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>> States: Microorganism and substrate concentrations, prone
to model uncertainties..

> Our goals: Input-to-state stabilization of equilibria that allow
co-existence of species with one limiting nutrient

> O. Bernard, D. Dochain, J. Gouze, J. Monod, H. Smith, ....
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Reduces to Gouze-Robledo model when uncertainties §; are 0
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Theorem: Under our assumptions, for all constants x > 0 and
5 > si,, the dynamics for the error vector £ = (s, x) — &, are ISS
onthe set Ssx = {€: £ + & € (0,8] x (0,00)" 1 x (x,00)}.

Significance: Since x > 0 and s > s;, are arbitrary, we get ISS
properties on all of (0, 00)™ " under our disturbance bounds.
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Main Idea of Proof

Construct a function T € K, and constants ¢; > 0 and k; > 0
such that the time derivative of

n
V() =58—s.In <S+S*) + > %’\U,-()”(,-), where
i=1

Wi(%) = % — X In (X'+XI*) forall ieP
and V(X)) = x;forallie {1,2,...,n}\ P

)
along all solutions of (M) starting in S satisfies

V(o) <~k (5 + £ 580 ) + keldlon (1)

forall t > T(|£(0)|), where X; = x; — x;, for all i and § = s — s,.
Extend this to ISS estimate on [0, o) by a trajectory analysis.
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n=2, D=04,s.,=05, x{ =1, x; =0.55, s;, = 1.34412,

111(8) = 525, 112(8) = 535, X1, = 1.29412, Xp, = 1.1,
5(t) = (0o(t), 01(1), 62(t)) = (0,—0.15sin(t), 0.1 cos(t)).
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Blue Curve. Initial State (s(0), x1(0), x2(0)) = (0.2,0.1, 1).



Simulations

n=2, D=04,s,=05, x{ =1, x; =0.55, s;, = 1.34412,

111(8) = 535, 12(8) = 235, X1 = 1.29412, X, = 1.1,

5(1) = (5o(1), 01 (), (1)) = (0, —0.1sin(t), 0.1 cos(t)).
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x1(t) and xo(t) are Green and Red Curves, Respectively. s(t) is
Blue Curve. Initial State (s(0), x1(0), x2(0)) = (1.3,0.2,0.1).
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Thank you for your attention!



