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Abstract—We explicitly construct Lyapunov functions for  while [12] assumes (2) ixponentiallystable, we allow
rapidly time-varying nonlinear systems. The Lyapunov func- cases where (2) is merely uniformly globally asymptoti-
tions we construct are expressed in terms of oftentimes more Cally stable (UGAS) in which case we conclude that (1)

readily available Lyapunov functions for the limiting dynamics . . .
which we assume are globally asymptotically stable. This leads is UGAS (but not necessarily exponentially stable) when

to new sufficient conditions for global exponential, global < > 0 is sufficiently large. While global exponential and
asymptotic, and input-to-state stability of fast time-varying global asymptotic stabilities are equivalent futonomous
dynamics. We apply our results to two examples. N systems under a coordinate change in certain dimensions,
Index Terms—time-varying systems, input-to-state stability, the coordinate changes are not explicit and so do not lend
Lyapunov function constructions themselves to explicit Lyapunov function constructions [5].
I. INTRODUCTION In particular, we show that assumptions similar to those

The stabilization of nonlinear nonautonomous systems afi [12, Theorem 3] imply that (1) i_S globally (rather than
the construction of their Lyapunov functions are challenging€rely locally) exponentially stable; our Lyapunov function
problems that are of significant ongoing interest [8], [10]pon§tructlons are new even in this particular exponential
[17], [18]. One popular approach to guaranteeing stability otability case, and our results complement [12_]. Moreover,
nonautonomous systems is the so-called averaging meth§ Lyapunov functions we construct are also input-to-state
in which exponential stability of an appropriaaetonomous Stéble (ISS) or integral 1SS Lyapunov functions for the
system implies exponential stability of the original dynamic§apidly time-varying control system
when the time variation is sufficiently fast. See [7] for related i = f(z,t,0t) + gz, t,at)u A3)
results and [11] where the fast time-varying hypothesis is . »
replaced by a homogeneity condition. under appropriate conditions ghand g; see Remark 12.

The preceding results were extended to more general'” Section II,_we provide the relevant .d.efinitions.gnd
rapidly time-varying systems of the form lemmas. In Section Ill, we present our sufficient conditions

for global asymptotic and exponential stability of (1), and
& = f(z,t,at), zeR", tER, a>0 (1) for the stability of (3), in terms of appropriate limiting
dynamics (2). This leads to our explicit construction of
Lyapunov functions for (1) and (3) in terms of our Lyapunov
functions for (2), in Corollary 10. We prove the sufficiency
- of our criteria in Section 1V, and we illustrate our results in
& = f(x,1) (2)  Section V using two examples. We close in Section VI by
rﬁummarizing our findings.

in [12], where the (local) exponential stability of (1) was
proven for large constants > 0 under appropriate regularity
conditions, assuming that a suitable limiting dynamic

for (1) is exponentially stable. This generalized a result fro
[6, pp. 190-5] on a restricted class of systems (1) satisfyingl. ASSUMPTIONS, DEFINITIONS, AND LEMMAS
certain periodicity or almost periodicity conditions. (See also \ye study (1) (which includes dynamics (2) with ro
[13] for related results foslowly time-varying systems.) The gependence, as special cases) in which we always assume
main arguments of [12] use (partial) averaging but do nojt is continuous in time € R := (—oo, +00), continuously

lead to explicit Lyapunov functions for (1). differentiable C) in = € R™, null atz = 0 meaning
In this note, we pursue a very different approach. Instead _
of averaging, we explicitly construct a family of Lyapunov f(0,t,at) = f(0,t) =0 VteR,a>0 4

functions for (1) that are expressed in terms of more readily,§ forward completei.e., for eacha > 0, z, € R”, and
available Lyapunov functions for the limiting dynamics (2)’7?0 € R := [0, 00) there exists a unigue trajectolty, o) >
which we again assume is asymptotically stable. In addition,,_, ¢(¥; to,2,) for (1) (depending in general on the constant
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(written § € K) provided it is strictly increasing; i6 is also We also consider nonautonomocentrol systems

unbounded, then we sayis of classK,, and writed € K. .

