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Given System:ẋ = f(x, t, αt) + g(x, t, αt)u, which we call(Σα).



STATEMENT and DISCUSSION of GOALS
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Given System:ẋ = f(x, t, αt) + g(x, t, αt)u, which we call(Σα).
f, g assumed locally Lipschitz onRn × [0,∞)× [0,∞). f(0, t, αt) ≡ 0.

α > 0 (large) constant. Called arapidly time-varying control system.

Special case:̇x = f̄(x, t), a.k.a.(Σl), called alimiting dynamics.

t 7→ φ(t; xo, to,u): max traj. for(Σα) andu ∈ U := MEB([0,∞),Rm).



STATEMENT and DISCUSSION of GOALS
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Given System:ẋ = f(x, t, αt) + g(x, t, αt)u, which we call(Σα).
f, g assumed locally Lipschitz onRn × [0,∞)× [0,∞). f(0, t, αt) ≡ 0.
α > 0 (large) constant. Called arapidly time-varying control system.
Special case:̇x = f̄(x, t), a.k.a.(Σl), called alimiting dynamics.
t 7→ φ(t; xo, to,u): max traj. for(Σα) andu ∈ U := MEB([0,∞),Rm).

Goals: Find reasonable conditions onf andg and on an appropriate
dynamics(Σl) so that, for large enoughα > 0, the system(Σα) is ISS.
Explicitly construct corresponding strict Lyapunov functions for(Σα).

Motivation and Background:Ubiquity of rapidly time-varying systems:
suspended pendulums(having vertical vibrations of small amplitude and
high frequency),Raleigh’sandDuffing’s equations, andidentification.
See e.g. Peuteman-Aeyels and Solo MCSS papers.Essentialto have
Lyapunov functions in robustness analysis and controller design.
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Compatibility: Givenδ ∈ K, (Σl) is calledδ-compatibleprovided∃
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INPUT-TO-STATE STABILITY (ISS)

Consider a forward complete dynamic(Σna) ẋ = F (x, t, u), continuous
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ISS:We call(Σna) ISS provided there existγ ∈ K∞ andβ ∈ KL for
which |φ(t; to, xo,u)| ≤ β(|xo|, t− to) + γ

(|u|[to,t]

)
holds when

t ≥ to ≥ 0, xo ∈ Rn, andu ∈ U . If β has the formβ(s, t) = Dse−λt,
then we say that(Σna) is input-to-state exponentially stable (ISES).

ISS Lyapunov Function:Let V : Rn × [0,∞) → [0,∞) beC1 and admit
δ1, δ2 ∈ K∞ that satisfy (L1) above. We callV anISS Lyapunov function

for (Σna) provided there existχ, δ3 ∈ K∞ such that∀t ∈ [0,∞), ξ ∈ Rn,
andu ∈ Rm: |u| ≤ χ(|ξ|) ⇒ Vt(ξ, t) + Vξ(ξ, t)F (ξ, t, u) ≤ −δ3(|ξ|).
Lemma:If (Σna) admits an ISS Lyapunov function, then it is ISS.

Remark:Our results extend easily to integral ISS. Angeli-Sontag-Wang-...
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∫ r+ 1

η

r− 1
η

{
f(x, l, η2l)− f(x, l)

}
dl

∣∣∣∣∣ ≤ δ(|x|/2)N(η) (KP)

First consider a system(Σu) ẋ = f(x, t, αt) + u with f as above.

Main Theorem:Assume there existδ ∈ K∞, aδ-compatible GAS system
(Σl), a constantηo > 0 andN ∈M such that (KP) holds whenever
η ≥ ηo, x ∈ Rn andr ∈ R. Assume there is a constantK > 1 such that:

∣∣∣∂f
∂x (x, t)

∣∣∣ ≤ K ,
∣∣∣∂f
∂x (x, t, αt)

∣∣∣ ≤ K , and

|f(x, t, αt)| ≤ δ(|x|/2) ∀t ∈ R, x ∈ Rn, α > 0.
(1)

Then∃ a constantα > 0 s.t.∀α ≥ α, the system(Σu) is ISS for all
α ≥ α. If in addition(Σl) is GES, then(Σu) is also ISES for allα ≥ α.
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Novelty:

