STABILIZING A PERIODIC SOLUTION IN THE CHEMOSTAT:
A CASE STUDY IN TRACKING

Michael Malisoff, Louisiana State University Department of Mathematics, malisoff@lsu.edu, http://www.math.lsu.edu/~malisoff/
Joint work with Frédéric Mazenc (Project MERE, INRIA-INRA, France) and Patrick De Leenheer (University of Florida Department of Mathematics)

1. General Results

Three species model study

Taking s_j to be constant and rescaling gives

$$S = D(S_0 - S) - \sum_{i=1}^{n} \mu_i(S)\frac{x_i}{S}$$ \hspace{1cm} (1)

for $x = (x_1, x_2, x_3)$. We assume a Monod growth rate

$$\mu(S) = \frac{K}{K + S}$$ \hspace{1cm} (2)

evolving on $x = (0, \infty)^3$. The system (1) is written

$$\dot{x} = x_j(\mu(S) - D)$$ \hspace{1cm} (3)

2. Review of Literature and Comparison with Our Work

Literature:

• Competitive Exclusion: When s_j and D in (1) are constant, at most one species survives.

• This means (1) has a steady state with at most one nonzero species concentration, which attracts almost all solutions.

• Much of the literature designs time-varying and state dependent s_j so that force coexistence behaviors.

Our work:

• Instead of studying coexistence, we prove the stability of a pre-periodic solution using a Lyapunov-type analysis.

• Lyapunov functions are useful for robustness analysis but have infrequently been used in chemostat research.

• Most Lyapunov results for chemostats use nonstrict Lyapunov functions in conjunction with LaSalle’s invariance which do not tend themselves to robustness analysis.

3. One Species Model We Study

Taking s_j to be constant and rescaling gives

$$\dot{x} = \frac{\mu(S) - D}{S}x$$ \hspace{1cm} (4)

4. Main Tracking Result for (2)

Statement of Main Tracking Result: Given any componentwise positive trajectory $(S, x) : [0, \infty) \to \mathbb{R}_+$ for (2) and the dilution rate

$$\dot{x}_i = \frac{\mu(S) - D}{S}x_i$$

1. concentration of ith species

S: concentration of limiting nutrient

μ_i: per capita growth rate

γ_i: (0; 1]; constant yield factor

D: input nutrient concentration S_0.

The equations (1) are straightforwardly obtained from writing the mass-balance equations for the total amounts of the nutrient and each of the species, assuming the reactor content is well-mixed.

5. Outline of Proof of Main Tracking Result

First transform the error dynamics for (5) into

$$\begin{align*}
\dot{x} &= -x - D \\
\dot{z} &= \mu(S) - D - (M - D)z
\end{align*}$$

where $\dot{x} = x - 1, z = S - x, \dot{z} = \mu(S) - D, \mu(S) = \mu(S) - D$. Next show that (7) admits the Lyapunov function

$$L(z) = \frac{1}{2}\left(\frac{\mu(S) - D}{S} - 1\right) + \frac{1}{2}z^2$$

Along the trajectories of (7), we get

$$L(z) \leq \frac{1}{2}\left(\frac{\mu(S) - D}{S} - 1\right) \leq \frac{1}{2}z^2$$

The stability follows from a Barbalat’s Lemma argument which is fact that shows $(1, \dot{1}) \to 0$ exponentially.

6. Extension to Chemostats with Additional Species

Our stabilization result enjoys a number of highly desirable robustness properties. For example, consider the augmented model

$$\begin{align*}
\dot{S} &= D(S_0 - S) - \sum_{i=1}^{n} \mu_i(S)\frac{x_i}{S} \\
\dot{x}_i &= x_i(\mu(S) - D) - D
\end{align*}$$

and μ_i as in (3) with $m > \alpha + 1$, the corresponding deviation

$$(\tilde{S}(t), \tilde{x}_i(t)) = (S(t) - S_0, (S(t) - S_0) \cdot x_i)$$

of (S, x) from the reference trajectory

$$(\bar{S}_0(t), \bar{x}_i(t)) = \left(\frac{1}{2}\cos(t) + 1, \frac{1}{2}\cos(t), 0, \ldots, 0\right)$$

for (2) asymptotically approaches $(0, 0)$ as $t \to \infty$.

