Adaptive Tracking and Estimation for Nonlinear Control Systems

Michael Malisoff, Louisiana State University
Joint with Frédéric Mazenc and Marcio de Queiroz
Sponsored by NSF/DMS Grant 0708084

AMS-SIAM Special Session on Control and Inverse Problems for Partial Differential Equations
2011 Joint Mathematics Meetings, New Orleans
Adaptive Tracking and Estimation Problem

Consider a suitably regular nonlinear system

\[\dot{\xi} = J(t, \xi, \Psi, u) \] (1)

with a smooth reference trajectory \(\dot{\xi}_R = J(t, \xi_R, \Psi, u_R) \).

Problem:
Design a dynamic feedback with estimator

\[u = u(t, \xi, \hat{\Psi}), \hat{\Psi} = \tau(t, \xi, \hat{\Psi}) \] (2)

such that the error

\[\gamma = (\tilde{\Psi}, \tilde{\xi}) = (\Psi - \hat{\Psi}, \xi - \xi_R) \to 0. \]

This is a central problem with numerous applications in flight control and electrical and mechanical engineering.

Persistent excitation.

Annaswamy, Astolfi, Narendra, Teel..
Adaptive Tracking and Estimation Problem

Consider a suitably regular nonlinear system

\[\dot{\xi} = J(t, \xi, \Psi, u) \] \hspace{1cm} (1)

with a smooth reference trajectory \(\xi_R \) and a vector \(\Psi \) of uncertain constant parameters.

This is a central problem with numerous applications in flight control and electrical and mechanical engineering.
Adaptive Tracking and Estimation Problem

Consider a suitably regular nonlinear system

\[\dot{\xi} = J(t, \xi, \Psi, u) \quad (1) \]

with a smooth reference trajectory \(\dot{\xi}_R \) and a vector \(\Psi \) of uncertain constant parameters. \(\dot{\xi}_R = J(t, \xi_R, \Psi, u_R) \).

Problem: Design a dynamic feedback with estimator

\[u = u(t, \xi, \hat{\Psi}) \quad \hat{\Psi} = \tau(t, \xi, \hat{\Psi}) \quad (2) \]

such that the error \(Y = (\hat{\Psi}, \hat{\xi}) = (\Psi - \hat{\Psi}, \xi - \xi_R) \rightarrow 0 \).

This is a central problem with numerous applications in flight control and electrical and mechanical engineering. Persistent excitation. Annaswamy, Astolfi, Narendra, Teel..
Adaptive Tracking and Estimation Problem

Consider a suitably regular nonlinear system

$$\dot{\xi} = J(t, \xi, \Psi, u)$$ \hspace{1cm} (1)

with a smooth reference trajectory ξ_R and a vector Ψ of uncertain constant parameters. $\dot{\xi}_R = J(t, \xi_R, \Psi, u_R)$.

Problem:
Adaptive Tracking and Estimation Problem

Consider a suitably regular nonlinear system

\[
\dot{\xi} = J(t, \xi, \Psi, u)
\]

(1)

with a smooth reference trajectory \(\xi_R\) and a vector \(\Psi\) of uncertain constant parameters. \(\dot{\xi}_R = J(t, \xi_R, \Psi, u_R)\).

Problem: Design a dynamic feedback with estimator

\[
u = u(t, \xi, \hat{\Psi}), \quad \dot{\hat{\Psi}} = \tau(t, \xi, \hat{\Psi})
\]

(2)

such that the error \(Y = (\hat{\Psi}, \tilde{\xi}) = (\Psi - \hat{\Psi}, \xi - \xi_R) \to 0\).

This is a central problem with numerous applications in flight control and electrical and mechanical engineering.

Persistent excitation. Annaswamy, Astolfi, Narendra, Teel..
Adaptive Tracking and Estimation Problem

Consider a suitably regular nonlinear system

$$\dot{\xi} = J(t, \xi, \Psi, u)$$

(1)

with a smooth reference trajectory ξ_R and a vector Ψ of uncertain constant parameters. $\dot{\xi}_R = J(t, \xi_R, \Psi, u_R)$.

Problem: Design a dynamic feedback with estimator

$$u = u(t, \xi, \hat{\Psi}), \quad \dot{\hat{\Psi}} = \tau(t, \xi, \dot{\Psi})$$

(2)

such that the error $Y = (\hat{\Psi}, \tilde{\xi}) = (\Psi - \dot{\hat{\Psi}}, \xi - \xi_R) \to 0$.

This is a central problem with numerous applications in flight control and electrical and mechanical engineering.
Adaptive Tracking and Estimation Problem

Consider a suitably regular nonlinear system

\[
\dot{\xi} = J(t, \xi, \Psi, u)
\]

(1)

with a smooth reference trajectory \(\xi_R\) and a vector \(\Psi\) of uncertain constant parameters. \(\dot{\xi}_R = J(t, \xi_R, \Psi, u_R)\).

Problem: Design a dynamic feedback with estimator

\[
u = u(t, \xi, \hat{\Psi}), \quad \dot{\hat{\Psi}} = \tau(t, \xi, \hat{\Psi})
\]

(2)

such that the error \(Y = (\hat{\Psi}, \tilde{\xi}) = (\Psi - \hat{\Psi}, \xi - \xi_R) \rightarrow 0\).

This is a central problem with numerous applications in flight control and electrical and mechanical engineering. Persistent excitation.
Adaptive Tracking and Estimation Problem

Consider a suitably regular nonlinear system

$$\dot{\xi} = J(t, \xi, \Psi, u)$$ (1)

with a smooth reference trajectory ξ_R and a vector Ψ of uncertain constant parameters. $\dot{\xi}_R = J(t, \xi_R, \Psi, u_R)$.

