On Strict Lyapunov Functions for Rapidly Time-Varying Nonlinear Systems

MICHAEL MALISOFF
Department of Mathematics
Louisiana State University

Joint with Frédéric Mazenc (Projet MERE, INRIA-INRA) & Marcio de Queiroz (LSU Dept. of Mechanical Engineering)

2006 American Control Conference
Minneapolis, Minnesota – June 14-16, 2006
Given System: $\dot{x} = f(x, t, \alpha t) + g(x, t, \alpha t)u$, which we call (Σ_α).
Given System: \(\dot{x} = f(x, t, \alpha t) + g(x, t, \alpha t)u \), which we call \((\Sigma_\alpha)\).

\(f, g \) assumed locally Lipschitz on \(\mathbb{R}^n \times [0, \infty) \times [0, \infty) \). \(f(0, t, \alpha t) \equiv 0 \).
Given System: $\dot{x} = f(x, t, \alpha t) + g(x, t, \alpha t)u$, which we call Σ_α.

f, g assumed locally Lipschitz on $\mathbb{R}^n \times [0, \infty) \times [0, \infty)$. $f(0, t, \alpha t) \equiv 0$.

$\alpha > 0$ (large) constant. Called a rapidly time-varying control system.
Given System: \(\dot{x} = f(x, t, \alpha t) + g(x, t, \alpha t)u \), which we call \((\Sigma_\alpha)\).
\(f, g \) assumed locally Lipschitz on \(\mathbb{R}^n \times [0, \infty) \times [0, \infty) \). \(f(0, t, \alpha t) \equiv 0 \).
\(\alpha > 0 \) (large) constant. Called a rapidly time-varying control system.
Special case: \(\dot{x} = \bar{f}(x, t) \), a.k.a. \((\Sigma_l)\), called a limiting dynamics.
Given System: \(\dot{x} = f(x, t, \alpha t) + g(x, t, \alpha t)u \), which we call \((\Sigma_\alpha) \).

\(f, g \) assumed locally Lipschitz on \(\mathbb{R}^n \times [0, \infty) \times [0, \infty) \). \(f(0, t, \alpha t) \equiv 0 \).

\(\alpha > 0 \) (large) constant. Called a rapidly time-varying control system.

Special case: \(\dot{x} = \bar{f}(x, t) \), a.k.a. \((\Sigma_l) \), called a limiting dynamics.

\(t \mapsto \phi(t; x_o, t_o, u) \): max traj. for \((\Sigma_\alpha) \) and \(u \in \mathcal{U} := \mathcal{MEB}([0, \infty), \mathbb{R}^m) \).
STATEMENT and DISCUSSION of GOALS

Given System: \(\dot{x} = f(x, t, \alpha t) + g(x, t, \alpha t)u \), which we call \((\Sigma_\alpha)\).

\(f, g \) assumed locally Lipschitz on \(\mathbb{R}^n \times [0, \infty) \times [0, \infty) \). \(f(0, t, \alpha t) \equiv 0 \).

\(\alpha > 0 \) (large) constant. Called a rapidly time-varying control system.

Special case: \(\dot{x} = \bar{f}(x, t) \), a.k.a. \((\Sigma_l)\), called a limiting dynamics.

\(t \mapsto \phi(t; x_o, t_o, u) \): max traj. for \((\Sigma_\alpha)\) and \(u \in \mathcal{U} := \mathcal{MB}(0, \infty), \mathbb{R}^m \).

Goals: Find reasonable conditions on \(f \) and \(g \) and on an appropriate dynamics \((\Sigma_l)\) so that, for large enough \(\alpha > 0 \), the system \((\Sigma_\alpha)\) is ISS.
Given System: \(\dot{x} = f(x, t, \alpha t) + g(x, t, \alpha t)u \), which we call \((\Sigma_{\alpha})\).

