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xi = concentration ofith species,S = concentration of limiting nutrient,

µi = ith per-capita growth rate,γi ∈ (0, 1) = constantith yield factor.
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Competitive Exclusion:WhenS0 andD are constant and theµi’s are

increasing,at most one species survives. (There is a steady state with at

most one nonzero species concentration, which attracts a.a. solutions.)



OVERVIEW of LITERATURE

Coexistence:In real ecological systems,many species can coexist, so

much of the literature aims at choosingS0 and/orD to force coexistence.

“The Paradox of the plankton,” Hutchinson,American Naturalist, 1961.



OVERVIEW of LITERATURE

Coexistence:In real ecological systems,many species can coexist, so

much of the literature aims at choosingS0 and/orD to force coexistence.

“The Paradox of the plankton,” Hutchinson,American Naturalist, 1961.

Time-Varying Controls:Have competitive exclusion ifn = 2 and one of

the controls is fixed and the other is periodic. See Hal Smith (SIAP’81),

Hale-Somolinos (JMB’83), Butler-Hsu-Waltman (SIAP’85).



OVERVIEW of LITERATURE

Coexistence:In real ecological systems,many species can coexist, so

much of the literature aims at choosingS0 and/orD to force coexistence.

“The Paradox of the plankton,” Hutchinson,American Naturalist, 1961.

Time-Varying Controls:Have competitive exclusion ifn = 2 and one of

the controls is fixed and the other is periodic. See Hal Smith (SIAP’81),

Hale-Somolinos (JMB’83), Butler-Hsu-Waltman (SIAP’85).

State-Dependent Controls:A feedback control perspective based on

mathematical control theorywas pursued e.g. in De Leenheer-Smith

(JMB’03) to generate a coexistence equilibrium forn = 2, 3.



OVERVIEW of LITERATURE

Coexistence:In real ecological systems,many species can coexist, so

much of the literature aims at choosingS0 and/orD to force coexistence.

“The Paradox of the plankton,” Hutchinson,American Naturalist, 1961.

Time-Varying Controls:Have competitive exclusion ifn = 2 and one of

the controls is fixed and the other is periodic. See Hal Smith (SIAP’81),

Hale-Somolinos (JMB’83), Butler-Hsu-Waltman (SIAP’85).

State-Dependent Controls:A feedback control perspective based on

mathematical control theorywas pursued e.g. in De Leenheer-Smith

(JMB’03) to generate a coexistence equilibrium forn = 2, 3.

Intra-Specific Competition:This can be modeled with growth rates

µi(S, xi) that decrease inxi. See Mazenc-Lobry-Rapaport (EJDE’07),

Grognard-Mazenc-Rapaport (DCDS’07).
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Ṡ = D(1− S)− µ(S)x, ẋ = x(µ(S)−D) (Σ1)

evolving onX = (0,∞)2. We assume a Monod growth rate

µ(S) =
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Summary of Our Work:

• Instead of studying coexistence, we prove thestabilityof aprescribed

periodic solutionusing a Lyapunov-type analysis; i.e.,tracking.

• Lyapunov functions are useful for robustness analysis but have

infrequently been used in chemostat research.

• Most chemostat/Lyapunov results usenonstrictLyapunov functions

and LaSalle invariance which are not suited to robustness analysis.
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(Similar results hold if we instead pick anyxr(t) s.t.∃` > 0 s.t.∀t ≥ 0,
max{`, |ẋr(t)|} ≤ xr(t) ≤ 3

4 andSr = 1− xr, for suitableD.)
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wherez̃ := z − 1, z = S + x, ξ̃ := ξ − ξr, ξ := ln(x), andξr := ln(xr).
Next show that (TE) admits the Lyapunov-like function

L3(z̃, ξ̃) := eξ̃ − 1− ξ̃ +
4m

aD
z̃2 (L)

whereD(t) ≥ D > 0 ∀t. Along the trajectories of (TE), we get

L̇3 ≤ − ma(eξ̃ − 1)2

16(a + 2 + z̃2)(a + 1)
− 4m

a
z̃2 . (DK)

Using a Barbalat’s Lemma argument,(z̃, ξ̃) → 0 exponentially.
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D is from (D),yi = concentration of theith additional species, eachνi is
continuous and increasing and satisfiesνi(0) = 0 andνi(1) < D.

Multi-Species Result: The error between any componentwise
positive solution(S, x, y1, y2, . . . , yn) of (AS) and

(Sr, xr, 0, . . . , 0) =
(

1
2
− 1

4
cos(t),

1
2

+
1
4

cos(t), 0, . . . , 0
)

converges exponentially to the zero vector ast → +∞.

Significance:The stability of the reference trajectory (R) is robust with
respect to additional species that are exponentially decaying to extinction.
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componentwise positive trajectories implies that there existε > 0 and
T ≥ 0 such that(i) S(t) ≤ 1 + ε for all t ≥ T and(ii) νi(1 + ε) < D for
all i = 1, 2, . . . , n. We next choose

δ := D − max
i=1,...,n

νi(1 + ε) > 0.

The result now follows using the Lyapunov-like function

L4(z̃, ξ̃, y1, ..., yn) = L3(z̃, ξ̃) + A
n∑

i=1

y2
i , where A :=

16mn2

aδ
.

in conjunction with Barbalat’s Lemma. Along the relevant trajectories,

L̇4 ≤ − ma(eξ̃ − 1)2

16(a + 1)(a + 2 + z̃2)
− 3m

a
z̃2 − 16mn2

a

n∑

i=1

y2
i .
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Under the less stringent condition|u| < 1
2 min{1, D}, there are functions

δi ∈ K∞ andβ ∈ KL so that the trajectories everywhere satisfy

δ1(|y(t; to, yo, α)|) ≤ β(|yo|, t− to) +
∫ t+to

to

δ2(|α(r)|)dr . (iISS)
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CONCLUSIONS

• Chemostats provide an important framework for modelingspecies

competingfor nutrients. They provide the foundation for much

current research inbioengineering, ecology, andpopulation biology.

• For the case of one species competing for one nutrient and a suitable

time-varying dilution rate, we proved the stability of an appropriate

reference trajectoryusingLyapunov function methods.

• The stability is maintained when there are additional species that are

being driven to extinction, ordisturbances of small magnitudeon the

dilution rate and input nutrient concentration.

• Extensions to chemostats withmultiple competing species, time

delays, limited informationabout the current state, andmeasurement

uncertaintywould be desirable and are being studied.
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