Problem: Design a dynamic feedback with estimator

$$u = u(t, \xi, \hat{\Psi}), \quad \dot{\hat{\Psi}} = \tau(t, \xi, \hat{\Psi})$$ (2)

such that the error $Y = (\hat{\Psi}, \tilde{\xi}) = (\Psi - \hat{\Psi}, \xi - \xi_R) \to 0$.

This is a central problem with numerous applications in flight control and electrical and mechanical engineering. Persistent excitation. Annaswamy, Astolfi, Narendra, Teel..
In 2009, we gave a solution for the special case
\[
\dot{x} = \omega(x) \Psi + u.
\] (3)

We used adaptive controllers of the form
\[
u_s = \dot{x}_R(t) - \omega(x) \hat{\Psi} + K(x_R(t) - x),
\]
\[
\dot{\hat{\Psi}} = -\omega(x) ^\top (x_R(l) - x).
\]

We used the classical PE assumption:
\[
\exists \text{constant } \mu > 0 \text{ s.t. } \mu I_p \leq \int_{t-T}^{t} \omega(x_R(l)) ^\top \omega(x_R(l)) \, dl
\] for all \(t \in \mathbb{R} \). (4)

Novelty:
Our explicit global strict Lyapunov function for the \(Y = (\Psi - \hat{\Psi}, x - x_R) \) dynamics.

It gave input-to-state stability with respect to additive time-varying uncertainties \(\delta \) on \(\Psi \).
First-Order Case (FM-MdQ-MM-TAC’09)

- In 2009, we gave a solution for the special case
 \[
 \dot{x} = \omega(x)\Psi + u .
 \]
 \[(3) \]

- Novelty: Our explicit global strict Lyapunov function for the $Y = (\Psi - \hat{\Psi}, x - x_R)$ dynamics.
 It gave input-to-state stability with respect to additive time-varying uncertainties δ on Ψ.

- We used adaptive controllers of the form
 \[
 u_s = \dot{x}_R(t) - \omega(x)\hat{\Psi} + K(x_R(t) - x),
 \]
 \[
 \dot{\hat{\Psi}} = -\omega(x)^\top(x_R(t) - x).
 \]
First-Order Case (FM-MdQ-MM-TAC’09)

In 2009, we gave a solution for the special case

\[\dot{x} = \omega(x)\Psi + u. \quad (3) \]

We used adaptive controllers of the form

\[u_s = \dot{x}_R(t) - \omega(x)\hat{\Psi} + K(x_R(t) - x), \quad \dot{\Psi} = -\omega(x)^T(x_R(t) - x). \]

Novelty: Our explicit global strict Lyapunov function for the \(Y = (\Psi - \hat{\Psi}, x - x_R) \) dynamics. It gave input-to-state stability with respect to additive time-varying uncertainties \(\delta \) on \(\Psi \).
First-Order Case (FM-MdQ-MM-TAC’09)

- In 2009, we gave a solution for the special case

\[
\dot{x} = \omega(x)\Psi + u. \tag{3}
\]

We used adaptive controllers of the form

\[
u_s = \dot{x}_R(t) - \omega(x)\hat{\Psi} + K(x_R(t) - x), \quad \dot{\Psi} = -\omega(x)^\top (x_R(t) - x).
\]

- We used the classical PE assumption: \(\exists \) constant \(\mu > 0 \) s.t.

\[
\mu l_p \leq \int_{t-T}^{t} \omega(x_R(l))^\top \omega(x_R(l)) \, dl \quad \text{for all } t \in \mathbb{R}. \tag{4}
\]
First-Order Case (FM-MdQ-MM-TAC’09)

- In 2009, we gave a solution for the special case

\[\dot{x} = \omega(x)\Psi + u. \]

We used adaptive controllers of the form

\[u_s = \dot{x}_R(t) - \omega(x)\hat{\Psi} + K(x_R(t) - x), \quad \dot{\hat{\Psi}} = -\omega(x)^\top(x_R(t) - x). \]

- We used the classical PE assumption: \(\exists \) constant \(\mu > 0 \) s.t.

\[\mu I_p \leq \int_{t-T}^{t} \omega(x_R(l))^\top\omega(x_R(l)) \, dl \quad \text{for all} \quad t \in \mathbb{R}. \]

- Novelty:
First-Order Case (FM-MdQ-MM-TAC’09)

- In 2009, we gave a solution for the special case

\[\dot{x} = \omega(x)\Psi + u. \] \hspace{1cm} (3)

We used adaptive controllers of the form

\[u_s = \dot{x}_R(t) - \omega(x)\hat{\Psi} + K(x_R(t) - x), \quad \dot{\hat{\Psi}} = -\omega(x)^\top(x_R(t) - x). \]

- We used the classical PE assumption: \(\exists \) constant \(\mu > 0 \) s.t.

\[\mu l_p \leq \int_{t-T}^{t} \omega(x_R(l))^\top \omega(x_R(l)) \, dl \quad \text{for all} \quad t \in \mathbb{R}. \] \hspace{1cm} (4)

- Novelty: Our explicit global strict Lyapunov function for the \(Y = (\Psi - \hat{\Psi}, x - x_R) \) dynamics.
First-Order Case (FM-MdQ-MM-TAC’09)

- In 2009, we gave a solution for the special case

\[\dot{x} = \omega(x)\Psi + u. \]

(3)

We used adaptive controllers of the form

\[u_s = \dot{x}_R(t) - \omega(x)\hat{\Psi} + K(x_R(t) - x), \quad \dot{\hat{\Psi}} = -\omega(x)^\top (x_R(t) - x). \]

- We used the classical PE assumption: \(\exists \) constant \(\mu > 0 \) s.t.

