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Switched and Delayed Systems

B Systems: Nonlinear continuous time systems with a switching
signal that indicates which subsystem is operating when.

B Value: In communications models that are prone to delays
that may be discontinuous, i.e., not necessarily continuous.

B Our Approach: Combine a variant of Halanay’s inequality with
our recent trajectory based contractivity method.

B Novelty: Some subsystems can be unstable, no common
Lyapunov functions are available, no periodicity required,..

B Briat, Fridman, Liberzon, Liu-Teel, Mancilla-Aguilar-Garcia,..

1/6



Switched and Delayed Systems

B Systems: Nonlinear continuous time systems with a switching
signal that indicates which subsystem is operating when.

B Value: In communications models that are prone to delays
that may be discontinuous, i.e., not necessarily continuous.

B Our Approach: Combine a variant of Halanay’s inequality with
our recent trajectory based contractivity method.

B Novelty: Some subsystems can be unstable, no common
Lyapunov functions are available, no periodicity required,..

B Briat, Fridman, Liberzon, Liu-Teel, Mancilla-Aguilar-Garcia,..

1/6



Switched and Delayed Systems

B Systems: Nonlinear continuous time systems with a switching
signal that indicates which subsystem is operating when.

B Value: In communications models that are prone to delays
that may be discontinuous, i.e., not necessarily continuous.

B Our Approach: Combine a variant of Halanay’s inequality with
our recent trajectory based contractivity method.

B Novelty: Some subsystems can be unstable, no common
Lyapunov functions are available, no periodicity required,..

B Briat, Fridman, Liberzon, Liu-Teel, Mancilla-Aguilar-Garcia,..

1/6



Switched and Delayed Systems

B Systems: Nonlinear continuous time systems with a switching
signal that indicates which subsystem is operating when.

B Value: In communications models that are prone to delays
that may be discontinuous, i.e., not necessarily continuous.

B Our Approach: Combine a variant of Halanay’s inequality with
our recent trajectory based contractivity method.

B Novelty: Some subsystems can be unstable, no common
Lyapunov functions are available, no periodicity required,..

B Briat, Fridman, Liberzon, Liu-Teel, Mancilla-Aguilar-Garcia,..

1/6



Switched and Delayed Systems

B Systems: Nonlinear continuous time systems with a switching
signal that indicates which subsystem is operating when.

B Value: In communications models that are prone to delays
that may be discontinuous, i.e., not necessarily continuous.

B Our Approach: Combine a variant of Halanay’s inequality with
our recent trajectory based contractivity method.

B Novelty: Some subsystems can be unstable, no common
Lyapunov functions are available, no periodicity required,..

B Briat, Fridman, Liberzon, Liu-Teel, Mancilla-Aguilar-Garcia,..

1/6



Switched and Delayed Systems

B Systems: Nonlinear continuous time systems with a switching
signal that indicates which subsystem is operating when.

B Value: In communications models that are prone to delays
that may be discontinuous, i.e., not necessarily continuous.

B Our Approach: Combine a variant of Halanay’s inequality with
our recent trajectory based contractivity method.

B Novelty: Some subsystems can be unstable, no common
Lyapunov functions are available, no periodicity required,..

B Briat, Fridman, Liberzon, Liu-Teel, Mancilla-Aguilar-Garcia,..

1/6



Systems

ẋ(t) = fσ(t)(t , x(t), x(t − τ(t)), δ(t)) (Σ)

on Rn, with τ : [0,+∞)→ [0, τb] piecewise continuous and the
switching times ti for the switching signal σ : [0,+∞)→ {1, ..., k}
admitting constants Ti such that 0 < T1 < ti+1 − ti ≤ T2 for all i .

Each fs is locally Lipschitz in its second and third arguments,
and piecewise continuous in its other arguments.

We place certain growth or decay conditions on suitable
functions Vi along solutions of the i th subsystem

ẋ(t) = fσ(ti )(t , x(t), x(t − τ(t)), δ(t)) (Σi )

on intervals [ti , ti+1) when σ is constant and where (Σi ) operates.
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ẋ(t) = fσ(t)(t , x(t), x(t − τ(t)), δ(t)) (Σ)

on Rn, with τ : [0,+∞)→ [0, τb] piecewise continuous and the
switching times ti for the switching signal σ : [0,+∞)→ {1, ..., k}
admitting constants Ti such that 0 < T1 < ti+1 − ti ≤ T2 for all i .

Each fs is locally Lipschitz in its second and third arguments,
and piecewise continuous in its other arguments.