\(f, g \) assumed locally Lipschitz on \(\mathbb{R}^n \times [0, \infty) \times [0, \infty) \). \(f(0, t, \alpha t) \equiv 0 \).

\(\alpha > 0 \) (large) constant. Called a rapidly time-varying control system.

Special case: \(\dot{x} = \bar{f}(x, t) \), a.k.a. \((\Sigma_{l})\), called a limiting dynamics.

\(t \mapsto \phi(t; x_o, t_o, u) \): max traj. for \((\Sigma_{\alpha})\) and \(u \in \mathcal{U} := \mathcal{MEB}([0, \infty), \mathbb{R}^m) \).

Goals: Find reasonable conditions on \(f \) and \(g \) and on an appropriate dynamics \((\Sigma_{l})\) so that, for large enough \(\alpha > 0 \), the system \((\Sigma_{\alpha})\) is ISS.

Explicitly construct corresponding strict Lyapunov functions for \((\Sigma_{\alpha})\).
Given System: \(\dot{x} = f(x, t, \alpha t) + g(x, t, \alpha t)u \), which we call \((\Sigma_\alpha)\).

\(f, g\) assumed locally Lipschitz on \(\mathbb{R}^n \times [0, \infty) \times [0, \infty)\). \(f(0, t, \alpha t) \equiv 0\). \(\alpha > 0\) (large) constant. Called a rapidly time-varying control system.

Special case: \(\dot{x} = \bar{f}(x, t) \), a.k.a. \((\Sigma_l)\), called a limiting dynamics.

\(t \mapsto \phi(t; x_o, t_o, u): \) max traj. for \((\Sigma_\alpha)\) and \(u \in \mathcal{U} := \mathcal{MEB}([0, \infty), \mathbb{R}^m)\).

Goals: Find reasonable conditions on \(f\) and \(g\) and on an appropriate dynamics \((\Sigma_l)\) so that, for large enough \(\alpha > 0\), the system \((\Sigma_\alpha)\) is ISS. Explicitly construct corresponding strict Lyapunov functions for \((\Sigma_\alpha)\).

Motivation and Background: Ubiquity of rapidly time-varying systems: suspended pendulums (having vertical vibrations of small amplitude and high frequency), Raleigh’s and Duffing’s equations, and identification. See e.g. Peuteman-Aeyels and Solo MCSS papers. Essential to have Lyapunov functions in robustness analysis and controller design.
BASIC DEFINITIONS

\(\mathcal{M} : \lim_{\eta \to +\infty} \eta N(\eta) = 0. \)

PD: \(\delta : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) cts. & zero only at 0.

\(\mathcal{K} : \delta \in \mathcal{PD} \) and strictly increases. \(\mathcal{K}_\infty \): class \(\mathcal{K} \) and unbounded.

\(\mathcal{KL} \): cts. \(\beta : [0, \infty) \times [0, \infty) \to [0, \infty) \) s.t.

(a) \(\beta(\cdot, t) \in \mathcal{K}_\infty \) \(\forall t, \)

(b) \(\beta(s, \cdot) \) nonincreasing \(\forall s, \) and

(c) \(\forall s, \beta(s, t) \to 0 \) as \(t \to +\infty. \)
\textbf{BASIC DEFINITIONS}

\textit{M}: \lim_{\eta \to +\infty} \eta N(\eta) = 0. \quad \textit{PD}: \delta : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \text{ cts.} \& \text{ zero only at 0.}

\textit{K}: \delta \in \textit{PD} \text{ and strictly increases.} \quad \textit{K}_\infty: \text{ class } \mathcal{K} \text{ and unbounded.}

\textit{KL}: \text{ cts. } \beta : [0, \infty) \times [0, \infty) \to [0, \infty) \text{ s.t. (a) } \beta(\cdot, t) \in \mathcal{K}_\infty \text{ } \forall t, \quad \text{(b) } \beta(s, \cdot) \text{ nonincreasing } \forall s, \text{ and (c) } \forall s, \beta(s, t) \to 0 \text{ as } t \to +\infty.

