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u; = ith per-capita growth rate; € (0, 1) = constantth yield factor.
Controls:dilution rateD and input nutrient concentraticty,.
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Importance:.Chemostat models provide the foundation for much of
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Competitive ExclusionWhenS, and D are constant and the’s are
Increasingat most one species survivgd here is a steady state with at
MOSt one nonzero species concentration, which attracts a.a. solutions.)
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“The Paradox of the plankt@drHutchinson,American Naturalist1961.

Time-Varying ControlsHave competitive exclusion #f = 2 and one of
the controls is fixed and the other is periodic. See Hal SnitAR81),
Hale-SomolinosJMB'83), Butler-Hsu-Waltman$IAP85).

State-Dependent Control8:feedback control perspective based on
mathematical control theowyas pursued e.g. in De Leenheer-Smith
(JMB03) to generate a coexistence equilibrium foe 2, 3.

Intra-Specific CompetitionThis can be modeled with growth rates
1; (S, x;) that decrease im;. See Mazenc-Lobry-RapapoBJIDEOQ7),
Grognard-Mazenc-Rapapo2CDSO07).
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Taking.5, to be constant and rescaling gives
S = D1-98)— Sz, & = x(u(S)—D) (21)

evolving onX = (0, c0)?. We assume a Monod growth rate

wu(S) = mSS’ m > 4a+ 1. (G)

a —+

Summary of Our Work:
e Instead of studying coexistence, we prove dtebility of aprescribed
periodic solutiorusing a Lyapunov-type analysis; i.&dacking
e Lyapunov functions are useful for robustness analysis but have
iInfrequently been used in chemostat research.

e Most chemostat/Lyapunov results usanstrictLyapunov functions
and LaSalle invariance which are not suited to robustness analysis.
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trajectory(S, z) : [0,00) — X for (31) and the dilution rate

sin(t) m(2 — cos(t))

D) 2 + cos(t) i 4a + 2 — cos(t) (D)
andp as in (G) withm > 4a + 1, the corresponding deviation
(S(t),2(t)) := (S(t) = Sp (1), 2(t) — 2, (1)) (E)
of (S, x) from the reference trajectory
1 1 1 1
(Sult) (1) = (5= Jeosti g +jeos) R

for (31) asymptotically approaché€s, 0) ast — +oc.

(Similar results hold if we instead pick any.(¢) s.t. 3¢ > 0 s.t.Vt > 0,
max{/, |z,(t)|} < z,(t) < 2 andS, = 1 — z,, for suitableD.)
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§ = plz—ef) —p(l—er),
\

wherez .=z —1,z2=5+uz, & =& — &, € :=In(z), andé, = In(z,).
Next show that (TE) admits the Lyapunov-like function
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whereD(t) > D > 0 Vt. Along the trajectories of (TE), we get

3 2
Ls < — ma(ef — 1) _dm o, (DK)
- 16(a+242%)(a+1) a

Using a Barbalat's Lemma argumeti, ¢) — 0 exponentially.
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D is from (D), y; = concentration of théth additional species, eachis
continuous and increasing and satisfig®)) = 0 andy; (1) < D.

\

Multi-Species ResultThe error between any componentwise
positive solution(.S, =, y1, o, - - ., y») Of (AS) and

1 1 I 1

(Sy, 2, 0,...,0) = (5 — Ecos(t), 5 ] ZCOS(IS),O,...,O)

converges exponentially to the zero vectot as +oc.

SignificanceThe stability of the reference trajectory (R) is robust with
respect to additional species that are exponentially decaying to extinction.
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Sincey; (1) < D for eachi, the form of the dynamics fo$' along our
componentwise positive trajectories implies that there exist0 and
T > 0suchthati) S(t) <1+eforallt > T and(ii) v;(1 +¢) < D for
alli =1,2,...,n. We next choose

0:=D— max r;(14+¢)>0.

1=1,....n
The result now follows using the Lyapunov-like function

16mn?
ad

La(Z,6, 41,y Yn) = La(3,§) + A y?, where A :=

1=1
In conjunction with Barbalat’s Lemma. Along the relevant trajectories,
£ _1)2 3 16
maile m mn
( 2 Z .3
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{ S(t) = [D(t) +ur()](1+ua(t) = S(1)) — u(S(t))a(t), =)
z(t) = x(t)|p(S(t) — D(t) —ui(t)]. ’
If |u| stays below a computable prescribed bound, then there are functions

£ e KL andy € K, such that the transformed error vector

y(t; t07 Yo, 05) =
(S(t;to, (S,x)(0), ) — Sy-(t), In(z(t; tg, (S, x)(0), @) — In(x,(t)))
for all disturbances: = (u1,u2) = o and initial conditions satisfies

Y(tito, Yo, )] < B(|wol it — o) +(larfec) (1S9

Under the less stringent conditiom| < < min{1, D}, there are functions
); € K andg € KL so that the trajectories everywhere satisfy

t+to
01(|y(t; to, Yo, @)]) < ﬁ(lyo\,t—to)+/t 0z(la(r)])dr . (iISS)

o



SIMULATIONS '

We simulatedX,) with m = 10, a = 3, u1(t) = 0.5¢ ¢, us(t) = 0,
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We simulatedX,,) with m = 10, a = 3, uy (1) = 0.5¢ ", ua(t) = 0,
to = 0,x(0) = 2,andS(0) = 1. Our theory implies that the convergence
of (S(t),z(t)) to (S.(t), x-(t)) satisfies iISS for disturbanceshat are

valued in[—u, u]? for any positive constant < min{1, D} = 1.
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CONCLUSIONS '

Chemostats provide an important framework for mode$ipgcies
competingfor nutrients. They provide the foundation for much
current research inioengineeringecology andpopulation biology

For the case of one species competing for one nutrient and a suitable
time-varying dilution rate, we proved the stability of an appropriate
reference trajectorysingLyapunov function methods

The stability is maintained when there are additional species that are
being driven to extinction, alisturbances of small magnituda the
dilution rate and input nutrient concentration.

Extensions to chemostats withultiple competing specieime
delays limited informationabout the current state, anteasurement
uncertaintywould be desirable and are being studied.
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