We place certain growth or decay conditions on suitable
functions Vi along solutions of the i th subsystem
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ẋ(t) = fσ(ti )(t , x(t), x(t − τ(t)), δ(t)) (Σi )

on intervals [ti , ti+1) when σ is constant and where (Σi ) operates.

2/6



Systems
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Standing Assumptions

1: There are k absolutely continuous functionals Vi , real
constants αi , nonnegative constants βi , a continuous function
W , and functions χi ∈ K∞ and Γi ∈ K∞ such that

χ1(|φ(0)|) ≤ Vi(t , φ) ≤ χ2(|φ|∞) (Gg)

hold for all φ ∈ Cin, t ∈ [0,+∞), and i ∈ {1,2, . . . , k} and

V̇σ(ti )(t) ≤ ασ(ti )Vσ(ti )(t , xt ) + βσ(ti ) sup`∈[t−τb,t] W (x(`))

+ Γσ(ti )(|δ(t)|)
(Dg)

for almost all t ∈ [ti , ti+1) along all trajectories of (Σi) for all i .

2: There is a constant µ > 1 such that W (φ(0)) ≤ V1(t , φ) and
Vi(t , φ) ≤ µVj(t , φ) hold for all φ ∈ Cin, all i and j , and all t ≥ 0.
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Standing Assumptions and First Theorem

3: There are constants T ≥ τb + T2 and λ > 0 such that∫ t
t−T ασ(`)d` ≤ −λ (1)

holds for all t ≥ T .

4: With the choice c̄ = 1
µ−1(µL+2 − 1)− L− 1, we have

µL+1e−λ + c̄µ sup
t≥T

∫ t
t−T βσ(s)e

∫ t
s ασ(s)d`ds < 1, (2)

where L = supt≥T Cardinality{ti : t − T ≤ ti < t}.

Theorem: Under the preceding assumptions, (Σ) is ISS on Rn.

4/6



Standing Assumptions and First Theorem

3: There are constants T ≥ τb + T2 and λ > 0 such that∫ t
t−T ασ(`)d` ≤ −λ (1)

holds for all t ≥ T .

4: With the choice c̄ = 1
µ−1(µL+2 − 1)− L− 1, we have

µL+1e−λ + c̄µ sup
t≥T

∫ t
t−T βσ(s)e

∫ t
s ασ(s)d`ds < 1, (2)

where L = supt≥T Cardinality{ti : t − T ≤ ti < t}.

Theorem: Under the preceding assumptions, (Σ) is ISS on Rn.

4/6



Standing Assumptions and First Theorem

3: There are constants T ≥ τb + T2 and λ > 0 such that∫ t
t−T ασ(`)d` ≤ −λ (1)

holds for all t ≥ T .

4: With the choice c̄ = 1
µ−1(µL+2 − 1)− L− 1, we have

µL+1e−λ + c̄µ sup
t≥T

∫ t
t−T βσ(s)e

∫ t
s ασ(s)d`ds < 1, (2)

where L = supt≥T Cardinality{ti : t − T ≤ ti < t}.

Theorem: Under the preceding assumptions, (Σ) is ISS on Rn.

4/6



A Key Ingredient: Variant of Halanay’s Inequality

For suitable piecewise continuous functions w : R→ [0,+∞)
and d that admit constants T ∗ > 0 and ρ ∈ (0,1) such that
w(t) ≤ ρ sup`∈[t−T∗,t] w(`) + d(t) holds for all t ≥ 0, we have

w(t) ≤ sup
`∈[−T∗,0]

w(`)e
ln(ρ)
T∗ t + 1

(1−ρ)2 sup
`∈[0,t]

|d(`)| for all t ≥ 0 . (3)

B Mazenc, F., and M. Malisoff. Trajectory based approach for the
stability analysis of nonlinear systems with time delays. IEEE
Transactions on Automatic Control, 60(6):1716-1721, 2015.

B Mazenc, F., M. Malisoff, and S.-I. Niculescu. Stability and
control design for time-varying systems with time-varying
delays using a trajectory based approach. SIAM Journal on
Control and Optimization, 55(1):533-556, 2017.
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Applications and Conclusions

B Our novel stabilization results for linear time-varying systems
apply without periodicity and for piecewise continuous delays.

B This gives switched linear feedback control designs for time-
varying linear systems for general delays without periodicity.

B We used a contractiveness method and a variant of Halanay’s
inequality from our work on nonswitched delay systems.

B Mazenc, F., M. Malisoff, and H. Ozbay. Stability and
robustness analysis for switched systems with time-varying
delays. SIAM Journal on Control and Optimization.

B Future work may entail realizing optimality properties.

Thank you for your attention!
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