\textit{GAS}: \exists \beta \in \mathcal{KL} \text{ s.t. } |\phi(t; t_o, x_o)| \leq \beta(|x_o|, t - t_o) \forall t \geq t_o \geq 0, x_o \in \mathbb{R}^n. \text{ Called GES if } \exists \text{ constants } D > 1 \text{ and } \lambda > 0 \text{ such that } \beta(s, t) = Dse^{-\lambda t}. \)}
BASIC DEFINITIONS

\(M \): \(\lim_{\eta \to +\infty} \eta N(\eta) = 0 \).

\(PD \): \(\delta : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) cts. \& zero only at 0.

\(K \): \(\delta \in PD \) and strictly increases. \(K_\infty \): class \(K \) and unbounded.

\(KL \): cts. \(\beta : [0, \infty) \times [0, \infty) \to [0, \infty) \) s.t. (a) \(\beta(\cdot, t) \in K_\infty \forall t \), (b) \(\beta(s, \cdot) \) nonincreasing \(\forall s \), and (c) \(\forall s, \beta(s, t) \to 0 \) as \(t \to +\infty \).

\(GAS \): \(\exists \beta \in KL \) s.t. \(|\phi(t; t_0, x_0)| \leq \beta(|x_0|, t - t_0) \forall t \geq t_0 \geq 0, x_0 \in \mathbb{R}^n \).

Called GES if \(\exists \) constants \(D > 1 \) and \(\lambda > 0 \) such that \(\beta(s, t) = Dse^{-\lambda t} \).

Lyapunov Function: \((\Sigma_l) \) is GAS \(\iff \exists C^1 \ V : \mathbb{R}^n \times \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) and \(\delta_1, \delta_2 \in K_\infty \) and \(\delta_3 \in K \) such that (L1) \(\delta_1(|\xi|) \leq V(\xi, t) \leq \delta_2(|\xi|) \) \& (L2) \(V_t(\xi, t) + V_\xi(\xi, t) \overline{f}(\xi, t) \leq -\delta_3(|\xi|) \) for all \(t \in \mathbb{R}_{\geq 0} \) and \(\xi \in \mathbb{R}^n \).
BASIC DEFINITIONS

\(\mathcal{M} \): \(\lim_{\eta \to +\infty} \eta N(\eta) = 0 \). \quad \mathcal{PD}: \delta : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) cts. \& zero only at 0.

\(\mathcal{K} \): \(\delta \in \mathcal{PD} \) and strictly increases. \quad \mathcal{K}_\infty: \) class \(\mathcal{K} \) and unbounded.

\(\mathcal{KL} \): \(\beta : [0, \infty) \times [0, \infty) \to [0, \infty) \) s.t. (a) \(\beta(\cdot, t) \in \mathcal{K}_\infty \) \(\forall t \),
(b) \(\beta(s, \cdot) \) nonincreasing \(\forall s \), and (c) \(\forall s, \beta(s, t) \to 0 \) as \(t \to +\infty \).

GAS: \(\exists \beta \in \mathcal{KL} \) s.t.
\[|\phi(t; t_o, x_o)| \leq \beta(|x_o|, t - t_o) \quad \forall t \geq t_o \geq 0, x_o \in \mathbb{R}^n. \]
Called GES if \(\exists \) constants \(D > 1 \) and \(\lambda > 0 \) such that \(\beta(s, t) = Dse^{-\lambda t} \).

Lyapunov Function: \((\Sigma_l)\) is GAS \(\iff \exists C^1 \ V : \mathbb{R}^n \times \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0} \) and \(\delta_1, \delta_2 \in \mathcal{K}_\infty \) and \(\delta_3 \in \mathcal{K} \) such that \((L_1) \) \(\delta_1(|\xi|) \leq V(\xi, t) \leq \delta_2(|\xi|) \) \& \((L_2) V_t(\xi, t) + V_\xi(\xi, t) \bar{f}(\xi, t) \leq -\delta_3(|\xi|) \) for all \(t \in \mathbb{R}_{\geq 0} \) and \(\xi \in \mathbb{R}^n \).

