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Basic Vocabulary and Simple Example

A Lyapunov function for a system x = F(t, x) with state space X
is a positive definite proper function V' : [0,00) x & — [0, 00)
suchthat V.= V; + VWF <0on[0,00) x X.

By positive definite, we mean inf; V(t, x) is zero when x = 0 and
positive for all x € X'\ {0}. Proper means that inf; V(t, x) — oo
as x approaches boundary(&X’) or |x| — oo.

For example, V(x) = In(1 + x?) is a Lyapunov function for

x = —x/(1 + x?) because V < —x2/(1 + x?)?, which gives
global asymptotic stability, i.e., attractivity and local stability.
However, for each constant § > 0, we can find an xq such that

the trajectory for x = —x/(1 + x?) + ¢ starting at xo is
unbounded, which means we lack input-to-state stability.
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Using LaSalle Invariance, we can often use nonstrict Lyapunov
functions to prove stability.
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Strict Lyapunov function decay:

V(t, x) < —W(x), with W(x) positive definite.

Nonstrict Lyapunov function decay:

V(t,x) < —W(x), with W(x) nonnegative definite.
Either way, inf; V(t, x) is assumed proper and positive definite.

For example, take X; = Xp, %> = —x; — x5. Use V(x) = 0.5/x|°.
Then V = —x$. The largest invariant set in {x : x, = 0} is {0}.
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V(t, x) < —W(x), with W(x) positive definite.

Nonstrict Lyapunov function decay:

V(t, x) < —W(x), with W(x) nonnegative definite.
Either way, inf; V(t, x) is assumed proper and positive definite.

However, explicit strict Lyapunov function constructions are
often needed in applications to certify robustness.
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V(t, x) < —W(x), with W(x) positive definite.

Nonstrict Lyapunov function decay:

V(t, x) < —W(x), with W(x) nonnegative definite.
Either way, inf; V(t, x) is assumed proper and positive definite.

This has led to significant research on explicitly constructing
strict Lyapunov functions.



Background

Strict Lyapunov function decay:

V(t, x) < —W(x), with W(x) positive definite.

Nonstrict Lyapunov function decay:

V(t, x) < —W(x), with W(x) nonnegative definite.
Either way, inf; V(t, x) is assumed proper and positive definite.

We assume standard assumptions on the dynamics which hold
under smooth forward completeness and time-periodicity.
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Input-to-state stability is a robustness property for systems
x=F(tx,d). (1)

Invented by E. Sontag; see CDC’88, T-AC’89. The state space
X is a general open subset of Euclidean space containing 0.

Assume F(t,0,0) =0 for all t. E.g., x = f(t,x) + g(t, x)d if
f(t,0) = 0 for all t. That’s the control-affine case.

The disturbances d : [0,00) — D are measurable essentially
bounded functions valued in some subset D of a Euclidean
space. See our CCE book for standing assumptions on F.
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We say that (1) is ISS provided there exist functions 5 € ££ and
v € K« and a modulus & with respect to X s.t. for all initial
conditions x(fy) = xo € X and all disturbances d, the
corresponding trajectories t — ((t; fp, Xo, d) satisfy

C(t: 10,360, )] < 6<&(Xo),t— to> F(dl) > . (@)

The special case where v and d are not present is UGAS. This
corresponds to point stabilization but not just attractivity.

ISS Lyapunov function decay: V < —a+(V) + ax(|d|), aj € Kee.
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Example: Assume that
x = Fu(t, x) := f(t,x) + g(t, x)K(t, x) (3)
is UGAS to the origin.

Assume that we have a strict Lyapunov function V so that
W(x) = inf{—[Vi(t, x) + Vx(t, x)Fa(t, x)]} is proper.

Then
x =1f(t,x)+g(t,x)|K(t,x) — DxV(t,x)-g(t,x)+d| (4)
is ISS with respect to actuator errors d.