\[\mu l_p \leq \int_{t-T}^{t} \omega(x_R(l))^\top \omega(x_R(l)) \, dl \quad \text{for all } t \in \mathbb{R}. \]

(4)

- Novelty: Our explicit global strict Lyapunov function for the \(Y = (\psi - \hat{\psi}, x - x_R) \) dynamics. It gave input-to-state stability with respect to additive time-varying uncertainties \(\delta \) on \(\psi \).
Input-to-State Stability (Sontag, TAC’89)

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ, having the form

$$\dot{Y} = G(t, Y, \delta(t)).$$

(5)

It is the requirement that there exist functions $\gamma_i \in K_\infty$ such that the corresponding solutions of (5) all satisfy

$$|Y(t)| \leq \gamma_1(e^{t_0} - t \gamma_2(|Y(t_0)|)) + \gamma_3(|\delta|_{[0, t]}).$$

(6)

for all $t \geq t_0 \geq 0$. UGAS is the special case where $\delta \equiv 0$. Integral ISS is the same except with the decay condition

$$\gamma_0(|Y(t)|) \leq \gamma_1(e^{t_0} - t \gamma_2(|Y(t_0)|)) + \int_{t_0}^{t} \gamma_3(|\delta|_r) \, dr.$$

(7)

Both are shown by constructing specific kinds of strict Lyapunov functions for $\dot{Y} = G(t, Y, 0)$.
Input-to-State Stability (Sontag, TAC’89)

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ, having the form

$$\dot{Y} = \mathcal{G}(t, Y, \delta(t)) .$$

(5)
Input-to-State Stability (Sontag, TAC’89)

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ, having the form

$$\dot{Y} = G(t, Y, \delta(t)).$$

(5)

It is the requirement that there exist functions $\gamma_i \in \mathcal{K}_\infty$ such that the corresponding solutions of (5) all satisfy

$$|Y(t)| \leq \gamma_1 (e^{t_0 - t} \gamma_2 (|Y(t_0)|)) + \gamma_3 (|\delta|_{[0,t]})$$

(6)

for all $t \geq t_0 \geq 0$.
Input-to-State Stability (Sontag, TAC’89)

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ, having the form

$$\dot{Y} = G(t, Y, \delta(t)) .$$ \hspace{1cm} (5)

It is the requirement that there exist functions $\gamma_i \in \mathcal{K}_\infty$ such that the corresponding solutions of (5) all satisfy

$$|Y(t)| \leq \gamma_1 \left(e^{t_0-t} \gamma_2(|Y(t_0)|) \right) + \gamma_3(|\delta|_{[0,t]})$$ \hspace{1cm} (6)

for all $t \geq t_0 \geq 0$. UGAS is the special case where $\delta \equiv 0$.
Input-to-State Stability (Sontag, TAC’89)

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ, having the form

$$\dot{Y} = G(t, Y, \delta(t)) \quad (5)$$

It is the requirement that there exist functions $\gamma_i \in \mathcal{K}\infty$ such that the corresponding solutions of (5) all satisfy

$$|Y(t)| \leq \gamma_1(e^{t_0-t} \gamma_2(|Y(t_0)|)) + \gamma_3(|\delta|_{[0,t]}) \quad (6)$$

for all $t \geq t_0 \geq 0$. UGAS is the special case where $\delta \equiv 0$. Integral ISS is the same except with the decay condition

$$\gamma_0(|Y(t)|) \leq \gamma_1(e^{t_0-t} \gamma_2(|Y(t_0)|)) + \int_0^t \gamma_3(|\delta(r)||)dr \quad (7)$$
Input-to-State Stability (Sontag, TAC’89)

This generalization of uniform global asymptotic stability (UGAS) applies to systems with disturbances δ, having the form

$$\dot{Y} = G(t, Y, \delta(t)).$$

(5)

It is the requirement that there exist functions $\gamma_i \in K_\infty$ such that the corresponding solutions of (5) all satisfy

$$|Y(t)| \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y(t_0)|) \right) + \gamma_3(|\delta|_{[0,t]})$$

(6)

for all $t \geq t_0 \geq 0$. UGAS is the special case where $\delta \equiv 0$. Integral ISS is the same except with the decay condition

$$\gamma_0(|Y(t)|) \leq \gamma_1 \left(e^{t_0 - t} \gamma_2(|Y(t_0)|) \right) + \int_0^t \gamma_3(|\delta(r)|) dr.$$

(7)

Both are shown by constructing specific kinds of strict Lyapunov functions for $\dot{Y} = G(t, Y, 0)$.
We solved the adaptive tracking and estimation problem for
\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]
Unknown constants \(\psi = (\psi_1, \ldots, \psi_s) \in \mathbb{R}^s\) and constants \(\theta = (\theta_1, \ldots, \theta_s) \in \mathbb{R}^{p_1 + \ldots + p_s}\). \(\xi = (x, z)\).

The \(C^2\)T-periodic reference trajectory \(\xi_R = (x_R, z_R)\) to be tracked must satisfy
\[
\dot{x}_R(t) = f(\xi_R(t))
\]
everywhere.

