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‘ 1. General n Species Chemostat Model I

n
S=D(Sy—S5) =Y pilS)zi/vi
i=1
e 1;. concentration of ;th species
¢ S: concentration of limiting nutrient

v = xi(pi(S) — D) (1)

e /1;. per capita growth rate
e v, € (0,1): constant yield factor
e controls: dilution rate D and input nutrient concentration Sj.

The equations (1) are straightforwardly obtained from writing the
mass-balance equations for the total amounts of the nutrient and
each of the species, assuming the reactor content is well-mixed.

Figure 1: Chemostat

‘ 2. Review of Literature and Comparison with Our Work I

Literature:

e Competitive Exclusion: When S; and D in (1) are constant, at
MOSt one species survives.

e This means (1) has a steady state with at most one nonzero
species concentration, which attracts almost all solutions.

e This I1s at odds with observed coexistence behaviors in real eco-
logical systems e.g. the “paradox of the plankton”.

e Much of the literature designs time-varying and/or state depen-
dent D and Sy that force coexistence behaviors.

Our work:

e Instead of studying coexistence, we prove the stability of a pre-
scribed periodic solution using a Lyapunov-type analysis.

e Lyapunov functions are useful for robustness analysis but have
Infrequently been used in chemostat research.

e Most Lyapunov results for chemostats use nonstrict Lyapunov
functions in conjunction with LaSalle invariance and so do not lend
themselves to robustness analysis.

‘ 3. One Species Model We Study |

Taking Sp to be constant and rescaling gives

S = D(1—S5)—u(S)e, & = x(u(S)— D) (2)

evolving on X = (0, c0)?. We assume a Monod growth rate

mS
— 4 1.
p(S) 4+ S’ m > 4a + (3)
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‘ 4. Main Tracking Result for (2) |

Statement of Main Tracking Result: Given any componentwise
positive trajectory (S, z) : [0, 00) — X for (2) and the dilution rate

sin(t) m(2 — cos(t))
t

D(t) 24 cos(t)  4a+2— cos(t)

(4)
and p as in (3) with m > 4a + 1, the corresponding deviation

(5(t), 2(t)) = (5(t) = Sr(t), x(t) — (1)) (5)

of (S, z) from the reference trajectory

(S(t), 20 (2)) = G — eos(t), 5 + %cos(t)) 6)

for (2) asymptotically approaches (0,0) as ¢t — +oc.

Our choice (6) is motivated by commonly observed oscillations in bi-
ological applications e.g. waste water treatment plants. (Similar re-
sults hold if we instead choose any x,-(¢) that admits a constant ¢ > 0
such that max{¢, |z,(t)|} < x,(t) < 3forallt > 0and S, = 1 — zy,
for suitable D.) The condition m > 4a + 1 is used to get a positive
uniform lower bound D on D and so can be relaxed to m > %(4a+ 1).

Figure 2: Graph of Dilution Rate D(t) with m = 10 and a = % for the
Chemostat From (4) Plotted Against Time ¢

‘ 5. Outline of Proof of Main Tracking Result |

First transform the error dynamics for (5) into

= —D(t)z
{ =D 7

&= pl(z—et) — p(l — &),

~

where z = z—-1,2=8+ux, & =& =&, £ :=1In(x), and & = In(x,).
Next show that (7) admits the Lyapunov-like function

Ay
¢
I
S
DO

~ = o o 1 o I~
L3(z,§) =e §+ D (8)
Along the trajectories of (7), we get
| £ _ 1)
iy < - ma(es — 1) B 4m§2. (9)

16(a +2+2%)(a+1) a

The stabllity follows from a Barbalat's Lemma argument which in fact
shows that (z,£) — 0 exponentially.