Compatibility: Given \(\delta \in \mathcal{K} \), \((\Sigma_l)\) is called \(\delta\)-compatible provided \(\exists \)
Lyapunov function \(V \) and constants \(\bar{c} \in (0, 1) \), \(\bar{c} > 0 \) such that:
\(P1) \ V_t(\xi, t) + V_\xi(\xi, t) \bar{f}(\xi, t) \leq -\bar{c} \delta^2(|\xi|) \), \quad P2) \ \delta(s) \leq \bar{c} s, \) \(\text{and} \)
\(P3) \ |V_\xi(\xi, t)| \leq \delta(|\xi|) \) and \(|\bar{f}(\xi, t)| \leq \delta(|\xi|/2) \). E.g. GES Lip. \((\Sigma_l)\).
Consider a forward complete dynamic \((\Sigma_{na})\) \(\dot{x} = F(x, t, u)\), continuous in all variables and \(C^1\) in \(x\) with \(F(0, t, 0) \equiv 0\). \(|u|_I=\text{essential supremum of } u \in \mathcal{U}\) restricted to any interval \(I \subseteq [0, \infty)\). Includes \((\Sigma_\alpha)\) for fixed \(\alpha\).
Consider a forward complete dynamic \((\Sigma_{na})\) \(\dot{x} = F(x, t, u)\), continuous in all variables and \(C^1\) in \(x\) with \(F(0, t, 0) \equiv 0\). \(|u|_I=\text{essential supremum of } u \in U \text{ restricted to any interval } I \subseteq [0, \infty)\). Includes \((\Sigma_\alpha)\) for fixed \(\alpha\).

ISS: We call \((\Sigma_{na})\) ISS provided there exist \(\gamma \in \mathcal{K}_\infty\) and \(\beta \in \mathcal{KL}\) for which \(|\phi(t; t_o, x_o, u)| \leq \beta(|x_o|, t - t_o) + \gamma\left(|u|_{[t_o, t]}\right)\) holds when \(t \geq t_o \geq 0\), \(x_o \in \mathbb{R}^n\), and \(u \in U\). If \(\beta\) has the form \(\beta(s, t) = Dse^{-\lambda t}\), then we say that \((\Sigma_{na})\) is **input-to-state exponentially stable (ISES)**.
Consider a forward complete dynamic $(\Sigma_{na}) \dot{x} = F(x, t, u)$, continuous in all variables and C^1 in x with $F(0, t, 0) \equiv 0$. $|u|_I$=essential supremum of $u \in \mathcal{U}$ restricted to any interval $I \subseteq [0, \infty)$. Includes (Σ_α) for fixed α.

ISS: We call (Σ_{na}) ISS provided there exist $\gamma \in \mathcal{K}_\infty$ and $\beta \in \mathcal{K}\mathcal{L}$ for which $|\phi(t; t_o, x_o, u)| \leq \beta(|x_o|, t - t_o) + \gamma(|u|_{[t_o, t]})$ holds when $t \geq t_o \geq 0$, $x_o \in \mathbb{R}^n$, and $u \in \mathcal{U}$. If β has the form $\beta(s, t) = Dse^{-\lambda t}$, then we say that (Σ_{na}) is *input-to-state exponentially stable (ISES).*