A continuousg : Rxo x R>g — R is of classkCL (written T =F(zt u) (10)

B € KL) provided (2)3(-,t) € Ko forall t > 0, (b) 5(s,-)  which we always assume are continuous in all variables and

is nonincreasing for alk > 0, and (c) for eachs > 0, (% in z with F(0,¢,0) = 0, and whose solution for a given

B(s,t) — 0 ast — +oo. We always assume there is acontrol functionu € ¢(:=all measurable locally essentially

p € K such thatlf(z,t, at)| < p(|z|) everywhere. bounded functiong0,00) — R™) and given initial con-
We next define our stability properties for (2) but the sameition x(t,) = x, we denote byt — ¢(t;t,,x,,u). We

definitions apply for (1) for any fixed choice of the constanaiways assume (10) fsrward completei.e., all trajectories

a > 0. We say that (2) isiniformly globally asymptotically ¢(-;¢,, x,,u) have domairt,, +o00). Later we specialize to

stable (UGAS)provided there existg € KL such that the case where (10) has the form (3). We next recall the

) . n input-to-state stable (ISS) and integral input-to-state stable

(@t to, 2o)| < Bllol t = 1o) if £ 22, >0, 2, €R™ (6) (IISS) properties [14], [15]. Lefu|; denote the essential

where | - | is the usual Euclidean norm anglis the flow supremum ofu € U restricted to any interval C Rx.

map for (2), and we call (2)niformly globally exponentially ~ Definition 5: (a) We say that (10) i$SS provided there

stable (UGES)provided there exist constanf8 > 1 and eXisty € Ko, and 3 € KL for which

A > 0 such that (6) is satisfied with the choice
©) (6(t: o 20 )| < Aol t —t0) +7 (Nl ie) (A1)

_ — At
Bls,t) = Dse™™. (™) holds whent >t, >0, z, € R", andu € Y. If in addition

Recall that (2) is UGAS if and only if it has stricty 3 has the form (7), then we say that (10)imput-to-state
Lyapunov functioni.e., aC! functionV that admitss; € K €xponentially stable (ISES)b) We say that (10) iSISS

anddy, d, € Ko, such that for altt € R, and¢ € R”, provided there exist, v € Ko and g € KL such that
(L1) au(l€) < V(€ 1) < d2(¢]) and fot
= (9(titorp ) < Bzt~ 1)+ [ 2 (u(s)ds
(L2) Vi(&t) + Ve(&,t) f(&,t) < —ds(I€D), to
where subscripts ol denote partial gradients [2]. When (2) holds whent > ¢, > 0, z, € R™, andu € U.
is also UGES, the proof of [7, Theorem 4.14] shows: The following Lyapunov function notions agree with the

Lemma 1:Assume (2) satisfies the UGES condition (6)-usual ISS and iISS Lyapunov function definitions when (10)
(7) for some constant® > 1 and A > 0 and that there s autonomous, because functiops K., are invertible.
exists K > A such that/(0f/9¢)(¢,t)| < K for all { € R" Definition 6: Let V : R” x R — Rx( be C'! and admit
andt € R>o. Then (2) admits a Lyapunov functiori and 5, 4, € K, that satisfy (L1) above. (a) We call anISS
constants, ¢z, ¢3 > 0 such that Lyapunov functiorfor (10) provided there exist, 63 € Koo

Gl < VIED < el Ve, t)] < esle] such that for allt € R>¢, £ € R”, andu € R™, we have:

and Vi(6,6) + V(& 0F(6,8) < —ef? ® ul < x(1€) = V(6,8 + Vel t) P&, tu) < —ds(l€])

hold for all ¢ € R~ and¢ € R™. (b) We callV anilSS Lyapunov functiofor (10) provided

Remark 2:We can choose the Constaﬂtin (8) to be that there existA ¢ Koo and a pOSitive definite function
v :R>¢ — R>q such that
_4p(e 1) 20 = K>

ST KN Vi(§, 1) + Ve(& ) (S, tu) < —v([E]) + Alu])  (12)

This also follows from the proof of Lemma 1 in [7]. for all t € R>p, £ € R", andu € R™.