‘ 6. Extension to Chemostats with Additional Species |

Our stabilization result enjoys a number of highly desirable robust-
ness properties. For example, consider the augmented model

= DO - 8)— u(S)e— S 1i(Shus.
u(S)e =) ulS)y (10)

z = z(p(S) — D(¥)), yi = yi(vi(S) = D(t)), i=1,....n

where D is from (4), y; is the concentration of the ith additional
species, and v; is continuous and increasing and satisfies v;(0) = 0
and v;(1) < Dfori=1,2,...,n.
Multi-species Result: The error between any componentwise pos-
itive solution (S, z, y1, 19, ..., yn) Of (10) and

1 1 I 1
,O) = (5—ZCOS<t>,§+ZCOS(t),O,...,O)

converges exponentially to the zero vector as t — 4.

Proof (Sketch): Since v;(1) < D for each ¢, the form of the dynam-
iIcs for S along our componentwise positive trajectories implies that
there existe > 0and T" > 0 such that (i) S(t) < 1+¢forallt > T and
(i) v;(1+e) < Dforall:=1,2,...,n. We next choose

(Sy, xr, 0, ..

§:=D— max yi(l+¢)>0.

1=1,....,n
The result now follows using the Lyapunov-like function

16mmn?

a0

mn
Ly(Z,& 51, yn) = L3(2,§) + A g7, where A := (11)
1=1

using Barbalat's Lemma. Along the error dynamics trajectories,

L4§—

ma(eg —1)? 3m _,  16mn? Z 9
16(a+1)(a+2+2%) a a /

‘ 7. Robustness Result for Actuator Errors |

Our robustness is maintained in the (integral) input-to-state stability
sense If there are suitably small disturbances on the controllers I.e.

S(t) = [D(t) +ur()](1 +ug(t) — S(t)) — p(S(1)x(t)
o(t) = x(t)[p(S(t)) = D(t) —ui(t)]

This means that if |u| stays below a computable bound, then there
are g € KL and v € K such that the transformed error vector

(12)

y(t:to, Yo, ¢) =
(13)
(S(t;tg, (S, 2)(0), ) — Sp(t), In(x(; tg, (S, 2)(0), ) — In(xy(t)))

for all disturbances u = (u1, us9) = a and initial conditions satisfies

y(t;to, yo, )| < B(yol, T —to) +v(|a|so) - (ISS)

Under the less stringent condition |u| < %min{l,Q}, there are func-
tions 9, € K and 3 € KL so that the trajectories everywhere satisfy

t+t,
511yt tos Yor @)]) < Bllyolst — to) + /t S5(la(r))dr.  (iISS)

0]

This Is significant e.qg. because D is proportional to the speed of the
pump that supplies the nutrient which is prone to small errors [1]. No
ISS estimate is possible for (13) without input constraints.

‘ 8. Simulation for Perturbed Chemostat (12) |

In Figures (a)-(b), we simulated the perturbed dynamics (12) with

o D(t) from (4) with m = 10, a = 3;

o ui(t) =0.5et, us(t) = 0; and

ot, =0, 2(0) =2, 5(0) = 1.

Our results imply that the convergence of (S(t), x(t)) to (Sy(t), (1))
is iISS to disturbances u that are valued in [—u, a]* for any positive
constant u < min{1, D} = 1. Estimate (iISS) holds with dy(r) = Cr
for some constant C' > 0. Our simulation illustrates how the state tra-

jectory (S(t), x(t)) tracks the reference trajectory (S, (t), z,-(t)) evenin
the presence of small disturbances and so validates our findings.
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‘ 9. Conclusions and Future Work I

e Chemostats are a useful framework for modeling species compet-
Ing for nutrients. They provide the foundation for much current
research in bio-engineering, ecology, and population biology.

e For the case of one species competing for one nutrient and a suit-
able time-varying dilution rate, we proved the stability of an appro-
priate reference trajectory using Lyapunov methods.

e The stability is maintained when there are additional species that
are being driven to extinction, or disturbances of small magnitude
on the dilution rate and input nutrient concentration.

e Extensions to chemostats with multiple competing species and
more general disturbances would be desirable.
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