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STATEMENT and DISCUSSION of GOALS '

Given System:z = f(x,t,at) + g(x, t, at)u, which we call(>,,).

f, g assumed locally Lipschitz dR™ x [0, 00) x [0,00). f(0,t,at) = 0.
a > 0 (large) constant. Calledrapidly time-varying control system
Special casei = f(x,t), a.k.a.(>;), called alimiting dynamics

t— ¢(t; o, to, u): maxtraj. for(x,) andu € U := MEB([0,00), R™).

Goals: Find reasonable conditions ginandg and on an appropriate
dynamics(3;) so that, for large enough > 0, the systen{.,,) is ISS.
Explicitly construct corresponding strict Lyapunov functions (fag, ).

Motivation and BackgroundUbiquity of rapidly time-varying systems:
suspended pendulunfisaving vertical vibrations of small amplitude and
high frequency)Raleigh’sandDuffing’s equationsandidentification

See e.g. Peuteman-Aeyels and Solo MCSS papsisentiako have
Lyapunov functions in robustness analysis and controller design.
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BASIC DEFINITIONS '

M:limy_4oonN(n) =0. PD:§:Rso— R>g cts. & zero only ab.
IC. 0 € PD and strictly increases. IC.: class/C and unbounded.

JCL: cts. 5 : [0, 00) x [0,00) — [0,00) S.t. (a) B(+, 1) € Koo VE,

(b) B(s, -) nonincreasing's, and(c) Vs, 8(s,t) — 0 ast — +o0.

GAS. dB e KLs.t. |o(t;t,, x0)| < B(|zo|, t —t,) VE>t, > 0,2, € R”.
Called GES ifd constantsD > 1 and) > 0 such that3(s,t) = Dse™ .

Lyapunov Function(;) is GAS< 3 C' V : R"™ x R>g — R>¢ and
(51,(52 € Koo and53 e IC such tha(Ll) 51(|€D < V(f,t) < (52(‘€|) &

(L2) Vi(&,t) + Ve(&, 1) f(§,1) < —d3(¢]) forall t € R>o andg € R™.

Compatibility: Givené € IC, (3;) is calledd-compatibleprovidedd
Lyapunov function// and constants € (0, 1), ¢ > 0 such that:
PL)Vi(E,t) + Ve(&,1) f(€,1) < —ed%(¢]), P2)d(s) < ¢s,and
P3)|Ve(&. 1) < 6(¢]) and [f(&,1)] < 4(/€]/2). E.g. GES Lip.(%)).
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Consider a forward complete dynamic,,.,) & = F(x,t,u), continuous
in all variables and”! in z with F'(0,¢,0) = 0. |u|;=essential supremum
of u € U restricted to any interval C [0, o0). Includes(,,) for fixed a.

ISS:We call(3,,,) ISS provided there exist € K, andjg € KL for
which [¢(t; ¢, 20, u)] < B(|zo],t — to) + v (July, ) holds when
t>t,>0,z, € R?,andu € U. If 5 hasthe form3(s,t) = Dse™",
then we say that>,,,) is input-to-state exponentially stable (ISES)

ISS Lyapunov FunctiontLet V : R™ x [0,00) — [0, 00) beC! and admit
01,09 € Ko that satisfy (L1) above. We call anlSS Lyapunov function
for (X,a) provided there exisy, 03 € Ko, such that/t € [0, ), £ € R",
andu € R™: [u] < x([]) = Vi(&, 1) + Ve(&, ) F(E 8, u) < —d3([€]).

Lemma:lf (3,,) admits an ISS Lyapunov function, then it is ISS.

Remark:Our results extend easily to integral ISS. Angeli-Sontag-Wang-...
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Key PropertyThere existy € I, ad-compatible dynami¢;;), and
N € M such that for alk € R™, all r € R and sufficiently large) > O:
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< o(lz[/2)N(n)  (KP)

First consider a systent.,,) = = f(z,t, at) + u with f as above.

Main TheoremAssume there exist € K., ad-compatible GAS system
(2;), a constant), > 0 andN € M such that (KP) holds whenever
n > n., x € R™ andr € R. Assume there is a constafit > 1 such that:

‘af(x t)‘ < K , )gf(xtozt)‘ < K , and

(1)
f(z,t,at)| < 8(|z|/2) VteR,zeR" a>0.

Thend a constantyr > 0 s.t.Va > «, the systentX.,,) is ISS for all
a > «. Ifin addition (%) is GES, then(X,,) is also ISES for alke > a.