Need K(t, x) and Dy V(t, x) - g(t, x).
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Assume x = f(x) has a nonstrict Lyapunov function V so that:
3N, > 0s.t. Vg € R"\ {0}, 3i € [1, N,] s.t. L}V(g) # 0. (NDC)

This makes the system UGAS, by LaSalle Invariance.

In fact, if LfV(x(t, xo)) = 0 along some trajectory, then
LkV(x(t,x0)) =0forall t > 0and k € N, so LKV(xp) = 0.

Q: Can we transform V into a strict Lyapunov function?
A: Yes, and we can allow time varying systems and relax NDC.

Let V € C* be a nonstrict Lyapunov function for x = f(t, x),
x € R", with f and V having period T in t. Goal: Strictify it.
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ar=-V. ap1=-2a. A(t,X)=0_am(t X)an(t, x).

Theorem 1 (MM-FM, TAC’10) Assume 3 constants T € (0, T|
and ¢ € N and a positive definite continuous function p such that
for all x e R™ and all t € [0, 7], we have the NDC condition

¢
ar(t,x)+ Y a(t.x) > p(V(t,x)) . (5)
m=2

Then we can explicitly determine functions F; and G such that

Zf, i(t,x)+G(t, V(1 X)) (6)

is a strict Lyapunov funct/on, giving UGAS of the dynamics.
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Xo = —cos(t)xg — Xz .

V(x) = 3|x|?, £ =3, and T = 2. Nonstrict: V(x) = —x3.

4 cos*(t
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* a0V 1)
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The NDC condition (5) allows cases where all of the iterated Lie
derivatives vanish for some times t.

{)’(1 = cos(t)xz @

Xo = —cos(t)xg — Xz .

V(x) = 3|x|?, £ =3, and T = 2. Nonstrict: V(x) = —x3.

an(tX)+ B(tx) + Bt x) > 1S ey

= 200(V(x) + 1)

Hence, (5) holds with 7 = Z and p(r) = r?/{200(r + 1)}.
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Second Construction for x = f(x), x € X

This Matrosov approach constructs the auxiliary functions.

Assumption A There exist a storage function Vi : X — [0, 0);
functions h; such that h;(0) = 0 for all j; everywhere positive

functions ry, ..., rm and p; and an integer N > 0 for which
VVi(x)f(X) < —rn(x)H(x) — ... — rm(x)R2,(x) ¥x € X (8)
N-1 m 5
and 3N [L?h,(x)} > p(ViOO))Vi(x) Yx e X, (9)
k=0 j=1

Also, f € C>*(R"), and V; has a positive definite quadratic lower
bound in some neighborhood of 0 € R".
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Theorem 2 (MM-FM, TAC'10) Assume that x = f(x) satisfies
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ZL’ 2h(x)LL T he(x) , i=2,....N. (10)

One can determ/ne explicit functions ks, Q, € Koo N C' such that
N

= >0 (ki) + Vi) (11)

is a strict Lyapunov funec:t;on on X satisfying S(x) > V4(x) on X.

Significance: Allows any open state space X containing 0 € R”.



Second Construction for x = f(x), x € X

Theorem 2 (MM-FM, TAC'10) Assume that x = f(x) satisfies
Assumption A. Set

ZL’ 2h(x)LL T he(x) , i=2,....N. (10)

One can determ/ne explicit functions ks, Q, € Koo N C' such that
N

= >0 (ki) + Vi) (11)

is a strict Lyapunov funec:t;on on X satisfying S(x) > V4(x) on X.

Significance: Readily extends to time periodic t-v systems.
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Biological Application

Lotka-Volterra predator-prey dynamics:

{x = w(1-9)—ax (12)
¢ = Bx¢—AC

¢ =predator. x =prey. a, 5,7, A, L =positive constants.

