STABILIZING A PERIODIC SOLUTION IN THE CHEMOSTAT: A CASE STUDY IN TRACKING

Michael Malisoff, Louisiana State University Department of Mathematics, malisoff@lsu.edu, http://www.math.lsu.edu/~malisoff/

Joint work with Frédéric Mazenc (Project MERE, INRIA-INRA, France) and Patrick De Leenheer (University of Florida Department of Mathematics)

3. One Species Model We Study

Taking S_0 to be constant and rescaling gives

$$\dot{S} = D(1-S) - \mu(S)x, \quad \dot{x} = x(\mu(S) - D)$$
 (2)

evolving on $\mathcal{X} = (0, \infty)^2$. We assume a Monod growth rate

$$\mu(S) = \frac{mS}{a+S}, \quad m > 4a+1.$$
(3)

4. Main Tracking Result for (2)

Statement of Main Tracking Result: Given any componentwise positive trajectory $(S, x) : [0, \infty) \to \mathcal{X}$ for (2) and the dilution rate

$$D(t) = \frac{\sin(t)}{2 + \cos(t)} + \frac{m(2 - \cos(t))}{4a + 2 - \cos(t)}$$
(4)

and μ as in (3) with m > 4a + 1, the corresponding deviation

$$(\tilde{S}(t), \tilde{x}(t)) := (S(t) - S_r(t), x(t) - x_r(t))$$
 (5)

of (S, x) from the reference trajectory

$$(S_r(t), x_r(t)) := \left(\frac{1}{2} - \frac{1}{4}\cos(t), \frac{1}{2} + \frac{1}{4}\cos(t)\right)$$
(6)

for (2) asymptotically approaches (0,0) as $t \to +\infty$.

Our choice (6) is motivated by commonly observed oscillations in biological applications e.g. waste water treatment plants. (Similar results hold if we instead choose any $x_r(t)$ that admits a constant $\ell > 0$ such that $\max\{\ell, |\dot{x}_r(t)|\} \leq x_r(t) \leq \frac{3}{4}$ for all $t \geq 0$ and $S_r = 1 - x_r$, for suitable D.) The condition m > 4a + 1 is used to get a positive uniform lower bound <u>D</u> on D and so can be relaxed to $m > \frac{2}{3}(4a+1)$.

Figure 2: Graph of Dilution Rate D(t) with m = 10 and $a = \frac{1}{2}$ for the Chemostat From (4) Plotted Against Time t

5. Outline of Proof of Main Tracking Result

First transform the error dynamics for (5) into

$$\begin{cases} \dot{\tilde{z}} = -D(t)\tilde{z}, \\ \dot{\tilde{\xi}} = \mu(z - e^{\xi}) - \mu(1 - e^{\xi_r(t)}), \end{cases}$$
(7)

where $\tilde{z} := z - 1$, z = S + x, $\tilde{\xi} := \xi - \xi_r$, $\xi := \ln(x)$, and $\xi_r := \ln(x_r)$. Next show that (7) admits the Lyapunov-like function

$$L_3(\tilde{z}, \tilde{\xi}) := e^{\tilde{\xi}} - 1 - \tilde{\xi} + \frac{4m}{a\underline{D}}\tilde{z}^2.$$
 (8)

Along the trajectories of (7), we get

$$\dot{L}_3 \le -\frac{ma(e^{\xi}-1)^2}{16(a+2+\tilde{z}^2)(a+1)} - \frac{4m}{a}\tilde{z}^2.$$
 (9)

The stability follows from a Barbalat's Lemma argument which in fact shows that $(\tilde{z}, \xi) \rightarrow 0$ exponentially.

S =

Multi-species Result: The error between any componentwise positive solution $(S, x, y_1, y_2, \dots, y_n)$ of (10) and

The result now follows using the Lyapunov-like function

 $L_4(\hat{z}$

using Barbalat's Lemma. Along the error dynamics trajectories,

This means that if |u| stays below a computable bound, then there are $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}_{\infty}$ such that the transformed error vector

 $y(t;t_{o})$

for all di

01

This is significant e.g. because *D* is proportional to the speed of the pump that supplies the nutrient which is prone to small errors [1]. No ISS estimate is possible for (13) without input constraints.

6. Extension to Chemostats with Additional Species

Our stabilization result enjoys a number of highly desirable robustness properties. For example, consider the *augmented model*

$$\dot{S} = D(t)(1-S) - \mu(S)x - \sum_{i=1}^{n} \nu_i(S)y_i,$$

$$\dot{x} = x(\mu(S) - D(t)), \quad \dot{y}_i = y_i(\nu_i(S) - D(t)), \quad i = 1, \dots, n$$
(10)

where D is from (4), y_i is the concentration of the *i*th additional species, and ν_i is continuous and increasing and satisfies $\nu_i(0) = 0$ and $\nu_i(1) < \underline{D}$ for $i = 1, 2, \ldots, n$.

$$(S_r, x_r, 0, \dots, 0) = \left(\frac{1}{2} - \frac{1}{4}\cos(t), \frac{1}{2} + \frac{1}{4}\cos(t), 0, \dots, 0\right)$$

converges exponentially to the zero vector as $t \to +\infty$.