SIGNIFICANCE of MAIN THEOREM '
Novelty:

e Allows cases wheré€Y;;) is GAS but not exponentially stable



SIGNIFICANCE of MAIN THEOREM '
Novelty:

e Allows cases wheré€Y;;) is GAS but not exponentially stable
e Proof provides the following explicit Lyapunov functions f@t,, ):



SIGNIFICANCE of MAIN THEOREM '
Novelty:

e Allows cases wheré€Y;;) is GAS but not exponentially stable
e Proof provides the following explicit Lyapunov functions f@t,, ):

Corollary: Let the hypotheses of the theorem hold for sane /C, and
let V' € C'* be a Lyapunov function fofY; ) satisfying thej-compatibility
requirements. Then there exists a constant 0 such that for albv > «,

VI, 1) :v<£“f / 2 / {f(g,z,awf(g,w}dms,t)
t_ﬁ S

IS a Lyapunov function foi: = f(x,t, at). If in additiond € K, then
Viel'is also an ISS Lyapunov function foE,, ).



SIGNIFICANCE of MAIN THEOREM '
Novelty:

e Allows cases wheréY;) is GAS but not exponentially stable
e Proof provides the following explicit Lyapunov functions f@t., ):

Corollary: Let the hypotheses of the theorem hold for sane /C, and
let V' € C'! be a Lyapunov function fofX;) satisfying thej-compatibility
requirements. Then there exists a constant 0 such that for albv > «,

Vil(, ) :v<£“f / 2 / {f(g,z,awf(g,w}dms,t)
t_ﬁ S

IS a Lyapunov function foi: = f(x,t, at). If in additiond € K, then
Vlel'is also an ISS Lyapunov function foE,, ).

Extension to X, ): Linear growth oy not enough = —x + xu is not
ISS. Results go through f@k,, ) if there is a constant, > 1 such that for
allt e R,z € R",anda > 0, ||g(x.t,at)|| < c, + /0(|x]/2).
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k(f)

— W m > friction
0

0

Examples: Disk drives and precision machines.

Wear and Tear:Produces time variation in friction and spring (stiffness)
coefficients. Affects friction properties more than spring. (Physical
contact between mass and surface.) Hence, friction coefficients are more
susceptible to variations over time, so use a rapidly time-varying model.
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Model: Dynamics forx;=mass position ang,=velocity:

1 = X9
to = —o1(at)rs — k(t)x, +u (MSF)
—{o2(at) + o5(at)e Pr1H@2) L sat(z)
o; are positive friction-related coefficients; is a positive constant
corresponding to Stribeck effegt;c€ PD is related to Stribeck effect;
k is a positive time-varying spring stiffness-related coefficient; and
sat(xo) = tanh(fG2x2), Wheres, is a large positive constant. > 1.



MECHANICAL SYSTEM with FRICTION '

Model: Dynamics forx;=mass position ang,=velocity:

1 = X2
jfz = —01 (Oét)ZEQ — k(t)[lil + u (MSF)
—{o2(at) + oz(at)e Pr1H@2) L sat(z)

o; are positive friction-related coefficients; is a positive constant
corresponding to Stribeck effegt;c PD is related to Stribeck effect;
k is a positive time-varying spring stiffness-related coefficient; and
sat(x2) = tanh(fB2x2), Wheres, is a large positive constant. > 1.

Assumptionsk and thes;’s are bounded an@'!; 1 has a globally
bounded derivativejM : R — R>g : s — M (s) thatiso(s) (i.e.
M(s)/s — 0 ass — +o0) and constants;, with 5; > 0 andg; > 0 for
i=2,3,st| [ (0s(t) — 6;) dt| < M(ty — t1) Vi andty > 1.

Also, 3k,, k> 0 s.t. k, < k(t) <k and k'(t) <0 Vt > 0.
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MECHANICAL SYSTEM with FRICTION (cont’d) '

Limiting Dynamics:We choos€Y:;) i = f(x,t) as follows:

T (LMSF)
Zi?g = —515132 — {5’2 + 5.36—61u(x2)} Sat(ZCQ) — k(t)xl ,

Compatibility: Holds with§(s) = 7s for a suitable constamt > 0: Take
Ve, t) = A(k(t)x? +235) +x120. A:=1+1/k, + [1+ S?/k,] /51 and
S := 01 + (02 + 73)52. Hence, for largex > 0, (MSF) has ISS-CLF

t t
Vil )=V (51752 T @/ / L'y (1,€)dl ds,t)
t—% S

where ', (1,€) := {o1(al) — 71} + pa(l, €) tanh(G265)
and j1a(1,€) = oa(al) — &2 + (o5(al) — G5)eHHE

so the original friction dynamics (MSF) is ISS for large enougl 0.