ISS Lyapunov Function: Let $V : \mathbb{R}^n \times [0, \infty) \to [0, \infty)$ be C^1 and admit $\delta_1, \delta_2 \in \mathcal{K}_\infty$ that satisfy (L1) above. We call V an **ISS Lyapunov function** for (Σ_{na}) provided there exist $\chi, \delta_3 \in \mathcal{K}_\infty$ such that $\forall t \in [0, \infty)$, $\xi \in \mathbb{R}^n$, and $u \in \mathbb{R}^m$: $|u| \leq \chi(|\xi|) \Rightarrow V_t(\xi, t) + V_\xi(\xi, t) F(\xi, t, u) \leq -\delta_3(|\xi|).$
Consider a forward complete dynamic \((\Sigma_{na})\) \(\dot{x} = F(x, t, u)\), continuous in all variables and \(C^1\) in \(x\) with \(F(0, t, 0) \equiv 0\). \(|u|_I\) = essential supremum of \(u \in U\) restricted to any interval \(I \subseteq [0, \infty)\). Includes \((\Sigma_\alpha)\) for fixed \(\alpha\).

ISS: We call \((\Sigma_{na})\) ISS provided there exist \(\gamma \in \mathcal{K}_\infty\) and \(\beta \in \mathcal{KL}\) for which \(|\phi(t; t_0, x_0, u)| \leq \beta(|x_0|, t - t_0) + \gamma(|u|_{t_0, t})\) holds when \(t \geq t_0 \geq 0\), \(x_0 \in \mathbb{R}^n\), and \(u \in U\). If \(\beta\) has the form \(\beta(s, t) = Dse^{-\lambda t}\), then we say that \((\Sigma_{na})\) is input-to-state exponentially stable (ISES).

ISS Lyapunov Function: Let \(V : \mathbb{R}^n \times [0, \infty) \to [0, \infty)\) be \(C^1\) and admit \(\delta_1, \delta_2 \in \mathcal{K}_\infty\) that satisfy (L1) above. We call \(V\) an ISS Lyapunov function for \((\Sigma_{na})\) provided there exist \(\chi, \delta_3 \in \mathcal{K}_\infty\) such that \(\forall t \in [0, \infty), \xi \in \mathbb{R}^n\), and \(u \in \mathbb{R}^m\): \(|u| \leq \chi(\xi)\) \(\Rightarrow V_t(\xi, t) + V_{\xi}(\xi, t) F(\xi, t, u) \leq -\delta_3(|\xi|)\).

Lemma: If \((\Sigma_{na})\) admits an ISS Lyapunov function, then it is ISS.
Consider a forward complete dynamic $(\Sigma_{na}) \quad \dot{x} = F(x, t, u)$, continuous in all variables and C^1 in x with $F(0, t, 0) \equiv 0$. $|u|_I=$essential supremum of $u \in \mathcal{U}$ restricted to any interval $I \subseteq [0, \infty)$. Includes (Σ_{α}) for fixed α.

ISS: We call (Σ_{na}) ISS provided there exist $\gamma \in \mathcal{K}_\infty$ and $\beta \in \mathcal{KL}$ for which $|\phi(t; t_o, x_o, u)| \leq \beta(|x_o|, t - t_o) + \gamma(|u|_{[t_o, t]})$ holds when $t \geq t_o \geq 0$, $x_o \in \mathbb{R}^n$, and $u \in \mathcal{U}$. If β has the form $\beta(s, t) = Dse^{-\lambda t}$, then we say that (Σ_{na}) is input-to-state exponentially stable (ISES).

ISS Lyapunov Function: Let $V : \mathbb{R}^n \times [0, \infty) \rightarrow [0, \infty)$ be C^1 and admit $\delta_1, \delta_2 \in \mathcal{K}_\infty$ that satisfy (L1) above. We call V an ISS Lyapunov function for (Σ_{na}) provided there exist $\chi, \delta_3 \in \mathcal{K}_\infty$ such that $\forall t \in [0, \infty), \xi \in \mathbb{R}^n$, and $u \in \mathbb{R}^m$: $|u| \leq \chi(|\xi|) \Rightarrow V_t(\xi, t) + V_\xi(\xi, t) F(\xi, t, u) \leq -\delta_3(|\xi|)$.