Change coordinates and rescale to get the error dynamics
= —[X+af](*+x)

{ = aX(Y+y),
with state space X = (—x,, +00) X (— Vs, +00),

>

(13)
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Lotka-Volterra predator-prey dynamics:
S 1_X)_
{ X (1 -7) —ax¢ (12)
¢ = Bx¢—AC
¢ =predator. x =prey. a, 5,7, A, L =positive constants.
Change coordinates and rescale to get the error dynamics
{ = —[%+af](%+x.)
y = ax(y +y.),
with state space X = (—x,, +00) X (— Vs, +00),

L
:'87, d=2, x.=% and y =
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Biological Application

Lotka-Volterra predator-prey dynamics:
S 1_X)_
{ X x (11— 1) —ax¢ (12)
¢ = Bx¢—AC
¢ =predator. x =prey. a, 5,7, A, L =positive constants.

Change coordinates and rescale to get the error dynamics
{ = —[%+af](%+x.)
y = ax(y +y.),
with state space X = (—x,, +00) X (— Vs, +00),
a:%, d:%, X*:g and y, =
Assume « > d.

- X



Biological Application

Lotka-Volterra predator-prey dynamics:
V- 1_X)_
{ X x (11— 1) —ax¢ (12)
¢ = Bx¢—AC

¢ =predator. x =prey. a, 5,7, A, L =positive constants.

Change coordinates and rescale to get the error dynamics
{ = —[X+af](X + x)
y = ax(y +y.),
with state space X = (—x,, +00) X (— Vs, +00),
a=2 d=2 x=2 and y.=1-9. (14)
Assume « > d. Want a global strict Lyapunov function for (13).

- X



Use of Theorem 2



Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra
models available based on computing the LaSalle invariant set.



Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra
models available based on computing the LaSalle invariant set.

By contrast, our result provides a global strict Lyapunov function.



Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra
models available based on computing the LaSalle invariant set.

By contrast, our result provides a global strict Lyapunov function.

*



Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra
models available based on computing the LaSalle invariant set.

By contrast, our result provides a global strict Lyapunov function.

V1()"(,}7):)"(—x*ln<1+:>+}7_y*|n<1+}}/’> (15)

*

Nonstrict Lyapunov decay condition:



Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra
models available based on computing the LaSalle invariant set.

By contrast, our result provides a global strict Lyapunov function.

*

Nonstrict Lyapunov decay condition: V; (X, ) < —|X/2.



Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra
models available based on computing the LaSalle invariant set.

By contrast, our result provides a global strict Lyapunov function.

V1()"(,}7):)"(—x*ln<1+:>+}7_y*|n<1+}}/’> (15)

*

Nonstrict Lyapunov decay condition: V; (X, ) < —|X/2.

Auxiliary function from theorem:



Use of Theorem 2

There are many Lyapunov constructions for Lotka-Volterra
models available based on computing the LaSalle invariant set.

By contrast, our result provides a global strict Lyapunov function.

*

Nonstrict Lyapunov decay condition: V; (X, ) < —|X/2.

Auxiliary function from theorem: Vu (X, y) = X[X + ay](X + x.).
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Strict Lyapunov Function Construction (MM-FM)

S, 7) = Va(%,7)+ JJ 5 gy (r)dr

! (16)
oy (W (E7) + 1] V(%)

where

01(r) = 2[(289x+ 1440y, *+1440%x.y. | 25
and

pi(r) = 1536(x. + 1)(a+ 1)(1 + x. + y.)* (1 + ).

Along the trajectories of the L-V error dynamics,

S< —% [)”(2+{()"(+a}7)()”(+x*)}2}. (17)
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Conclusions
» The point stabilization and strict Lyapunov function
construction problems are closely related.

» While UGAS can be established using nonstrict Lyapunov
functions, strict Lyapunov functions can give ISS.

» The LaSalle and Matrosov approaches transform nonstrict
Lyapunov functions into strict ones.

» Extensions exist for multiple time scales and unknown
parameters, e.g., adaptive, delayed, and hybrid systems.

» We aim to extend strictification to general classes of
adaptive time delayed systems with state constraints.