• Allows cases where(Σl) is GAS but not exponentially stable
• Proof provides the following explicit Lyapunov functions for(Σu):

Corollary: Let the hypotheses of the theorem hold for someδ ∈ K, and
let V ∈ C1 be a Lyapunov function for(Σl) satisfying theδ-compatibility
requirements. Then there exists a constantα > 0 such that for allα > α,

V [α](ξ, t) := V

(
ξ −

√
α
2

∫ t

t− 2√
α

∫ t

s

{f(ξ, l, αl)− f(ξ, l)}dl ds, t

)

is a Lyapunov function foṙx = f(x, t, αt). If in additionδ ∈ K∞, then
V [α] is also an ISS Lyapunov function for(Σu).

Extension to(Σα): Linear growth ong not enough:ẋ = −x + xu is not
ISS. Results go through for(Σα) if there is a constantco > 1 such that for
all t ∈ R, x ∈ Rn, andα > 0, ||g(x, t, αt)|| ≤ co +

√
δ(|x|/2).
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Wear and Tear:Produces time variation in friction and spring (stiffness)

coefficients. Affects friction properties more than spring. (Physical

contact between mass and surface.) Hence, friction coefficients are more

susceptible to variations over time, so use a rapidly time-varying model.
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Model:Dynamics forx1=mass position andx2=velocity:

ẋ1 = x2

ẋ2 = −σ1(αt)x2 − k(t)x1 + u

−{
σ2(αt) + σ3(αt)e−β1µ(x2)

}
sat(x2)

(MSF)

σi are positive friction-related coefficients;β1 is a positive constant

corresponding to Stribeck effect;µ ∈ PD is related to Stribeck effect;

k is a positive time-varying spring stiffness-related coefficient; and

sat(x2) = tanh(β2x2), whereβ2 is a large positive constant.α > 1.
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Model:Dynamics forx1=mass position andx2=velocity:

ẋ1 = x2

ẋ2 = −σ1(αt)x2 − k(t)x1 + u

−{
σ2(αt) + σ3(αt)e−β1µ(x2)

}
sat(x2)

(MSF)

σi are positive friction-related coefficients;β1 is a positive constant
corresponding to Stribeck effect;µ ∈ PD is related to Stribeck effect;
k is a positive time-varying spring stiffness-related coefficient; and
sat(x2) = tanh(β2x2), whereβ2 is a large positive constant.α > 1.

Assumptions:k and theσi’s are bounded andC1; µ has a globally
bounded derivative;∃M : R→ R≥0 : s 7→ M(s) that iso(s) (i.e.
M(s)/s → 0 ass → +∞) and constants̃σi, with σ̃1 > 0 andσ̃i ≥ 0 for
i = 2, 3, s.t. | ∫ t2

t1
(σi(t)− σ̃i) dt| ≤ M(t2 − t1) ∀i andt2 > t1.

Also,∃ko, k̄ > 0 s.t. ko ≤ k(t) ≤ k̄ and k′(t) ≤ 0 ∀t ≥ 0.
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Limiting Dynamics:We choose(Σl) ẋ = f̄(x, t) as follows:

ẋ1 = x2

ẋ2 = −σ̃1x2 −
{
σ̃2 + σ̃3e

−β1µ(x2)
}

sat(x2)− k(t)x1 ,
(LMSF)

Compatibility: Holds withδ(s) = r̄s for a suitable constant̄r > 0: Take

V (x, t) = A(k(t)x2
1 + x2

2) + x1x2. A := 1 + 1/ko + [1 + S2/ko]/σ̃1 and

S := σ̃1 + (σ̃2 + σ̃3)β2. Hence, for largeα > 0, (MSF) has ISS-CLF

V [α](ξ, t) = V

(
ξ1, ξ2 +

√
α
2

∫ t

t− 2√
α

∫ t

s

Γα(l, ξ) dl ds, t

)

where Γα(l, ξ) := {σ1(αl)− σ̃1}ξ2 + µα(l, ξ) tanh(β2ξ2)

and µα(l, ξ) := σ2(αl)− σ̃2 + (σ3(αl)− σ̃3)e−β1µ(ξ2)

so the original friction dynamics (MSF) is ISS for large enoughα > 0.