Our choice (6) is motivated by commonly observed oscillations in biological applications e.g. waste water treatment plants. (Similar results hold if instead we choose any γ_i that admits a constant $\Gamma > 0$ such that $\mu_i(S) < \Gamma$ for all $S > s_j$ and $S < \Gamma$ for suitable D_j). The condition $m > \alpha + 1$ is used to get a positive uniform bound Γ on S and so can be relaxed to $m > \alpha + 1$.

7. Robustness Result for Actuator Errors

Our robustness is maintained in the (integral) input-to-state stability sense if there are suitably small disturbances on the controllers i.e.

$$\begin{align*}
\dot{S} &= D(S_0 - S) - \sum_{i=1}^{n} \mu_i(S)\frac{x_i}{S} \\
\dot{x}_i &= x_i(\mu(S) - D) - D + D_i
\end{align*}$$

This means if $|\delta|$ stays below a computable bound, then there are $\beta \in \mathcal{C}$ and $\gamma \in \mathcal{C}$ such that the transformed error vector $\tilde{z}(t) = (S(t) - S_0, (S(t) - S_0) \cdot x_i)$ and $\tilde{S}(t) = \bar{S}_0(t)$.

Under the less stringent condition $|\delta| < m < 1$ in (10), there are functions $\alpha \in \mathcal{C}$ and $\beta, \gamma \in \mathcal{C}$ such that the error $\epsilon(t) \to 0$ exponentially.

$|\epsilon(t)| \leq |\epsilon(0)|e^{-\alpha t}$

8. Simulation for Perturbed Chemostat in Tracking

In Figures (a)-(b), we simulated the perturbed dynamics (12) with

$$\begin{align*}
\dot{S} &= D(S_0 - S) - \sum_{i=1}^{n} \mu_i(S)\frac{x_i}{S} + D_i \\
\dot{x}_i &= x_i(\mu(S) - D) - D + D_i
\end{align*}$$

$|\epsilon(t)| \leq |\epsilon(0)|e^{-\alpha t}$

Our results imply that the convergence of $(\tilde{S}_0(t), \tilde{x}_i(t))$ to $(\bar{S}_0(t), \bar{x}_i(t))$ is ISSS to disturbances ν that are valued in (ϵ, ϵ^2) for any positive constant ϵ. (Similar results hold in $|\epsilon(0)| = 1$. Our simulation illustrates how the state trajectory $(\tilde{S}_0(t), \tilde{x}_i(t))$ tracks the reference trajectory $(\bar{S}_0(t), \bar{x}_i(t))$ even in the presence of small disturbances and so validates our findings.

9. Conclusions and Future Work

• Chemostats are useful framework for modeling species competing for nutrients. They provide the foundation for much current research in bio-engineering, ecology, and population biology.

• For the case of one species competing for one nutrient and a suitable time-varying dilution rate, we proved the stability of an appropriate reference trajectory using Lyapunov methods.

• The stability is maintained when there are additional species that are being driven to extinction, or disturbances of small magnitude on the rate and input nutrient concentration.

• Extensions to chemostats with multiple competing species and more general perturbations remain open.

10. Acknowledgements

Part of this work was done while P. De Leenheer and F. Mazenc visited Louisiana State University (LSU).

F. Mazenc thanks Claude Lobry and Alain Rapaport for helpful discussions. M. Malisoff thanks Hairul Tu for Figures (a)-(b).

Malisoff was supported by NSF/DMS Grant 0424011. De Leenheer was supported by NSF/DMS Grant 0500861.

11. Reference