Motivated by Lemma 1, we find it convenient to use theNote thatv in (12) need notbe of classiC. Since (10) has
following compatibility condition for UGAS systems (2):  an ISS Lyapunov function when it is ISS (by the argument
Definition 3: Given § € K, the dynamics (2) is called- of [16]), the proof of [1, Theorem 1] shows that if (10) is
compatibleprovided it admits a Lyapunov functioi € C*  autonomous and ISS, then it is also iISS, but not conversely,

and two constants € (0, 1), ¢ > 0 such that: since e.g& = — arctan(z) 4w is iISS but not ISS. The next
= _ oo i lemma follows from the arguments of [1], [4], [14], [16].
PL) VA&, 1) + Ve(&,1) (6, ¢) § —eoi(lE) Ve Lemma 7:If (10) admits an ISS (resp., iISS) Lyapunov
P2) [Ve(§,t)] < 6(I€]) and [f(&,8)] < 6(I€1/2) V&t function, then it is ISS (resp., ilSS).
P3) 4(s) < ¢s Vs>0.

Remark 4:Note the asymmetryin the bounds on|V|
and |f| in P2). One easily checks that if (2) satisfies thee
assumptions of Lemma 1, then it i&compatible with
d(s) = (es + 2K)s. However, by varying (including cases
where ¢ is bounded), one finds a rich class of non-UGE
d-compatible dynamics as well; see e.g. Section V-A below. = f(z,t,at)+u, xR uweR" (13)

where © = (vV2D)5X/A=1 (9)

I1l. THEORETICAL RESULT

We show that the main conditions of [12, Theorem 3]
nsure not just local exponential stability of the fast-varying
system (1), but also that the system is UGES. In fact, we
S';how the conditions imply



is ISES wher > 0 is sufficiently large, but see Remark 12 Taking 7 = 2/n, condition (18) multiplied through by-7/2
below for results for more general control-affine systems (3and f(x(t), t, n?t) — p(t,t) = f(z(t),t) and (16) give
Our main assumption will be the following generalization of _ _ _

[12, Property 2]There exist € K, ad-compatible dynamics ~ #(1) = f(f(t)7 t)+ (f(z(t),t) = f(=(),1)) +u

(2), and N € M (cf. condition (5) above}puch that for all + p(t, 1) dl

z € R™, all r € R, and sulfficiently large; > 0, we have t—2/n (20)

([ ] Gy

. ) . where we suppress the argumeftst), [, 7%1) of df /0x and
of which [12, Property 2] is the special case whéfe) = 2s. 2(t),1) of 9f/0x and the arguments of(z(), t,7%t) and
Two more advantages of our result are that (a) our resq(ht(t) whenever this would not lead to confusion.
also applies to cases where the limiting system (2) is UGAS | o V, 6,, andé, satisfy the requirements P1)-P3) from

but not necessarily exponen_tially stal_)I_e (cf. Sect_ion V-Ayefinition 3 and (L1). By property P1) witljf = z() and
below) and (b) our proof provides explicit constructions for(zo)’ the derivative ofV/(z,¢) along the trajectories(t)

Lyapunov functions for (13) (cf. Corollary 10 below). gwhich we denote simply by’ in the sequel) satisfies
Theorem 8:Consider a system (1). Assume there exis

§ € K, ad-compatible UGAS system (2), a constapt>0 V< —e6%(|z(t)]) + Ve(2(t), t) (F(z(t),t) — F(2(t),1))

and N € M such that (14) holds whenever> n,, x € R” t

VIS

IS

,
[ st = T} dl) < 6(jel/2) Nw) (14)

andr € R. Assume there is a constaft > 1 such that: +ng(Z(t),t)/ ) p(t,1)dl
t—2/n
Q(x,t) < K , 8—;f,(alc,t,ozt) < K , and t t ¥
Fwn] < K, [Hetan)] < 15 o[ [ (L-Z)aa
|f(z,t,at)] < 6(|z]/2) VieR, zeR" a>0. 2 t—2/pJs \Oz Ox

Then there is a constamt > 0 such that for all constants X (f +u) + Ve(=(1), ) u.