New PE condition: positive definiteness of the matrices
\[
P_i \text{ def } = \int_0^T \lambda_i^\top(t) \lambda_i(t) \, dt \in \mathbb{R}^{(p_i+1) \times (p_i+1)},
\]
where \(\lambda_i(t) = (k_i(\xi_R(t)), \dot{z}_R, i(t) - g_i(\xi_R(t)))\) for each \(i\).
Higher-Order Case (FM-MM-MdQ, NATMA’11)

> We solved the adaptive tracking and estimation problem for

\[
\begin{aligned}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{aligned}
\]

(8)
Higher-Order Case (FM-MM-MdQ, NATMA’11)

- We solved the adaptive tracking and estimation problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(8)

Unknown constants \(\psi = (\psi_1, \ldots, \psi_s) \in \mathbb{R}^s\)
We solved the adaptive tracking and estimation problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(8)

Unknown constants \(\psi = (\psi_1, \ldots, \psi_s) \in \mathbb{R}^s \) and constants \(\theta = (\theta_1, \ldots, \theta_s) \in \mathbb{R}^{p_1+\ldots+p_s} \).
Higher-Order Case (FM-MM-MdQ, NATMA’11)

- We solved the adaptive tracking and estimation problem for

\[
\begin{aligned}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \\ & \quad i = 1, 2, \ldots, s.
\end{aligned}
\]

(8)

Unknown constants \(\psi = (\psi_1, \ldots, \psi_s) \in \mathbb{R}^s\) and constants \(\theta = (\theta_1, \ldots, \theta_s) \in \mathbb{R}^{p_1 + \ldots + p_s}\). \(\xi = (x, z)\).
Higher-Order Case (FM-MM-MdQ, NATMA’11)

We solved the adaptive tracking and estimation problem for

\[
\begin{aligned}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{aligned}
\]

Unknown constants \(\psi = (\psi_1, \ldots, \psi_s) \in \mathbb{R}^s \) and constants \(\theta = (\theta_1, \ldots, \theta_s) \in \mathbb{R}^{p_1 + \cdots + p_s} \). \(\xi = (x, z) \). Now \(\Psi = (\theta, \psi) \).
Higher-Order Case (FM-MM-MdQ, NATMA’11)

We solved the adaptive tracking and estimation problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(8)

Unknown constants \(\psi = (\psi_1, \ldots, \psi_s) \in \mathbb{R}^s\) and constants \(\theta = (\theta_1, \ldots, \theta_s) \in \mathbb{R}^{p_1+\ldots+p_s}\). \(\xi = (x, z)\). Now \(\Psi = (\theta, \psi)\).

The \(C^2\) \(T\)-periodic reference trajectory \(\xi_R = (x_R, z_R)\) to be tracked must satisfy \(\dot{x}_R(t) = f(\xi_R(t))\) everywhere.
Higher-Order Case (FM-MM-MdQ, NATMA’11)

We solved the adaptive tracking and estimation problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(8)

Unknown constants \(\psi = (\psi_1, \ldots, \psi_s) \in \mathbb{R}^s\) and constants \(\theta = (\theta_1, \ldots, \theta_s) \in \mathbb{R}^{p_1 + \ldots + p_s}\). \(\xi = (x, z)\). Now \(\Psi = (\theta, \psi)\).

The \(C^2\) \(T\)-periodic reference trajectory \(\xi_R = (x_R, z_R)\) to be tracked must satisfy \(\dot{x}_R(t) = f(\xi_R(t))\) everywhere.

New PE condition:
Higher-Order Case (FM-MM-MdQ, NATMA’11)

- We solved the adaptive tracking and estimation problem for

\[
\begin{align*}
\dot{x} &= f(\xi) \\
\dot{z}_i &= g_i(\xi) + k_i(\xi) \cdot \theta_i + \psi_i u_i, \quad i = 1, 2, \ldots, s.
\end{align*}
\]

(8)

Unknown constants \(\psi = (\psi_1, \ldots, \psi_s) \in \mathbb{R}^s \) and constants \(\theta = (\theta_1, \ldots, \theta_s) \in \mathbb{R}^{p_1+\cdots+p_s}. \xi = (x, z). \) Now \(\Psi = (\theta, \psi). \)

- The \(C^2 \) \(T \)-periodic reference trajectory \(\dot{\xi}_R = (\dot{x}_R, \dot{z}_R) \) to be tracked must satisfy \(\dot{x}_R(t) = f(\xi_R(t)) \) everywhere.

- New PE condition: positive definiteness of the matrices

\[
P_i \overset{\text{def}}{=} \int_0^T \lambda_i^\top(t) \lambda_i(t) \, dt \in \mathbb{R}^{(p_i+1) \times (p_i+1)},
\]

(9)

where \(\lambda_i(t) = (k_i(\xi_R(t)), \dot{z}_{R,i}(t) - g_i(\xi_R(t))) \) for each \(i. \)
Two Other Key Assumptions

\[F(t, \chi) = f(\chi + R(t)) - f(\Xi R(t)) \]

There is a feedback \(v \) and a global strict Lyapunov function \(V \) for the system:

\[
\begin{align*}
\dot{X} &= F(t, X, Z) \\
\dot{Z} &= v_f(t, X, Z)
\end{align*}
\]

so that \(-\dot{V} \) and \(V \) have positive definite quadratic lower bounds near 0 and \(V \), \(v \) are \(T \)-periodic.

Backstepping.

See Sontag text, Chap. 5.

There are known positive constants \(\theta_M, \psi \), and \(\psi \) such that:

\[
\psi < \psi_i < \psi
\]

and \(|\theta_i| < \theta_M \) for each \(i \in \{1, 2, \ldots, s\} \).

Known directions for the \(\psi_i \)’s.
Two Other Key Assumptions

- Set $\mathcal{F}(t, \chi) = f(\chi + \xi_R(t)) - f(\xi_R(t))$.

See Sontag text, Chap. 5.

