (t , x) ≤ −W (x), with W (x) nonnegative definite.

Either way, inft V (t , x) is assumed proper and positive definite.

We assume standard assumptions on the dynamics which hold
under smooth forward completeness and time-periodicity.



ISS Motivation-Part 1/3

Input-to-state stability is a robustness property for systems

ẋ = F(t , x ,d) . (1)

Invented by E. Sontag; see CDC’88, T-AC’89. The state space
X is a general open subset of Euclidean space containing 0.

Assume F(t ,0,0) = 0 for all t . E.g., ẋ = f (t , x) + g(t , x)d if
f (t ,0) = 0 for all t . That’s the control-affine case.

The disturbances d : [0,∞)→ D are measurable essentially
bounded functions valued in some subset D of a Euclidean
space. See our CCE book for standing assumptions on F .
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ISS Motivation-Part 2/3

We say that (1) is ISS provided there exist functions β ∈ KL and
γ ∈ K∞ and a modulus ᾱ with respect to X s.t. for all initial
conditions x(t0) = x0 ∈ X and all disturbances d , the
corresponding trajectories t 7→ ζ(t ; t0, x0,d) satisfy

|ζ(t ; t0, x0,d)| ≤ β
(
ᾱ(x0), t − t0

)
+ γ(|d |∞) ∀t ≥ t0 . (2)

The special case where γ and d are not present is UGAS. This
corresponds to point stabilization but not just attractivity.

ISS Lyapunov function decay: V̇ ≤ −α1(V ) + α2(|d |), αi ∈ K∞.
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ISS Motivation-Part 3/3

Example: Assume that

ẋ = Fcl(t , x) := f (t , x) + g(t , x)K (t , x) (3)

is UGAS to the origin.

Assume that we have a strict Lyapunov function V so that
W (x) = inft{−[Vt (t , x) + Vx (t , x)Fcl(t , x)]} is proper.

Then

ẋ = f (t , x) + g(t , x)

[
K (t , x)− DxV (t , x) · g(t , x) + d

]
(4)

is ISS with respect to actuator errors d .

Need K (t , x) and DxV (t , x) · g(t , x).
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ẋ = f (t , x) + g(t , x)

[
K (t , x)− DxV (t , x) · g(t , x) + d

]
(4)

is ISS with respect to actuator errors d .

Need K (t , x) and DxV (t , x) · g(t , x).



ISS Motivation-Part 3/3

Example: Assume that
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Strictification under LaSalle Assumptions

Assume ẋ = f (x) has a nonstrict Lyapunov function V so that:

∃N∗ > 0 s.t. ∀q ∈ Rn \ {0}, ∃i ∈ [1,N∗] s.t. Li
f V (q) 6= 0. (NDC)

This makes the system UGAS, by LaSalle Invariance.

In fact, if Lf V (x(t , x0)) ≡ 0 along some trajectory, then
Lk

f V (x(t , x0)) ≡ 0 for all t ≥ 0 and k ∈ N, so Lk
f V (x0) ≡ 0.

Q: Can we transform V into a strict Lyapunov function?

A: Yes, and we can allow time varying systems and relax NDC.

Let V ∈ C∞ be a nonstrict Lyapunov function for ẋ = f (t , x),
x ∈ Rn, with f and V having period T in t . Goal: Strictify it.
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x ∈ Rn, with f and V having period T in t . Goal: Strictify it.



Strictification under LaSalle Assumptions
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Strictification under LaSalle Assumptions

a1 = −V̇ .

ai+1 = −ȧi . Aj(t , x) =
∑j

m=1 am+1(t , x)am(t , x).

Theorem 1 (MM-FM, TAC’10) Assume ∃ constants τ ∈ (0,T ]
and ` ∈ N and a positive definite continuous function ρ such that
for all x ∈ Rn and all t ∈ [0, τ ], we have the NDC condition

a1(t , x) +
∑̀
m=2

a2
m(t , x) ≥ ρ(V (t , x)) . (5)

Then we can explicitly determine functions Fj and G such that

V ](t , x) =
`−1∑
j=1

Fj
(
V (t , x)

)
Aj(t , x)+G

(
t ,V (t , x)

)
(6)

is a strict Lyapunov function, giving UGAS of the dynamics. J
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Strictification under LaSalle Assumptions

The NDC condition (5) allows cases where all of the iterated Lie
derivatives vanish for some times t .