a > a, (1) is UGAS and (13) is iISS. If in additiof € K, We deduce from (14)-(16), (19)’ and PZ) that
then (13) is ISS for all constants > «. In the special case

where (2)' is UGES, (1) is UGES for all constanis> « Vo< —e82(]z(t)]) + K&(|2(8))|x(t) — 2(t)]
and (13) is ISES for all constants > «. "
Remark 9:By (4), the condition|f(x,t, at)| < §(|x|/2) +25(12(1)]) / p(t, 1) dl| + 8(|z(t)]) |u]
in (15) is redundant whed has the formé(s) = 7s for a t=2/n . .
constantr > 0, sincer can always be enlarged.
" Y g w3+ lapateen [ [aka
—o/m s
IV. PROOF OF THEOREM 8 AND REMARKS _
e firs hat (2) is UGAS and e K . < —cd%([2(t)]) + Ko([z(0))| R(x(t), )]
e first assume thal is and € Ko, an ,
we prove the ISS property for (13) for large > 0. In +30(2(ONDN () 8(l2(t)]/2) + 6(|2(2)]) [u]
what follows, we assume all inequalities and equalities hold +2K 5(|z(0)D{5(|2(2)|/2) + |ul}.
wherever they make sense, unless otherwise indicated. Let ! _
o = 12 with p > 1,, u € U, and z(t) be a trajectory for Moreover, (15), P2), and (19) give
(13) andu, with arbitrary initial condition. Set t t
R(z(t),t) < ﬂ/ /pt,l dlds
z(t) = z(t) + R(x(t),t), where (16) (), 1) 26(t|—2(/37/§)| &) (21)
< 20(|x(t .
R(z,t) = 7
¢ t ) _ (17) Combining these inequalities and grouping terms gives
—g/ / (a0 Pl) — Fla, 1)) dids, | -
t=2/n s Vo< o ([z(0)]) + 6(1z()]) [
Setp(t,1) = f(z(t),1,n2l) — f(z(t),1). With p so defined, +a(|2()]) (%K + %N(m) {o(lz(®)[/2) + |ul}.
one easily checks (via Fubini's Theorem, as was done e.g. ]
in [9], [10]) that for anyr > 0 andt > 0, n the other hand, (16), (21), and P3) give
d [t l2(B)] = fa(®)] — |R(x(t),1)]
i) v aas= > Ja(t) - Sa)] = Yo @
dt Jo—r Js t t t (18) ! ?
Tp(t,t) 7/ p(t,1) dl + / / zzt)(w) dlds whenn > max{2¢,,}. Sinced € K, this gives
t—7Js

2 Vo< (—etdK 4 3N) 8 (=)

<5, max |pt.0l. (19) +(%K+§N(n)+1) 5(|z(t)])ul. @

and

t—T1
t t
/ / p(t, 1) dlds
t—71 Js




Setting x(s) = £4(s/2), it then follows from (22) that The preceding proof provides the following construction:
Corollary 10: Let the hypotheses of Theorem 8 hold for

[ufos _SX(|x(t)J) = [uleo < X(2]2(1)]) (24) Somed € K and V' € C' be a Lyapunov function for

= V< (*% + %K + nN(n)) 2(|z(t)])- (2) satisfying thej-compatibility requirements for (2). Then

. .. there is a constant > 0 such that for each constant> «,
SettingV'®!(x,t) := V(z + R(z,t),t), we see the derivative

V =Vi(z,t) + Ve(z,1)z of V(z,t) along (16) satisfies VIel(E 1) =

V=Vl t) + VI, t) {f(x,t,at) +u}.  (25) 1% g—“f/: ] /t{f(f,l,al)—f(f,l)}dld&t)
-~z Js

We deduce from property (5) df € M, (22), and (24) that
when thea’s (and so also the's) are sufficiently large, is a Lyapunov function for (1) and an ilSS Lyapunov function
for (13). If in additiond € K., thenVl is also an ISS

|“[L]§ x(fal) = - Lyapunov function for (13).

Vit (@, ) + Vil (1) [f (2, o) 4+ u] < —36%(J2/2) Remark 11:The decay requirement (5) aN € M from
andé, (|z|/2) < VII(z,t) < do(|z| 4+ 26(|z|/2)/n) by (21). Theorem 8 can be relaxed, as follows. We assume the flow
It follows that V! is an ISS Lyapunov function for (13), map ¢ of the limiting dynamics (2) satisfies the UGES
so (13) is ISS for largey, by Lemma 7, as claimed. The conditions (6)-(7) for som& > 1 and\ € (0, K), whereK
UGAS conclusion is the special case where= 0. To prove satisfies (15), and we lét be as in Lemma 1. By Remark
the iISS assertion, we instead follow the preceding argume®t our argument above shows that Theorem 8 remains true
up through (23) (which is valid since that part did use théor UGES f if its condition N € M is relaxed to
unboundedness @) and then substitute the relation K —\

: 1 In* >0 s.t. sup nN(n) < D6 1% 27)
Sl < SH(I=(0)]) + o lul (©-1)e
2 2 A similar relaxation can be made in the more general UGAS
setting covered by our theorem.