There are known positive constants θ_M, ψ and ψ such that $\psi < \psi_i < \psi$ and $|\theta_i| < \theta_M$. Known directions for the ψ_i's.
Two Other Key Assumptions

- Set $\mathcal{F}(t, \chi) = f(\chi + \xi_R(t)) - f(\xi_R(t))$. There is a feedback ν_f and a global strict Lyapunov function V for

\[
\begin{align*}
\dot{X} &= \mathcal{F}(t, X, Z) \\
\dot{Z} &= \nu_f(t, X, Z)
\end{align*}
\]

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0.
Two Other Key Assumptions

- Set $\mathcal{F}(t, \chi) = f(\chi + \xi_R(t)) - f(\xi_R(t))$. There is a feedback ν_f and a global strict Lyapunov function V for

$$
\begin{align*}
\dot{X} &= \mathcal{F}(t, X, Z) \\
\dot{Z} &= \nu_f(t, X, Z)
\end{align*}
$$

(10)

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and ν_f are T-periodic.
Two Other Key Assumptions

- Set $\mathcal{F}(t, \chi) = f(\chi + \xi_R(t)) - f(\xi_R(t))$. There is a feedback v_f and a global strict Lyapunov function V for

\[
\begin{align*}
\dot{X} &= \mathcal{F}(t, X, Z) \\
\dot{Z} &= v_f(t, X, Z)
\end{align*}
\]

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and v_f are T-periodic.

Backstepping..
Two Other Key Assumptions

- Set $\mathcal{F}(t, \chi) = f(\chi + \xi_R(t)) - f(\xi_R(t))$. There is a feedback v_f and a global strict Lyapunov function V for

$$
\begin{cases}
\dot{X} &= \mathcal{F}(t, X, Z) \\
\dot{Z} &= v_f(t, X, Z)
\end{cases}
$$

(10)

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and v_f are T-periodic.

Backstepping.. See Sontag text, Chap. 5.
Two Other Key Assumptions

- Set $\mathcal{F}(t, \chi) = f(\chi + \xi_R(t)) - f(\xi_R(t))$. There is a feedback v_f and a global strict Lyapunov function V for

$$
\begin{align*}
\begin{cases}
\dot{X} &= \mathcal{F}(t, X, Z) \\
\dot{Z} &= v_f(t, X, Z)
\end{cases}
\end{align*}
$$

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and v_f are T-periodic.

Backstepping. See Sontag text, Chap. 5.

- There are known positive constants θ_M, $\underline{\psi}$ and $\overline{\psi}$ such that

$$
\underline{\psi} < \psi_i < \overline{\psi} \quad \text{and} \quad |\theta_i| < \theta_M
$$

for each $i \in \{1, 2, \ldots, s\}$.

Two Other Key Assumptions

- Set $\mathcal{F}(t, \chi) = f(\chi + \xi_R(t)) - f(\xi_R(t))$. There is a feedback ν_f and a global strict Lyapunov function V for

\[
\begin{align*}
\dot{X} &= \mathcal{F}(t, X, Z) \\
\dot{Z} &= \nu_f(t, X, Z)
\end{align*}
\]

so that $-\dot{V}$ and V have positive definite quadratic lower bounds near 0 and V, and ν_f are T-periodic.

Backstepping.. See Sontag text, Chap. 5.

- There are known positive constants θ_M, $\underline{\psi}$ and $\overline{\psi}$ such that

\[
\underline{\psi} < \psi_i < \overline{\psi} \quad \text{and} \quad |\theta_i| < \theta_M
\]

for each $i \in \{1, 2, \ldots, s\}$. Known directions for the ψ_i's.
Dynamic Feedback

The estimator evolves on \[\prod_{s_i=1}^{\theta_M,\theta_M} p_i \times (\psi, \psi) s. \]

\[\begin{aligned}
\dot{\hat{\theta}}_{i,j} &= (\hat{\theta}_{2i,j} - \theta_{2M}) \varpi_{i,j}, \\
\dot{\hat{\psi}}_i &= (\hat{\psi}_i - \psi)(\hat{\psi}_i - \psi) \varphi_i, \\
\end{aligned}\]

Here \(\hat{\theta}_i = (\hat{\theta}_{1i}, \ldots, \hat{\theta}_{p_i})\) for \(i = 1, 2, \ldots, s\), \(\varpi_{i,j} = -\frac{\partial V}{\partial \tilde{z}_i(t, \tilde{\xi})} k_{i,j}(\tilde{\xi} + \xi R(t))\) and \(\varphi_i = -\frac{\partial V}{\partial \tilde{z}_i(t, \tilde{\xi})} u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}).\)

\[\begin{aligned}
u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) &= \nu_f, i(t, \tilde{\xi}) - g_i(\xi) - k_i(\xi) \cdot \hat{\theta}_i + \dot{z}_R, i(t) \hat{\psi}_i.
\end{aligned}\]
Dynamic Feedback

The estimator evolves on \(\prod_{i=1}^{s} (-\theta M, \theta M)^{p_i} \times (\psi, \overline{\psi})^s \).
Dynamic Feedback

The estimator evolves on \(\prod_{i=1}^{s} (-\theta_M, \theta_M)^{p_i} \times (\psi, \overline{\psi})^s. \)

\[
\begin{align*}
\hat{\theta}_{i,j} &= (\hat{\theta}_{i,j}^2 - \theta_M^2) \varpi_{i,j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_i \\
\hat{\psi}_i &= (\hat{\psi}_i - \psi)(\hat{\psi}_i - \overline{\psi}) \mathcal{U}_i, \quad 1 \leq i \leq s
\end{align*}
\] (12)
Dynamic Feedback

The estimator evolves on \(\prod_{i=1}^{s}(-\theta_M, \theta_M)^{p_i} \times (\psi, \overline{\psi})^s \).

\[
\begin{align*}
\dot{\hat{\theta}}_{i,j} &= (\hat{\theta}_{i,j}^2 - \theta_M^2) \varpi_{i,j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_i \\
\dot{\hat{\psi}}_i &= (\hat{\psi}_i - \psi) (\hat{\psi}_i - \overline{\psi}) \mathcal{U}_i, \quad 1 \leq i \leq s
\end{align*}
\]