Lemma: If (Σ_{na}) admits an ISS Lyapunov function, then it is ISS.

Remark: Our results extend easily to integral ISS. Angeli-Sontag-Wang-...
MAIN THEOREM and CONSTRUCTION

Key Property: There exist \(\delta \in \mathcal{K} \), a \(\delta \)-compatible dynamic \((\Sigma_l)\), and \(N \in \mathcal{M} \) such that for all \(x \in \mathbb{R}^n \), all \(r \in \mathbb{R} \) and sufficiently large \(\eta > 0 \):

\[
\left| \int_{r-\frac{1}{\eta}}^{r+\frac{1}{\eta}} \{ f(x, l, \eta^2 l) - \bar{f}(x, l) \} \, dl \right| \leq \delta(|x|/2) \, N(\eta) \quad \text{(KP)}
\]

First consider a system \((\Sigma_u)\) \(\dot{x} = f(x, t, \alpha t) + u \) with \(f \) as above.
Key Property: There exist $\delta \in \mathcal{K}$, a δ-compatible dynamic (Σ_l), and $N \in \mathcal{M}$ such that for all $x \in \mathbb{R}^n$, all $r \in \mathbb{R}$ and sufficiently large $\eta > 0$:

$$\left| \int_{r-\frac{1}{\eta}}^{r+\frac{1}{\eta}} \left\{ f(x, l, \eta^2l) - \bar{f}(x, l) \right\} dl \right| \leq \delta(|x|/2) N(\eta) \quad (KP)$$

First consider a system (Σ_u) $\dot{x} = f(x, t, \alpha t) + u$ with f as above.

Main Theorem: Assume there exist $\delta \in \mathcal{K}_\infty$, a δ-compatible GAS system (Σ_l), a constant $\eta_o > 0$ and $N \in \mathcal{M}$ such that (KP) holds whenever $\eta \geq \eta_o$, $x \in \mathbb{R}^n$ and $r \in \mathbb{R}$. Assume there is a constant $K > 1$ such that:

$$\left| \frac{\partial \bar{f}}{\partial x}(x, t) \right| \leq K, \quad \left| \frac{\partial f}{\partial x}(x, t, \alpha t) \right| \leq K, \quad \text{and}$$

$$|f(x, t, \alpha t)| \leq \delta(|x|/2) \quad \forall t \in \mathbb{R}, x \in \mathbb{R}^n, \alpha > 0. \quad (1)$$

Then \exists a constant $\alpha > 0$ s.t. $\forall \alpha \geq \alpha$, the system (Σ_u) is ISS for all $\alpha \geq \alpha$. If in addition (Σ_l) is GES, then (Σ_u) is also ISES for all $\alpha \geq \alpha$.
Novelty:

- Allows cases where Σ_l is GAS but not exponentially stable
SIGNIFICANCE of MAIN THEOREM

Novelty:

- Allows cases where (Σ_l) is GAS but not exponentially stable
- Proof provides the following explicit Lyapunov functions for (Σ_u):
SIGNIFICANCE of MAIN THEOREM

Novelty:

• Allows cases where (Σ_l) is GAS but not exponentially stable
• Proof provides the following explicit Lyapunov functions for (Σ_u):

Corollary: Let the hypotheses of the theorem hold for some $\delta \in \mathcal{K}$, and let $V \in C^1$ be a Lyapunov function for (Σ_l) satisfying the δ-compatibility requirements. Then there exists a constant $\alpha > 0$ such that for all $\alpha > \alpha$,

$$V^{[\alpha]}(\xi, t) := V \left(\xi - \frac{\sqrt{\alpha}}{2} \int_{t-\frac{2}{\sqrt{\alpha}}}^{t} \int_{s}^{t} \{ f(\xi, l, \alpha l) - \bar{f}(\xi, l) \} \, dl \, ds, t \right)$$

is a Lyapunov function for $\dot{x} = f(x, t, \alpha t)$. If in addition $\delta \in \mathcal{K}_\infty$, then $V^{[\alpha]}$ is also an ISS Lyapunov function for (Σ_u).
SIGNIFICANCE of MAIN THEOREM