Remark 12:The method we used in the proof of Theorem

8 can be used to prove the ISS property for (3) under ap-

_ 52 = _ a2 - -
v(s) = 8°(s/2)c/4 and A(s) = 7s* for a suitabler > 0), propriate growth assumptions on the matrix-valued function
which implies that (13) is iISS for large, by Lemma 7. g:R" x R x R — R"™™_Clearly, some growth condition

we tgrn next to the speqal case whgre (2) is globalty on g is needed and linear growth gfis not enough, since
ponentiallystable. LetV satisfy the requirements of Lemma

1 above for (2), and let(t) be any trajectory for (13) for T=—x+ U
any controlu € U starting atz(to) = xo. Define z(t) by

(16)-(17). Arguing as before except with this néwgives is not ISS. Qne way tolextend our thegrem to (3) is to add
\R(x(t), )] < 25 |2(¢)| and (25) satisfies (by P3) and (14)) the hypothesis thatis C* and that there is a constaft > 1
n such that for alt € R, x € R™, anda > 0,

into (23) and bound the resulting coefficient ¢f| to
show thatV*! is an iISS Lyapunov function for (13) for
sufficiently largea (by again using (21) and (22) and taking

Vo< —z®)2 + eslz(@®)]|u]

c I7taat Sco+ 6 x|/2
e |=(0)] (K2 + SN G)) {Jo(0)] + ]} llg(,t, )] (l1/2)

8 5 - 9 where|| - || is the 2-norm onR™*™ andé € K, satisfies
< (*1 + el +enesN(n) ) [2(t)] P1)-P3) for some Lyapunov functioti. Applying the first
+c3]2(1)] (%KQ + %N(n) =+ 1) ul, part of the proof of Theorem 8 except with the new choice
since|z(t)| < 2|z(t)| for largen as before. If we now define X(s) = co(s/2) , (28)
¥ € Koo by X(s) = s/{8(1 + ¢3)}, then we deduce as in Heo +1/0(s/2)}

the UGAS case that if) is large enough, and ifulc < e then conclude as before that (3) is ISS for sufficiently
X(|z(#)[) for all ¢, then alsou|o, < x(2|z(¢)]) for all t and  |5rge o > 0 (with the same ISS Lyapunov functiori™)).

V< —(t)P/2 < —V(Z(t)vt)/(%g)- This gives the decay |f jnsteads € K is bounded, then (3) is iISS whem is
V(2(1),t) < V(2(to), to)e~*~*)/(2) (whent > t,), so sufficiently large, by our earlier argument.

C _t=to

TlEOF < alz0F < V), < efs)fe =, V. ILLUSTRATIONS

S0 our estimate ohR(z(t),t)| and the form ofz(t) give The following applications show how our results extend

the known results [7], [12]. In [12], the limiting dynamics (2)
are assumed to be UGES. However, in our first example, the
< \/@ (1 i %> ‘x(to)‘e—ﬁ(t—to). (26) limiting dynamics are UGAS _bu_t not necessarily UGES. We
- é n also apply our results to a friction model for a mass-spring
We conclude as before that if (2) is UGES, then, when 0  dynamics. In both examples, the limiting dynamics has a
is large enough, (1) is also UGES and (by the proof of [16&imple explicit Lyapunov function so our constructions give
Lemma 2.14]) (13) is ISES, proving our theorem. explicit Lyapunov functions for the original dynamics.