(12)

Here \(\hat{\theta}_i = (\hat{\theta}_{i,1}, \ldots, \hat{\theta}_{i,p_i}) \) for \(i = 1, 2, \ldots, s \).
Dynamic Feedback

The estimator evolves on \(\prod_{i=1}^{s} (-\theta_M, \theta_M)^{p_i} \times (\psi, \bar{\psi})^s \).

\[
\begin{align*}
\dot{\theta}_{i,j} &= (\hat{\theta}_{i,j}^2 - \theta_M^2) \omega_{i,j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_i \\
\dot{\psi}_i &= (\hat{\psi}_i - \psi) (\hat{\psi}_i - \bar{\psi}) U_i, \quad 1 \leq i \leq s
\end{align*}
\]

Here \(\hat{\theta}_i = (\hat{\theta}_{i,1}, \ldots, \hat{\theta}_{i,p_i}) \) for \(i = 1, 2, \ldots, s \),

\[
\omega_{i,j} = -\frac{\partial V}{\partial \xi_i}(t, \hat{\xi}) k_{i,j}(\tilde{\xi} + \xi_R(t))
\]
Dynamic Feedback

The estimator evolves on \(\prod_{i=1}^{s} (-\theta_M, \theta_M)^{p_i} \times (\psi, \overline{\psi})^s \).

\[
\begin{align*}
\dot{\hat{\theta}}_{i,j} &= (\hat{\theta}_{i,j}^2 - \theta_M^2) \varpi_{i,j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_i \\
\dot{\hat{\psi}}_i &= (\hat{\psi}_i - \psi) (\hat{\psi}_i - \overline{\psi}) \mathcal{U}_i, \quad 1 \leq i \leq s
\end{align*}
\]

(12)

Here \(\hat{\theta}_i = (\hat{\theta}_{i,1}, \ldots, \hat{\theta}_{i,p_i}) \) for \(i = 1, 2, \ldots, s \),

\[
\begin{align*}
\varpi_{i,j} &= -\frac{\partial V}{\partial \xi_i}(t, \tilde{\xi}) k_{i,j}(\tilde{\xi} + \xi_R(t)) \quad \text{and} \\
\mathcal{U}_i &= -\frac{\partial V}{\partial \xi_i}(t, \tilde{\xi}) u_i(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) .
\end{align*}
\]

(13)
Dynamic Feedback

The estimator evolves on \(\prod_{i=1}^{s}(-\theta_M, \theta_M)^{p_i} \times (\psi, \overline{\psi})^s \).

\[
\begin{align*}
\dot{\hat{\theta}}_{i,j} &= (\hat{\theta}^2_{i,j} - \theta^2_M) \varpi_{i,j}, \quad 1 \leq i \leq s, \ 1 \leq j \leq p_i \\
\dot{\hat{\psi}}_i &= (\hat{\psi}_i - \psi) (\hat{\psi}_i - \overline{\psi}) \mathcal{U}_i, \quad 1 \leq i \leq s
\end{align*}
\]

(12)

Here \(\hat{\theta}_i = (\hat{\theta}_{i,1}, \ldots, \hat{\theta}_{i,p_i}) \) for \(i = 1, 2, \ldots, s \),

\[
\begin{align*}
\varpi_{i,j} &= -\frac{\partial V}{\partial \tilde{z}_i}(t, \tilde{\xi}) k_{i,j} (\tilde{\xi} + \xi_R(t)) \quad \text{and} \\
\mathcal{U}_i &= -\frac{\partial V}{\partial \tilde{z}_i}(t, \tilde{\xi}) u_i(t, \tilde{\xi}, \hat{\xi}, \hat{\psi}) \\
u_i(t, \tilde{\xi}, \hat{\xi}, \hat{\psi}) &= \frac{v_{f,i}(t, \tilde{\xi}) - g_i(\xi) - k_i(\xi) \cdot \hat{\theta}_i + \dot{\tilde{z}}_{R,i}(t)}{\hat{\psi}_i}
\end{align*}
\]

(13)
Dynamic Feedback

The estimator evolves on \(\{ \prod_{i=1}^{s}(-\theta_{M}, \theta_{M})^{p_{i}} \} \times (\psi, \overline{\psi})^{s} \).

\[
\begin{align*}
\dot{\hat{\theta}}_{i,j} &= (\hat{\theta}_{i,j}^{2} - \theta_{M}^{2})\varpi_{i,j}, \quad 1 \leq i \leq s, 1 \leq j \leq p_{i} \\
\dot{\hat{\psi}}_{i} &= (\hat{\psi}_{i} - \psi)(\hat{\psi}_{i} - \overline{\psi})\mathcal{U}_{i}, \quad 1 \leq i \leq s
\end{align*}
\] \hspace{1cm} (12)

Here \(\hat{\theta}_{i} = (\hat{\theta}_{i,1}, \ldots, \hat{\theta}_{i,p_{i}}) \) for \(i = 1, 2, \ldots, s \),

\[
\varpi_{i,j} = -\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi})k_{i,j}(\tilde{\xi} + \xi_{R}(t)) \quad \text{and} \quad \mathcal{U}_{i} = -\frac{\partial V}{\partial \tilde{z}_{i}}(t, \tilde{\xi})u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}).
\] \hspace{1cm} (13)

\[
u_{i}(t, \tilde{\xi}, \hat{\theta}, \hat{\psi}) = \frac{v_{f,i}(t, \tilde{\xi}) - g_{i}(\xi) - k_{i}(\xi) \cdot \hat{\theta}_{i} + \dot{z}_{R,i}(t)}{\hat{\psi}_{i}}
\] \hspace{1cm} (14)

The estimator and feedback can only depend on things we know.
Stabilization Analysis

We build a global strict Lyapunov function for the $Y = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = (\xi - \xi_R, \theta - \hat{\theta}, \psi - \hat{\psi})$ dynamics to prove the UGAS condition $|Y(t)| \leq \gamma_1(e^{t_0} - t \gamma_2(|Y(t_0)|))$.