Proof (Sketch): Since $\nu_i(1) < \underline{D}$ for each *i*, the form of the dynamics for S along our componentwise positive trajectories implies that there exist $\varepsilon > 0$ and $T \ge 0$ such that (i) $S(t) \le 1 + \varepsilon$ for all $t \ge T$ and (ii) $\nu_i(1+\varepsilon) < \underline{D}$ for all $i = 1, 2, \ldots, n$. We next choose

$$\delta := \underline{D} - \max_{i=1,\dots,n} \nu_i (1+\varepsilon) > 0.$$

$$\tilde{z}, \tilde{\xi}, y_1, \dots, y_n) = L_3(\tilde{z}, \tilde{\xi}) + A \sum_{i=1}^n y_i^2, \quad \text{where} \quad A := \frac{16mn^2}{a\delta}.$$
 (11)

$$\dot{L}_4 \leq -\frac{ma(e^{\xi}-1)^2}{16(a+1)(a+2+\tilde{z}^2)} - \frac{3m}{a}\tilde{z}^2 - \frac{16mn^2}{a}\sum_{i=1}^n y_i^2.$$

7. Robustness Result for Actuator Errors

Our robustness is maintained in the (integral) input-to-state stability sense if there are suitably small disturbances on the controllers i.e.

$$S(t) = [D(t) + u_1(t)](1 + u_2(t) - S(t)) - \mu(S(t))x(t),$$

$$\dot{x}(t) = x(t)[\mu(S(t)) - D(t) - u_1(t)].$$
(12)

$$(z_o, y_o, \alpha) :=$$

(13) $(S(t;t_0,(S,x)(0),\alpha) - S_r(t), \ln(x(t;t_0,(S,x)(0),\alpha)) - \ln(x_r(t)))$

listurbances
$$u = (u_1, u_2) = \alpha$$
 and initial conditions satisfies

$$(t;t_o,y_o,\alpha)| \leq \beta(|y_o|,t-t_o) + \gamma(|\alpha|_{\infty}).$$
 (ISS)

Under the less stringent condition $|u| < \frac{1}{2} \min\{1, \underline{D}\}$, there are functions $\delta_i \in \mathcal{K}_{\infty}$ and $\beta \in \mathcal{KL}$ so that the trajectories everywhere satisfy

$$(|y(t;t_o,y_o,\alpha)|) \leq \beta(|y_o|,t-t_o) + \int_t^{t+t_o} \delta_2(|\alpha(r)|) dr.$$
 (iISS)

In Figures (a)
•
$$D(t)$$
 from (4)

•
$$u_1(t) = 0.5e$$

[1] F. Mazenc, M. Malisoff, and P. De Leenheer, "On the stability of periodic solutions in the perturbed chemostat," *Mathematical* Biosciences and Engineering, to be published.

8. Simulation for Perturbed Chemostat (12)

)-(b), we simulated the perturbed dynamics (12) with (4) with $m = 10, a = \frac{1}{2}$; $^{-t}$, $u_2(t) \equiv 0$; and • $t_o = 0$, x(0) = 2, S(0) = 1.

Our results imply that the convergence of (S(t), x(t)) to $(S_r(t), x_r(t))$ is iISS to disturbances u that are valued in $[-\bar{u}, \bar{u}]^2$ for any positive constant $\bar{u} < \min\{1, \underline{D}\} = 1$. Estimate (iISS) holds with $\delta_2(r) = Cr$ for some constant C > 0. Our simulation illustrates how the state trajectory (S(t), x(t)) tracks the reference trajectory $(S_r(t), x_r(t))$ even in the presence of small disturbances and so validates our findings.

 Chemostats are a useful framework for modeling species competing for nutrients. They provide the foundation for much current research in bio-engineering, ecology, and population biology.

• For the case of one species competing for one nutrient and a suitable time-varying dilution rate, we proved the stability of an appropriate reference trajectory using Lyapunov methods.

• The stability is maintained when there are additional species that are being driven to extinction, or disturbances of small magnitude on the dilution rate and input nutrient concentration.

• Extensions to chemostats with multiple competing species and more general disturbances would be desirable.

10. Acknowledgements

• Part of this work was done while P. De Leenheer and F. Mazenc visited Louisiana State University (LSU).

• F. Mazenc thanks Claude Lobry and Alain Rapaport for helpful discussions. M. Malisoff thanks Hairui Tu for Figures (a)-(b). • Malisoff was supported by NSF/DMS Grant 0424011. De Leenheer was supported by NSF/DMS Grant 0500861.

11. Reference