1 (4=
()] < (/22 |x(te) + Rla(to),to)]e ™2 ")



A. Application To a UGAS Dynamic That Is Not UGES coefficients vary in time faster than the spring stiffness

Consider this variant of the scalar example on [12, p.53f0efficient so we restrict to cases where> 1.
Our precise assumptions on (31) akeand theo;'s are

T = f(w7t7at_) = . (29) boundedC" functions; has a globally bounded derivative;
—01(2)[2 + sin(t + cos(oz(z))) {1 + 10sin(at)} and there exist a functiod/ : R>o — Rxg : s — M(s)
whereo;, 05 : R — R areC! functions such that that iso(s) (i.e. M(s)/s — 0 ass — +o0) and constants

oi, With & 0 ands; > 0 for 4 = 2,3, such that
o1 is odd, sup{|o}(z)| + |o1(z)oh(x)] : x € R} < o0, ? \ o= ? !
o1 € Kon[0,00), and 07(s) <0Vs>0. / : (o5(t) — 51-)(115’ < M(ty—ty), i=1,2,3 (34)

t1

Using simple calculations, one checks the assumptions of

Theorem 8 using for all t1,t; € R satisfyingts > t;. Although theos;’s
- o . . are positive for physical reasons, we will not require their
5((9;’ tt))'; Va(;()x).[i 751;(2(5:)_(10505(02(96)))]’ positivity in the sequel. Clearly, (34) holds for constant
T — Jo U1 ’ positive o;'s using o; = 4&;, but (34) also allows the

— — 2
0(s) = 3301(2s), and N(n) := 60/n" for large 7. o;'s to take negative values on intervals of arbitrarily large
This allows e.g.o(s) = o2(s) = arctan(s) in which case length; see Remark 14 below. We show (31) satisfies the
(2) is UGAS but not UGES becauge(t)] < 2w along requirements of the version of our theorem from Remark 12
all of its trajectoriesz(t) and all¢ > 0. Condition P1) (with § of the formd(s) = 7s) when (2) is given by
follows becauser; (2s) < 201(s) for all s > 0, which holds .

becauser!(s) < 0 for all s > 0. Corollary 10 then gives the T L B
following iISS Lyapunov function for (13) for large > 0: Tz = _Z%ff — {02 + Gze” 1@ }sat(za)  (35)
- €y,

\% (§ + 5o (€) f:_i f; w(&, 1) sin(ad) di ds) . (80) assuming the following additional condition whose physical
ve interpretation is that the spring stiffness is nonincreasing:
wherep(§,1) := 2+sin(l+cos(02(£))). In particular, this is

1. 7. /
a Lyapunov function fot: = f(z,t, at), and it is also an 1SS Fko, k>0 5.t ko < k() <k and k(1) <0 V> 0.
Lyapunov function for (13) if6 € K. Our conditions on  To this end, sets := 5, + (52 + 53)02 and
the o0;'s cannot be omitted even if (2) is UGES [1£3.2]. ) )
For example, ifoy(z) = = and oy(z) = 22, then (2) is V(z,t) = A(k(t)a1 + x3) + @122, (36)
UGES, but (29) is only shown to blecally exponentially \here a4 .= 1 + 1/ko + [1+ S2/k,]/51. Since Ak > 1,
stable for largea: > 0 [12]. This does not contradict our 1 -
theorem because in that case (15) would be violated. 5(9@ +22) < V(x,t) < A%k(|21| + |22])? (37)
for all z € R andt > 0. Also, sincek’ < 0 everywhere,

The following dynamical system arises in the control othe derivativeV = Vi(z,t) + Vi(z,t)f(z,t) of V along
mechanical systems in the presence of friction. We considggjectories of (35) satisfies

the one degree-of-freedom mass-spring system [3]

B. Friction Example

. V < Vi(z,t) f(x,t) = [24k(t) 2 + zo]ze — 2429 + 21]

1 = T2 jd ol ol —pP1pu(T2

To —o1(at)xe — k(t)z1 + u (31) x{G122 + [02 +a3e” u( )] sat(22) + k(t)z1}
—{oa(at) + o3(at)e P12} sat(x,) and therefore, by grouping terms, we also have

where z; and z, are the mass position and velocity, re-
spectively; 0;, @ = 1,2,3 denote positive time-varying
viscous, Coulomb, and static friction-related coefficients, < —b|z|? — [f22? + (461 — 1/2)23 — S|z122]]
respectively;; is a positive constant corresponding to the 2k s 2 2 - 9
Stribeck effecty.(-) is a positive definite function also related —blef® =% ('Il‘ a g|932|) + (W ta- Aal) T2
to the Stribeck effectk denotes a positive time-varying < —b|x|?, where b := min{k,/2, AG, — 1/2}.