We start with the nonstrict Lyapunov function $V_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = V(t, \tilde{\xi}) + s \sum_{i=1}^{p} \sum_{j=1}^{m} \int_{\theta_i, j}^{0} (m - \theta_i, j)^2 d m + s \sum_{i=1}^{p} \int_{\psi_i}^{0} (\psi_i - m - \psi)(\psi - \psi_i + m) d m$.

It gives $\dot{V}_1 \leq -W(\tilde{\xi})$ for some positive definite function W.

This is insufficient for robustness analysis because \dot{V}_1 could be zero outside 0. Therefore, we transform V_1.

Stabilization Analysis

- We build a global strict Lyapunov function for the $Y = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = (\xi - \xi_R, \theta - \hat{\theta}, \psi - \hat{\psi})$ dynamics to prove the UGAS condition $|Y(t)| \leq \gamma_1 (e^{t_0-t} \gamma_2 (|Y(t_0)|))$.

- We start with the nonstrict Lyapunov function $V_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = V(t, \tilde{\xi}) + s\sum_{i=1}^p \sum_{j=1}^{M} \int_{0}^{\theta_i,j} m \theta^2 M - (m - \theta_i,j)^2 dm + s\sum_{i=1}^p \int_{0}^{\psi_i} m (\psi_i - m - \psi)(\psi - \psi_i + m) dm$.

- It gives $\dot{V}_1 \leq -W(\tilde{\xi})$ for some positive definite function W.

- This is insufficient for robustness analysis because \dot{V}_1 could be zero outside 0. Therefore, we transform V_1.

Stabilization Analysis

- We build a global strict Lyapunov function for the dynamics $Y = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = (\xi - \xi_R, \theta - \hat{\theta}, \psi - \hat{\psi})$ to prove the UGAS condition $|Y(t)| \leq \gamma_1(e^{t_0-t} \gamma_2(|Y(t_0)|))$.

- We start with the nonstrict Lyapunov function

\[
V_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = V(t, \tilde{\xi}) + \sum_{i=1}^s \sum_{j=1}^{p_i} \int_0^{\tilde{\theta}_{i,j}} \frac{m}{\theta^2_M - (m - \theta_{i,j})^2} \, dm \\
+ \sum_{i=1}^s \int_0^{\tilde{\psi}_i} \frac{m}{(\psi_i - m - \underline{\psi})(\overline{\psi} - \psi_i + m)} \, dm.
\]
Stabilization Analysis

- We build a global strict Lyapunov function for the dynamics to prove the UGAS condition \(|Y(t)| \leq \gamma_1 (e^{t_0 - t} \gamma_2 (|Y(t_0)|)) \).

- We start with the nonstrict Lyapunov function

\[
V_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = V(t, \tilde{\xi}) + \sum_{i=1}^{s} \sum_{j=1}^{p_i} \int_0^{\tilde{\theta}_{i,j}} \frac{m}{\theta_i - (m - \theta_{i,j})^2} \, dm + \sum_{i=1}^{s} \int_0^{\tilde{\psi}_i} \frac{m}{(\psi_i - m - \psi)(\overline{\psi} - \psi_i + m)} \, dm.
\]

- It gives \(\dot{V}_1 \leq -W(\tilde{\xi}) \) for some positive definite function \(W \).
Stabilization Analysis

- We build a global strict Lyapunov function for the dynamics to prove the UGAS condition
 \[|Y(t)| \leq \gamma_1 (e^{t_0 - t} \gamma_2(|Y(t_0)|)) \].

- We start with the nonstrict Lyapunov function
 \[V_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = V(t, \tilde{\xi}) + \sum_{i=1}^s \sum_{j=1}^{p_i} \int_0^{\tilde{\theta}_{i,j}} \frac{m}{\theta_M^2 - (m - \theta_{i,j})^2} \, dm + \sum_{i=1}^s \int_0^{\tilde{\psi}_i} \frac{m}{(\psi_i - m - \overline{\psi})(\overline{\psi} - \psi_i + m)} \, dm \].

- It gives \(\dot{V}_1 \leq -W(\tilde{\xi}) \) for some positive definite function \(W \).

- This is insufficient for robustness analysis because \(\dot{V}_1 \) could be zero outside 0.
Stabilization Analysis

- We build a global strict Lyapunov function for the dynamics to prove the UGAS condition $|Y(t)| \leq \gamma_1(e^{t_0-t}\gamma_2(|Y(t_0)|))$.

- We start with the nonstrict Lyapunov function

$$V_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = V(t, \tilde{\xi}) + \sum_{i=1}^{s} \sum_{j=1}^{p_i} \int_{0}^{\tilde{\theta}_{i,j}} \frac{m}{\theta_i^2 - (m - \theta_{i,j})^2} \, dm$$

$$+ \sum_{i=1}^{s} \int_{0}^{\tilde{\psi}_i} \frac{m}{(\psi_i - m - \psi)(\tilde{\psi} - \psi_i + m)} \, dm .$$

- It gives $\dot{V}_1 \leq -W(\tilde{\xi})$ for some positive definite function W.

