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Background on Chemostats

B Chemostat: Laboratory apparatus for continuous culture of
microorganisms, with many biotechnological applications..

B Models: Represent cell or microorganism growth, wastewater
treatment, or natural environments like lakes..

B States: Microorganism and substrate concentrations, prone
to model uncertainties..

B Our goals: Input-to-state stabilization of equilibria that allow
co-existence of species with one limiting nutrient

B O. Bernard, D. Dochain, J. Gouze, J. Monod, H. Smith, ....
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Our Models and Theorem

 ṡ(t) = D[sin−s(t)]−
n∑

i=1
µi(s(t))xi(t) + δ0(t)

ẋi(t) = xi(t)µi(s(t)) + D[x0
i − xi(t)] + δi(t), 1 ≤ i ≤ n

(M)

µi(s) = mi s
ai +s . Equilibria: E∗ = (s∗, x1∗, . . . , xn∗) ∈ (0,∞)×[0,∞)n.

Assumptions. The equilibria and disturbance bounds satisfy:

1) maxi µi(s∗) < D, sin = s∗ +
n∑

i=1

µi (s∗)x0
i

D−µi (s∗) , xi∗ =
Dx0

i
D−µi (s∗)

2) δi(t) ∈ [d i , d̄i ] for all i where Dsin + d0 > 0, d̄0 < 0.5Ds∗,
Dx0

i + d i > 0 for all indices i ∈ P, and d i = 0 for all indices
i ∈ {1,2, . . . ,n} \ P, where P = {i ∈ {1,2, . . . ,n} : x0

i > 0}.

Assumption 2) maintains forward invariance of (0,∞)n+1 for (M).
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n∑

i=1
µi(s(t))xi(t) + δ0(t)
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ai +s . Equilibria: E∗ = (s∗, x1∗, . . . , xn∗) ∈ (0,∞)×[0,∞)n.

Reduces to Gouze-Robledo model when uncertainties δi are 0
and usual model when the constant inputs x0

i ≥ 0 are also zero.

Theorem: Under our assumptions, for all constants x > 0 and
s̄ ≥ sin, the dynamics for the error vector E = (s, x)− E∗ are ISS
on the set Ss̄,x = {E : E + E∗ ∈ (0, s̄]× (0,∞)n−1 × (x ,∞)}.

Significance: Persistence of all species for which x0
i > 0. ISS for

arbitrarily large upper bounds d̄i on the δi(t)’s for i ≥ 1.
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Main Idea of Proof

Construct a function T ∈ K∞ and constants ci > 0 and ki > 0
such that the time derivative of

V (E) = s̃ − s∗ ln
(

s̃+s∗
s∗

)
+

n∑
i=1

1
ci

Ψi(x̃i), where

Ψi(x̃i) = x̃i − xi∗ ln
(

x̃i +xi∗
xi∗

)
for all i ∈ P

and Ψi(x̃i) = xi for all i ∈ {1,2, . . . ,n} \ P

along all solutions of (M) starting in S satisfies

V̇ (t) ≤ −k1

(
s̃2(t)
s(t) +

n∑
i=1

x̃2
i (t)

xi (t)

)
+ k2|δ|[0,t] (1)

for all t ≥ T (|E(0)|), where x̃i = xi − xi∗ for all i and s̃ = s − s∗.
Extend this to ISS estimate on [0,∞) by a trajectory analysis.
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Simulations

n = 2, D = 0.4, s∗ = 0.5, x0
1 = 1, x0

2 = 0.55, sin = 1.34412,
µ1(s) = s

5+s , µ2(s) = s
2+s , x1∗ = 1.29412, x2∗ = 1.1,

δ(t) = (δ0(t), δ1(t), δ2(t)) = (0,−0.1 sin(t),0.1 cos(t)).

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x1(t) and x2(t) are Green and Red Curves, Respectively. s(t) is
Blue Curve. Initial State (s(0), x1(0), x2(0)) = (0.2,0.1,1).
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x1(t) and x2(t) are Green and Red Curves, Respectively. s(t) is
Blue Curve. Initial State (s(0), x1(0), x2(0)) = (1.3,0.2,0.1).
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Conclusions

B Chemostats play a central role in microbial ecology.

B Persistence and asymptotic stability of equilibria are desirable.

B Gouze-Robledo showed coexistence by constant inputs x0
i .

B We generalized their work to prove ISS under uncertainties.

B Our novel method generalizes to cover gestation delays.

Mazenc, F., G. Robledo, and M. Malisoff. Stability and
robustness analysis for a multispecies chemostat model with
delays in the growth rates and uncertainties. Discrete and
Continuous Dynamical Systems Series B.

Thank you for your attention!
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