Novelty:
- Allows cases where (Σ_l) is GAS but not exponentially stable
- Proof provides the following explicit Lyapunov functions for (Σ_u):

Corollary: Let the hypotheses of the theorem hold for some $\delta \in \mathcal{K}$, and let $V \in C^1$ be a Lyapunov function for (Σ_l) satisfying the δ-compatibility requirements. Then there exists a constant $\alpha > 0$ such that for all $\alpha > \alpha$,

$$V^{[\alpha]}(\xi, t) := V \left(\xi - \frac{\sqrt{\alpha}}{2} \int_{t-\frac{2}{\sqrt{\alpha}}}^{t} \int_{s}^{t} \left\{ f(\xi, l, \alpha l) - \bar{f}(\xi, l) \right\} dl \, ds, t \right)$$

is a Lyapunov function for $\dot{x} = f(x, t, \alpha t)$. If in addition $\delta \in \mathcal{K}_\infty$, then $V^{[\alpha]}$ is also an ISS Lyapunov function for (Σ_u).

Extension to (Σ_α): Linear growth on g not enough: $\dot{x} = -x + xu$ is not ISS. Results go through for (Σ_α) if there is a constant $c_o > 1$ such that for all $t \in \mathbb{R}$, $x \in \mathbb{R}^n$, and $\alpha > 0$, $\|g(x, t, \alpha t)\| \leq c_o + \sqrt{\delta(|x|/2)}$.
Examples: Disk drives and precision machines.
Examples: Disk drives and precision machines.

Wear and Tear: Produces time variation in friction and spring (stiffness) coefficients. Affects friction properties more than spring. (Physical contact between mass and surface.) Hence, friction coefficients are more susceptible to variations over time, so use a rapidly time-varying model.
Model: Dynamics for $x_1=$ mass position and $x_2=$ velocity:

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= -\sigma_1(\alpha t)x_2 - k(t)x_1 + u \\
&\quad - \left\{ \sigma_2(\alpha t) + \sigma_3(\alpha t)e^{-\beta_1\mu(x_2)} \right\} \text{sat}(x_2)
\end{align*}
\]

(\text{MSF})

σ_i are positive friction-related coefficients; β_1 is a positive constant corresponding to Střibeck effect; $\mu \in \mathcal{PD}$ is related to Střibeck effect; k is a positive time-varying spring stiffness-related coefficient; and $\text{sat}(x_2) = \tanh(\beta_2 x_2)$, where β_2 is a large positive constant. $\alpha > 1$.

MECHANICAL SYSTEM with FRICTION

Model: Dynamics for $x_1 =$ mass position and $x_2 =$ velocity:

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= -\sigma_1(\alpha t)x_2 - k(t)x_1 + u \\
&\quad - \left\{ \sigma_2(\alpha t) + \sigma_3(\alpha t)e^{-\beta_1\mu(x_2)} \right\} \text{sat}(x_2)
\end{align*}
\]

σ_i are positive friction-related coefficients; β_1 is a positive constant corresponding to Stribeck effect; μ ∈ PD is related to Stribeck effect; k is a positive time-varying spring stiffness-related coefficient; and sat(x_2) = tanh(β_2 x_2), where β_2 is a large positive constant. α > 1.