spring stiffness-related coefficient; and (satdenotes any

V < —kox? — (2461 — 1)ad + S|lzixa|  (by (32)(b))

continuous function having these properties: The preceding inequalities imply thaf/b is a Lyapunov
function for (35) satisfying the requirements of Lemma
(a) sat(0) =0, (b) &sat(§) >0 VEER, 1. The integral bound requirement (14) from our theorem

(32) follows from (34) and the sublinear growth efinh, since

_ _ _ the integral bound can be verified term by term. We conclude
Here, we model the saturation differentiably as from our earlier construction that far > 0 sufficiently large,
sat(2s) = tanh(Baz2), (33) (31) admits the ISS Lyapunov function

) . t t
where3, is a large positive constant. Note for later use thaty (¢ ¢) = v (51,52 + @/f ] / Do (1,€)dl ds,t)
b= S

(c) lim sat(§) =+1, (d) lim sat(¢) =1

|sat(z2)| < Ba|za| for all 22 € R. We assume the friction



whereV is the Lyapunov function (36) for (35) and where

Ta(l,€) := {o1(al) = 61} + pa(l, €) tanh(B2€2)
to (1, &) := o2(ad) — 69 + (o3(ad) — 5’3)6_61“(52)

so (31) is ISS for large enough > 0, by Remark 12.

Remark 13:The preceding construction simplifies consid
erably ifo, andos in (31) are positive constants. In that case
the limiting dynamics (2) can be taken to be

(38)
(39)

1
Lo = —01T9 — {02 + 0'367’81“@2)} sat(xq) — k(t)xq

T2

and the ISS Lyapunov function for (31) becomes

V| &L,6 <1+\/a {al(al)—&l}dlds>,t)
( 2 /f—fg/e

with V' defined by (36), since the, ([, ) tanh(5262) term
in the differencef — f is no longer present in the CLF.
Remark 14:We show that hypothesis (34) withy, > 0

allows o; to take negative values on intervals of arbitrarily

large length. We first introduce the séts= {427 : j € N},
J={seR:3j e Ns.t. |s| € [27,27+1]}, and the intervals
I7 =20 —279,2]] and I} = [27 + 1,27 + 277 + 1] for
j € N. Define the even continuous function

-1, sed
(s d 2P~ el e
U =0 gii(s|— 9 1)~ 1, Js| If,jeN
1, otherwise

Theno; = 1 outside a small neighborhood df, ando; is
affine on the intervald".

Using the indicator functiory ; (defined to bel on J and
0 otherwise) and Lebesgue measureand lettingZ denote
the set of all intervals iR, we get

so the left side of (34) with =1 and&; = 1 is at most

2];? xs(s)ds+4 2A([t1,ta] N ) +4 <
2sup;er AL NT) : A1) < to — t1} +4 = Mtz — t).

(1—xJ)|o1(s) —1]ds = 42273' 4
=

oo

With M so defined and# denoting cardinality, we have

M(s)  _ 2{2+sup{)\(IﬂJ):>\(I)<8}}
S S IeT
< 2w aptptinpyiam <)
S IeT
1) 0w 0

(since for anyl € T with \(I) < s, and anyl,r € N,
if 27,271 . 2rtl ¢ DN, then2 ! — 27 < s, hence
I <log,(s27"+1) <log,(s+1), which gives the inequality
in (40)), soo; satisfies (34) withs; = 1.

VI. CONCLUSION

We showed that assumptions similar to those of [12,
Theorem 3] are sufficient for global (rather than just lo-
cal) exponential stability of rapidly time-varying nonlinear
systems. Further, we extended [7], [12] by establishing
global asymptotic (but not necessarily exponential) stability
of the fast time-varying dynamics under milder conditions on
the limiting dynamics, and by constructing strict Lyapunov
functions for fast time-varying systems in terms of Lyapunov
functions for the limiting dynamics. Our results complement
those of [12]. Our Lyapunov function constructions are new
even in the special case where the dynamics are exponentially
stable, and are also input-to-state stable Lyapunov functions
when the fast-varying dynamics are control affine, under
appropriate conditions on the vector fields defining the
systems. We illustrated the applicability of our methods using
a friction control example.
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