{
ẋ1 = cos(t)x2

ẋ2 = − cos(t)x1 − x2 .
(7)

V (x) = 1
2 |x |

2, ` = 3, and T = 2π. Nonstrict: V̇ (x) = −x2
2 .

a1(t , x) + a2
2(t , x) + a2

3(t , x) ≥ 4 cos4(t)
200(V (x) + 1)

V 2(x) .

Hence, (5) holds with τ = π
4 and ρ(r) = r2/{200(r + 1)}.
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Second Construction for ẋ = f (x), x ∈ X

This Matrosov approach constructs the auxiliary functions.

Assumption A There exist a storage function V1 : X → [0,∞);
functions hj such that hj(0) = 0 for all j ; everywhere positive
functions r1, . . . , rm and ρ; and an integer N > 0 for which

∇V1(x)f (x) ≤ −r1(x)h2
1(x)− ...− rm(x)h2

m(x) ∀x ∈ X (8)

and
N−1∑
k=0

m∑
j=1

[
Lk

f hj(x)
]2
≥ ρ(V1(x))V1(x) ∀x ∈ X . (9)

Also, f ∈ C∞(Rn), and V1 has a positive definite quadratic lower
bound in some neighborhood of 0 ∈ Rn.
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Second Construction for ẋ = f (x), x ∈ X

Theorem 2 (MM-FM, TAC’10) Assume that ẋ = f (x) satisfies
Assumption A. Set

Vi(x) = −
m∑
`=1

Li−2
f h`(x)Li−1

f h`(x) , i = 2, . . . ,N . (10)

One can determine explicit functions k`,Ω` ∈ K∞ ∩ C1 such that

S(x) =
N∑
`=1

Ω`

(
k`(V1(x)) + V`(x)

)
(11)

is a strict Lyapunov function on X satisfying S(x) ≥ V1(x) on X .

Significance:
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Biological Application

Lotka-Volterra predator-prey dynamics:{
χ̇ = γχ

(
1− χ

L

)
− aχζ

ζ̇ = βχζ −∆ζ
(12)

ζ = predator. χ = prey. a, β, γ,∆,L = positive constants.

Change coordinates and rescale to get the error dynamics{
˙̃x = −[x̃ + αỹ ](x̃ + x∗)
˙̃y = αx̃(ỹ + y∗) ,

(13)

with state space X = (−x∗,+∞)× (−y∗,+∞),

α = βL
γ , d = ∆

γ , x∗ = d
α and y∗ = 1

α −
d
α2 . (14)

Assume α > d . Want a global strict Lyapunov function for (13).
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˙̃y = αx̃(ỹ + y∗) ,
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˙̃y = αx̃(ỹ + y∗) ,
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Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra
models available based on computing the LaSalle invariant set.

By contrast, our result provides a global strict Lyapunov function.

V1(x̃ , ỹ) = x̃ − x∗ ln
(

1 +
x̃
x∗

)
+ ỹ − y∗ ln

(
1 +

ỹ
y∗

)
(15)

Nonstrict Lyapunov decay condition: V̇1(x̃ , ỹ) ≤ −|x̃ |2.

Auxiliary function from theorem: V2(x̃ , ỹ) = x̃ [x̃ + αỹ ](x̃ + x∗).
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+ ỹ − y∗ ln

(
1 +

ỹ
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Strict Lyapunov Function Construction (MM-FM)

S(x̃ , ỹ) = V2(x̃ , ỹ) +
∫ V1(x̃ ,ỹ)

0 φ1(r) dr

+
[
p1
(
V1(x̃ , ỹ)

)
+ 1
]
V1(x̃ , ỹ),

(16)

where

φ1(r) = 2
[
(289x∗+144αy∗)2+144α2x∗y∗

]
e2

(
1

x∗
+ 1

y∗

)
r

and

p1(r) = 1536(x∗ + 1)(α + 1)(1 + x∗ + y∗)4(1 + r)3.

Along the trajectories of the L-V error dynamics,

Ṡ ≤ −1
4

[
x̃2 +

{
(x̃ + αỹ)(x̃ + x∗)

}2
]
. (17)



Strict Lyapunov Function Construction (MM-FM)
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Conclusions

I The point stabilization and strict Lyapunov function
construction problems are closely related.

I While UGAS can be established using nonstrict Lyapunov
functions, strict Lyapunov functions can give ISS.

I The LaSalle and Matrosov approaches transform nonstrict
Lyapunov functions into strict ones.

I Extensions exist for multiple time scales and unknown
parameters, e.g., adaptive, delayed, and hybrid systems.

I We aim to extend strictification to general classes of
adaptive time delayed systems with state constraints.
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