Assumptions: k and the σ_i’s are bounded and C^1; μ has a globally bounded derivative; \(\exists M : \mathbb{R} \to \mathbb{R}_{\geq 0} : s \mapsto M(s) \) that is o(s) (i.e. \(M(s)/s \to 0 \) as \(s \to +\infty \)) and constants \(\tilde{\sigma}_i \), with \(\tilde{\sigma}_1 > 0 \) and \(\tilde{\sigma}_i \geq 0 \) for \(i = 2, 3 \), s.t. \(|\int_{t_1}^{t_2} (\sigma_i(t) - \tilde{\sigma}_i) \, dt| \leq M(t_2 - t_1) \forall i \) and \(t_2 > t_1 \).

Also, \(\exists k_o, \bar{k} > 0 \) s.t. \(k_o \leq k(t) \leq \bar{k} \) and \(k'(t) \leq 0 \ \forall t \geq 0 \).
MECHANICAL SYSTEM with FRICTION (cont’d)

Limiting Dynamics: We choose \((\Sigma_1)\) \(\dot{x} = \bar{f}(x, t)\) as follows:

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= -\tilde{\sigma}_1 x_2 - \{\tilde{\sigma}_2 + \tilde{\sigma}_3 e^{-\beta_1 \mu(x_2)}\} \text{sat}(x_2) - k(t)x_1, \\
\end{align*}
\]

(LMSF)
Limiting Dynamics: We choose \((\Sigma_l) \dot{x} = \bar{f}(x, t)\) as follows:

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= -\tilde{\sigma}_1 x_2 - \left\{ \tilde{\sigma}_2 + \tilde{\sigma}_3 e^{-\beta_1 \mu(x_2)} \right\} \text{sat}(x_2) - k(t)x_1 ,
\end{align*}
\]

(LEMSF)

Compatibility: Holds with \(\delta(s) = \bar{r}s\) for a suitable constant \(\bar{r} > 0\): Take \(V(x, t) = A(k(t)x_1^2 + x_2^2) + x_1 x_2\). \(A := 1 + 1/k_o + [1 + S^2/k_o]/\tilde{\sigma}_1\) and \(S := \tilde{\sigma}_1 + (\tilde{\sigma}_2 + \tilde{\sigma}_3)\beta_2\).
MECHANICAL SYSTEM with FRICTION (cont’d)

Limiting Dynamics: We choose \((\Sigma_l) \quad \dot{x} = \bar{f}(x, t) \) as follows:

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= -\tilde{\sigma}_1 x_2 - \{\tilde{\sigma}_2 + \tilde{\sigma}_3 e^{-\beta_1 \mu(x_2)}\} \text{sat}(x_2) - k(t)x_1,
\end{align*}
\]

(LMSF)

Compatibility: Holds with \(\delta(s) = \bar{r}s \) for a suitable constant \(\bar{r} > 0 \): Take

\[
V(x, t) = A(k(t)x_1^2 + x_2^2) + x_1x_2.
\]

\(A := 1 + 1/k_o + [1 + S^2/k_o]/\tilde{\sigma}_1 \) and \(S := \tilde{\sigma}_1 + (\tilde{\sigma}_2 + \tilde{\sigma}_3)\beta_2 \). Hence, for large \(\alpha > 0 \), (MSF) has ISS-CLF

\[
V^{[\alpha]}(\xi, t) = V\left(\xi_1, \xi_2 + \frac{\sqrt{\alpha}}{2} \int_{t-\frac{2}{\sqrt{\alpha}}}^{t} \int_{s}^{t} \Gamma_\alpha(l, \xi) \, dl \, ds, t\right)
\]

where \(\Gamma_\alpha(l, \xi) := \{\sigma_1(\alpha l) - \bar{\sigma}_1\}\xi_2 + \mu_\alpha(l, \xi) \tanh(\beta_2 \xi_2) \)

and \(\mu_\alpha(l, \xi) := \sigma_2(\alpha l) - \bar{\sigma}_2 + (\sigma_3(\alpha l) - \bar{\sigma}_3)e^{-\beta_1 \mu(\xi_2)} \)

so the original friction dynamics (MSF) is ISS for large enough \(\alpha > 0 \).