- This is insufficient for robustness analysis because \dot{V}_1 could be zero outside 0. Therefore, we transform V_1.
Transformation (FM-MM-MdQ, NATMA’11)

Theorem: We can construct $K \in \mathbb{K}^\infty \cap \mathcal{C}_1$ such that

$$V^\#(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = K(V_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})) + s \sum_{i=1}^{\Upsilon} \Upsilon_i(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}), (15)$$

where

$$\Upsilon_i(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = -\tilde{z}_i \lambda_i(t) \alpha_i(\tilde{\theta}_i, \tilde{\psi}_i) + 1 T \psi \alpha_i^\top(\tilde{\theta}_i, \tilde{\psi}_i) \Omega_i(t) \alpha_i(\tilde{\theta}_i, \tilde{\psi}_i), (16)$$

$$\lambda_i(t) = (k_i(\xi R(t)), \dot{z}_R, i(t) - g_i(\xi R(t))), (17)$$

$$\alpha_i(\tilde{\theta}_i, \tilde{\psi}_i) = [\tilde{\theta}_i \psi_i - \theta_i \tilde{\psi}_i - \tilde{\psi}_i],$$

and

$$\Omega_i(t) = \int_t^{t-T} \int_s^t m \lambda_i^\top(s) \lambda_i(s) ds ms, (18)$$

is a global strict Lyapunov function for the $Y = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi})$ dynamics. Hence, the dynamics are UGAS to 0.
Theorem: We can construct $K \in \mathcal{K}_\infty \cap C^1$ such that

$$V^\#(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = K(V_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})) + \sum_{i=1}^{s} \mathcal{T}_i(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) ,$$

(15)

where

$$\mathcal{T}_i(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = -\tilde{z}_i \lambda_i(t) \alpha_i(\tilde{\theta}_i, \tilde{\psi}_i) + \frac{1}{T^\psi} \alpha_i^\top(\tilde{\theta}_i, \tilde{\psi}_i) \Omega_i(t) \alpha_i(\tilde{\theta}_i, \tilde{\psi}_i) ,$$

(16)

$$\lambda_i(t) = (k_i(\xi_R(t)), \dot{Z}_{R,i}(t) - g_i(\xi_R(t))) ,$$

(17)

$$\alpha_i(\tilde{\theta}_i, \tilde{\psi}_i) = \begin{bmatrix} \tilde{\theta}_i \psi_i - \theta_i \psi_i \\ \tilde{\psi}_i \end{bmatrix} ,$$

(18)

and

$$\Omega_i(t) = \int_{t-T}^{t} \int_{m}^{t} \lambda_i^\top(\tau) \lambda_i(\tau) d\tau dm ,$$

is a global strict Lyapunov function for the $Y = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi})$ dynamics.

Transformation (FM-MM-MdQ, NATMA’11)
Transformation (FM-MM-MdQ, NATMA’11)

Theorem: We can construct $K \in \mathcal{K}_\infty \cap C^1$ such that

$$V^\#(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = K(V_1(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi})) + \sum_{i=1}^{S} \overline{\Upsilon}_i(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) \ ,$$

where

$$\overline{\Upsilon}_i(t, \tilde{\xi}, \tilde{\theta}, \tilde{\psi}) = -\tilde{z}_i \lambda_i(t) \alpha_i(\tilde{\theta}_i, \tilde{\psi}_i) + \frac{1}{T\psi} \alpha_i^\top(\tilde{\theta}_i, \tilde{\psi}_i) \Omega_i(t) \alpha_i(\tilde{\theta}_i, \tilde{\psi}_i) \ ,$$

$$\lambda_i(t) = (k_i(\xi_R(t)), \dot{z}_{R,i}(t) - g_i(\xi_R(t))) \ ,$$

$$\alpha_i(\tilde{\theta}_i, \tilde{\psi}_i) = \begin{bmatrix} \tilde{\theta}_i \psi_i - \theta_i \tilde{\psi}_i \\ \tilde{\psi}_i \end{bmatrix} \ ,$$

and

$$\Omega_i(t) = \int_{t-T}^{t} \int_{m}^{t} \lambda_i^\top(s) \lambda_i(s) ds dm \ ,$$

is a global strict Lyapunov function for the $Y = (\tilde{\xi}, \tilde{\theta}, \tilde{\psi})$ dynamics. Hence, the dynamics are UGAS to 0.
Conclusions

Adaptive tracking and estimation is a central problem with applications in many branches of engineering.

Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.

Our strict Lyapunov functions gave robustness to additive uncertainties on the parameters using the ISS paradigm.

We covered systems with unknown control gains including brushless DC motors turning mechanical loads.

It would be useful to extend to cover models that are not affine in θ, feedback delays, and output feedbacks.
Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.
Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.

- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.

- Our strict Lyapunov functions gave robustness to additive uncertainties on the parameters using the ISS paradigm.

- We covered systems with unknown control gains including brushless DC motors turning mechanical loads.

- It would be useful to extend to cover models that are not affine in θ, feedback delays, and output feedbacks.
Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.

- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.

- Our strict Lyapunov functions gave robustness to additive uncertainties on the parameters using the ISS paradigm.
Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.

- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.

- Our strict Lyapunov functions gave robustness to additive uncertainties on the parameters using the ISS paradigm.

- We covered systems with unknown control gains including brushless DC motors turning mechanical loads.
Conclusions

- Adaptive tracking and estimation is a central problem with applications in many branches of engineering.

- Standard adaptive control treatments based on nonstrict Lyapunov functions only give tracking and are not robust.

- Our strict Lyapunov functions gave robustness to additive uncertainties on the parameters using the ISS paradigm.

- We covered systems with unknown control gains including brushless DC motors turning mechanical loads.

- It would be useful to extend to cover models that are not affine in θ, feedback delays, and output feedbacks.